Pak.j.stat.oper.res. VVol.18 No. 1 2022 pp 211-224 DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3810

Pakistan Journal of Statistics and Operation Research

Some Results on Exponentiated Weibull
Distribution via Dual Generalized Order Statistics

M. Alam !, R.U. Khan?, M.A. Khan®*

* Corresponding Author

1. M. Alam, Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002,
India, mahfooz.stats@gmail.com

2. R. U. Khan, Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002,
India, aruke@rediffmail.com

3. M.A. Khan, Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002,
India, khanazam2808@gmail.com

Abstract

In this paper, we use the concept of dual generalized order statistics dgos which was given by Pawlas and Syznal
(2001). By using this, we obtain the various theorems and some relations through ratio and inverse moment by
using exponentiated-Weibull distribution. Cases for order statistics and lower record values are also considered.
Further, we characterize the exponentiated-Weibull distribution through three different methods by using the
results obtained in this paper.

Key Words: Dgos, exponentiated Weibull distribution, order statistics, lower record values, ratio and inverse
moments, truncated moment.

Mathematical Subject Classification: 62G30, 62E10, 60E05.

1. Introduction

The exponentiated Weibull distribution was proposed by Mudholkar and Hutson (1996). For more distributional
properties of the exponentiated Weibull distribution, we may refer to Mudholkar, Srivastava and Freimer (1995) and
Nassar and Eissa (2003).

A random variable X is said to have exponentiated Weibull distribution (Mudholkar and Hutson (1996)) if its
probability density function (pdf) is of the form

f(X)=a0x* 1-e )2, x>0, 2,60>0 (1)
with distribution function (df)

F(x)=@1-e")’, x20, @ 6>0. )

The exponentiated Weibull distribution is the extended form of the two parameters weibull distribution. Also, it
shows many characteristics quite similar to exponential; Weibull and exponentiated exponential distributions and
their df and the pdf are found to have closed forms. We can apply this distribution even on censored data.

Pawlas and Syznal (2001) introduced the concept of lower generalized order statistics Igos which enables have an
idea about reverse order statistics and lower record values. Later, Burkschat etal. (2003) extensively studied this

concept.

Let X*(r,n,m,k), r=12,..,n,be the r—th dgos and their joint pdf is of the from
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n-1 n-1
k{Hyj][H[F(Xi " f(Xi)][F(Xn)]kl f(x,) @)

j=1 i=1
for F_l(l) >X 2 Xy 22 Xy > F_l(o) )

Forthecase m; =m, i=12,...,n-1, the pdf of r—th dgos X" (r,n,m,k) is given

e wnmio ) = (fj)![F(x)]”‘l F(x) g5 (F() )
and the joint pdf of X(r,n,m,k) and X "(s,n,m,k), is
Cs— m r-:
Frenmio.x nmi 0 V) = m[F(x)] fFO)gm ™ (F(X)
x [ (F(Y) =y (FONITH FWIFI, x>y, ®)
where
Cia= H7i
i=1
1 m+1
hGo={ me1’ T
—logx, m=-1
and

On(¥) =hp(X) - hu @, xe(01).
Several authors utilized the concept of dgos in their work. References may be made to Pawlas and Szynal (2001),

Ahsanullah (2004, 2005), Mbah and Ahsanullah (2007), Khan et al. (2006, 2010), Khan and Kumar (2010, 2011)
and Khan and Khan (2015) among others. In this paper, we mainly focus on the study of dgos arising from the

exponentiated Weibull distribution.

2. Some Theorems and Useful Results
Note that for exponentiated Weibull distribution f(x) and F(x) satisfy the relation
aOF(x)=x"% (X ) f(x). (6)

The relation in (6) will be used to derive some simple recurrence relations for the moments of dgos from the
exponentiated Weibull distribution.

We shall first establish the exact expression for E[ X ¥ (r,n,m,k)]. Using (4), we have,

3. Relation for Inverse Moments

*j-a Cra [ ja " r=
DX (ramm )= [ RO (00 95 (R (0o
C,.
:(r_i)!(bjfa(yr—l,r—l), U]
where
®;(ab) = [ X IFOOT £ (x) g (F () x. ®)

Case I: when m = -1
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b
On expanding g® (F(x)) = (ﬁ{l—(lz(x))mﬂ}j binomially in (8), we get

_; 3 _1\U b e a+u(m-+1)
@y @b = 2D (uj [, XTF OO £ (1) . ©)

Making the substitution t = [F(x)]“a in (9), we find that

( J'[;'[_In(l_t)] j/até}[a+u(m+l)+l]—1dt ] (10)

On using the Iogarlthmlc expansion

[—In(l—t)]j:{z J Zz (P, |t<1, (11)

p=1

J
. © P
where z,,(]) is the coefficient of t1*P in the expansion of (zt—] (see Balakrishnan and Cohen (1991), p-44)),
p=1
we get

0 o b H 1 +U(M+1)+1+(j/ a)+p-1
d)-(a,b)z—z 2 (_1)“( jz (jla) [tk a)xp-gy
: m+1)° 133 u) P J.O

2 & p(ila) 1
(m+1) ZZ:(; (j[a+u(m+1)+1+((1/a)+ IR (12)

p:

Case II: when m=-1, we have
®;(ab) = —, as Z( 1)" [ ]:

Since (12) is of the form % at m=1, therefore, we have

[a+u(m+D)+1+((j/a)+ p)/o]*
®;(ab) = AZ( 1)" ( j D’ (13)

where
A= z z,(jla).
p=0
Differentiating numerator and denominator of (13) b times with respect to m, we get

_AZ( 1)“”’[ J u

[a+u(m+2)+1+((j/a)+ p)/O]P*"

b

On applying L’ Hospital rule, we have

b

u+b u
iy P1E0)= AZ( Y U[a+1+«1/a)+p)/9]b*l o

But for all integers n>0 and for all real numbers x , we have Ruiz (1996)
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Z( D' ( j(x—n) =nl. (15)

Therefore,
b b
Z(—l)‘”b( Jub —bhl. (16)
u=0 u
On substituting (16) in (14), we find that
j/
®,(ab) = bz 2p()/ @) m=—1. 17)

~la+1+((j/a)+p)loI*’
Now substituting for @ ; (. —1,r —1) from (12) in (7) and simplifying, we obtain when m = -1
E[X ™ (r,n,m,k)] = . 1" ( j
(r- 1>'(m n ;)Zo

z,((ile)-1)
Tew+ (ila) + p-110]

(18)

and when m=-1, in view of (17) and (7), we have

. (ila)-1)
E[X 1 (r,n,~L k)] = E[Z %) 4] =k p
X1 (.0, ~LK)]) = E[Z ) ] = pzo[k+((,/a)+p ~y/6r

where Z® denote the k — th lower record value.

(19)

We obtain the recurrence relations for single moments of exponentiated Weibull distribution.
Theorem 1. For the distribution as givenin (2) for 2<r<n, n>2 and k=12,...

E[X *17(r,n,m, k)] = E[X "% (r =1,n,m,k)]
+ 22 B2 (r nm 0]~ ELB(X (1,0 m k)T, @

where
#(x) = xI e
Proof. Inview of Khan et al. (2008), note that
E[X*17%(r,n,m, k)] - E[X % (r —=1,n,m, k)]
__(-0)Cry (= jan e
prwe R O GOLE (22)
By using (6) in (22), we get
E[X 17 (r,n,m, k)] - E[X 7% (r =1,n,m, k)]
j—a Ca —2a 1
{(r 1),j X2 RO £ () gy (F () dx

Cr—l

_(r—l)!f X RO () gry (F(x»dx}
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and hence the result given in (21).

Remark 1. Putting m=0, k =1, in (21), we obtain a recurrence relation for single moments of order statistics of
the exponentiated Weibull distribution of the form

E(X ) = EX S L0 (X 2, )~ E@(Xy )}

) t————
n—r+1: n-r+2:n 0((9(I’l —_r +1)

Replacing (n—r+1) by (r-1), we have

E(X %) = E(X _ln)+%{E(x'2“) EG (X))}

Remark 2. Setting m=-1 and k >1 in (21), we get a recurrence relation for single moments of lower k record
values from exponentiated Weibull distribution in the form of

E[<Z§k’)i-“]=E[(z<k’)J“]+ {E[(z<k>)12“] E[¢(Z*)]}-

4. Relation for Ratio Moments

The explicit expressions for the product moments of dgos X **(r,n,m,k) and X*"*(s,n,m,k), 1<r<s<n,
E[X 7% (r,n,m,k)X 17 (s,n,m,k)]
C,

mjj X"y IR O™ () g (F ()
x [y (F (¥)) = e (F )T [F (y))* ™ £ (y) dydx. (23)
r-1
On expanding g, F(X) = (—{1 (F(x))m“}j binomially in (23), we get

Cs—l
(r=D!(s—-r-1!(m+1"*

E[X =x<i—0:(r-7 n,m,k)X *-a (s,n,m,k)] =

-1 AT .
XZ(—l)“[ru ]jo [, X7 YT O™ ™ 1) Ty (F (1)) = By (F OO IR ()17 £ (y) dydx
u=0

Cos -1
= Dl _1)|(m+1)r 12( 1) ( ] Dy joM+um-+1),s—r—1y -1), (24)

where

®;,5(@b,¢) = [ X'y IF O £ 00l (F (1) ~ i (FONPTF(I® F (y)dyce (25)
Case I: when m = -1
Expanding [h, (F(y)) - hm(F(x))]b binomially in (25) after noting that
hin (F(¥)) = hey (F(X)) = 9 (F(Y)) = 9 (F(X)) , we  get

Pii(ab0 = s S me K FOI M £ 109 dx (26)
where

109 = [ YR ™ £ (y) dy (27)

By setting t =[F (y)I"? in (27) and simplifying on the line of (12), we find that
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p(J /a)[F (X)]c+v(m+l)+1+((j/a)+p)/9
1(x)= Z [c+vim+)+1+{(j/a)+ p} O]

By substituting the expression of | (X) in (26), we have

@; ;(a,b,c) =

LI (i/a)
p
(m+ 1) ZZ [J[C+V(m+l)+1+{(j/a)+ p} 0]

% J':Xi [F(X)]a+c+b(m+l)+1+{(j/a)+ MO ¢ (x)dx.

Again by setting w = [F (x)]*/¢

o o b (J/(Z)
p
®;j(@b.c)= (m+ 1)bzzz( [j[c+v(m+l)+l+{(1/a)+ p} 6]

p=0 g=0 v=0
24(il @)
[a+c+b(m+l)+2+{(|/a)+(]/a)+ p+q} o]

Case II: when m=-1

(I)i,j (a,b,C) =

olo

b b
, as Z(—l)v( J =
v=0 v
Therefore, on applying L’ Hospital rule and using (16), we find that

2,(jla)
Il b,c) =h! -
im ®@; j(a,b,c) = Ipz(:)qzé[c+l+{(j/a)+p}/9]b+l

24(il @)
[a+c+2+{(|/a)+(1/a)+ p+q}a]’

in (28) and simplifying the resulting expression, we obtain

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3810

(28)

(29)

(30)

Now on substituting for CDiyj(eru(m +1),s-r-1y, —1) from (29) in (24) and simplifying, we obtain when

ma -1
Cs—l
(r=D!(s—r-1)(m+1)>2

E[X *i—or (r, n,m, k)X *j-a (S, n,m, k)] =

S ~1)(s-r-1 z,((ila)-1)
% 1u+v p
PIPIDNS [ j( v J[7sv+{(j/a)+p—1}/6']

p=0 q=0 u=0 v=0

z4((ila)-1)
“Dew +G1a)+ (i) + p+q-26]

and when m=-1, in view of (30) and (25), we have

E[LX % (r,n,—Lk)X 7% (s,n,—1,k)] = E[(Z ) ~* (2 ) 1=]

i )sii 2,((jl @) ~Dzq (/@) 1)

o0 o [OK + (j/a) + p—11"[Ok +(i/a)+(jla)+p+q-2]"

Remark 3. At j=« in(31), we have
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o, < -1 z,(/e)-)
e mil= 1)'( ‘1;%( )(u jl%ﬁ{(”a)w—l}’e]

which is the exact expression for single moment as given in (18).

Theorem 2. For the distribution as given in (2), for 1<r<s<n, n>2 and k=12,...

E[X % (r,n,m,Kk) X *17% (s,n,m, k)] = E[X "% (r,n,m,k) X *I"% (s —=1,n,m, k)]

= T B X 50 m ] - EXC (nm X (s m KT}, (64
aovys

where
p(x,y) =x"*yl e
Proof. In view of Khan et al. (2008), note that
E[X % (r,n,m,k) X 7% (s,n,m, k)] = E[ X "= (r,n,m, k) X *1=% (s =1,n,m, k)]

- [ [y R £ (007 ()

x [y (F () = ey (F O F () dyx.. 35)
On using relation (6) in (35), we get

ELX T (r,n,m, k) X 07 (s,m,m k)] = ELX 7 (r,n,m,K) X 17 (s = Ln,m, )]

B (J—2)Csq
aby (r-Hli(s—r-1)!

[ Dxeyreee [P 109g5 " (F o)

x [ (F () ~ N (FOO R () £ (y)dy ik
=[xy R O™ £ 09 g (F OO (F (V) — i (F 00N r4[F(y)]%*f(y)dydx}

and hence the result given in (34).

Remark 4. Putting m=0, k=1 in (34), we obtain recurrence relations for product moments of order statistics of
the exponentiated Weibull distribution in the form

j—a

E(xri;CrlJrln er| g.ln) E(xrl1 retn xn s+2n)_ af(n—s+1)

X{E(Xri:?ﬁ-ln Xr{ szf_'[ln) E(¢(Xn—r+1:n Xn—s+1:n))}-

That is

i—a vy j-ay i—a jmay i I—a J 2{1
E(Xrn Xsn ) —EX 20 Xsn —0( _1){E(X Xen )~ E@(Xn Xsn))}-

Remark 5. Setting m=-1 and k >1, in (34), we obtain the recurrence relations for product moments of lower k
record values from exponentiated Weibull distribution in the form
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E[Z{9)"*(Z{) 1= ELZ[) "z ]
= L ENZ ) @28 - Bl 2@y

Remark 6. At i=0, Theorem 2 reduces to Theorem 1.

5. Special Cases of Ratio and Inverse Moments

i) Putting m=0, k=1 in (18), the explicit formula for single moments of order statistics of the exponentiated
Weibull distribution can be obtained as

0 r-1 z,((j/a)-1)
E(Xd i) = Crnzz( b [ u j[n—r+1+U+{(j/0!)+ p-1/6]"

p=0 u=0
That is
w ner _r z,((j/a)-1)
E(X ) Crn;)%( 1) ( j[r 1+U+((J/a)+p 1)/0]I”
where

c _ n!
M r=)(n-r)!’

ii) Putting k=1 in (19), we deduce the explicit expression for the moments of lower record values from the
exponentiated Weibull distribution as

z,((j/e)-1)
E(X L) = Z:[1+{(1/0¢)+p el

iii) Putting m=0, k=1 in (31), the explicit formula for the product moments of order statistics of the
exponentiated Weibull distribution is obtained as

o r-1 s—r-1 -1 —r-1
E(X;](l)'lﬁ-lnxr{_gﬂ_n) Crsnzzz Z( 1)u+v[r J[S \I; j

p=0 q=0 u=0 v=0

y 2,((i1e) =D zq((i/x) -1
[N-s+1+v+{(jla)+ p-TOlIn-r+1+u+{(i/a)+(jla)+p+q-2}/6]

That is

E(Xl axj a) Crsniin_s Si 1)u+v( j(s—\:—lj

) 2,((i/2) ~1)74((j/ @) -1)
[r=1+v+{(jla)+ p-Bla][s-1+u+{(i/a)+(jla)+ p+q-2}6]’

where

c B n!
r,sn = (r=D(s—r-1!(n—s)! .

iv) Putting k =1 in (32), the explicit formula for the product moments of lower record values for the exponentiated
Weibull distribution can be obtained as
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2 & (i1e)-Dzq((i1e)-1)
Ja s p
EIX X 1= éz[m(ua)w P[0+ Gla)+(jla)+p+q-2]

6. Characterization

Let X*(r,n,mk), r=12,....,n be dgos from a continuous population with df F(x) and pdf f(x), then the
conditional pdf of X*(s,n,m,k) given X*(r,n,mk)=x, 1<r <s<n, inview of (4) and (5), is

fX*(s,n,m,k)|X*(r,n,m,k)(y|X)zm[ (1™ 7
<[ (F) N (FONTFOF (), y <X, m#-1 (36)
Fyozn (V10 = 5 IF O - InF ()™
[F0\ P 1w
[F(X)J I:()dy, y<X, m=-1 37)

Theorem 3. Let X be a non-negative random variable having an absolutely continuous df F(x) with F(0)=0
and 0<F(x) <1 forall x>0, then

ELE0X (s,nm.K)} X *(1.n,m K) = X] :i(l—ex“)pls—'[[ Yrol J
L

p j=1 7r+j+(p/9)
l=r, r+1, m=-1.
(38)
s—I
E[ez®) |z = 1-e)P/p,
[£@Z{) X]Zk(la) 1-e>)°/p
l=r,r+1, m=-1. (39)
where
sy)=y“.
if and only if

F(X)=@1-e")?, x>0, a, 6>0.

Proof. When m = -1, we have from (36) for s>r +1

_ _ Cs—l
E[E{X (s,n,m,k)}| X(r,n,m,Kk) = x] = 5or —1)!Cr_1(m+1)5"’1
ol (F T (Fo Y ),
b HF(x)j } (56 o 0
_ya 6
By setting u = F(y) _|1=e — | from (2) in (40), we obtain
F(X) |1-e
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Cs—l
(s—r-1IC, ;(m+1)s"*

ELECX (5., m, KO} X (r,n m,K) = ] =

X I:[—In{l— (1- e )ulle}] u’st (1-u m+1)s—r—1du

C,_ 1-e” 1 _
1 — r_lz( ) J’ (p/19)+7s 1(1 um+l)s rldu (41)

(s—r—l)ICr a(m+1 p

Again by setting t =u™" in (41), we get
Cs—l
(s-r-!IC,;(m+1)°*"

ELELX (s,n,mk)}| X (r,n,m k) = x] =

z (1 e ) J" t6*(m+1) 1(1_t)5,r,1 dt

Z(1 e‘X )P r(e?r:fi)m_s)
- rl(m+1)5 r r[ p+ 6k +n_rj
f(m+1)

—Xa)p

_1 z
C S—r
e pH(ym +(p/9))

where

s—r
— = H7r+j
j-1

and hence the result given in (38).
To prove sufficient part, we have from (36) and (38)

(s—r 1)'5 S o YIE )™ = (Feyym
B A o

[F)I*™ £ (y)dy =[FOO™H, (9, (42)

where

- e
Hi0) =2, H(?’Hﬁ(p/@))

i P A

Differentiating (42) both sides with respect to X, we get

(s flz[)nFc( X)]<mf+(X1;Srz [ YIECO™ = (F)™ 2[R ()P f (y)ely
-r= ~r-l

= H; IF 1 + 7o, Hp QOIF 1727 £ (x)

or
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7r+1H r+1(X)[F (X)]ywﬁm f (X)
= HL CALFOOT™ + 7e,aH COTF O ().
Therefore,

f(x) H! (x) _afx e

- - S 43)
FO) realHa () = H (X)] 1-e¥

where

H’ (X) axa -1 7X Z(l 7Xa)p lH[ 7I’+j J

p=1 7r+1+(p/9)

Hr+1(x) -H r (X) -

1_eX“)P Vr+j
Z( ) H[7r+]+(p/0)J

Vra p=1 j=1

Integrating both the sides of (43) with respectto X between (0O, Y), the sufficiency part is proved.

4
_e Vv
For the case when m = -1, from (37) on using the transformation u = % = [H—Xa] , we find that
X 1-e”

E[£(2{) 12 =x]= A*ﬂ (~Inu)> POy (44)

where

—e )Py
(s —-r —1)I z( P
We have Gradshteyn and Ryzhik (2007, p-551)

j:(—mx)ﬂ-lxv-ldx:z—f, 4>0, v>0. (45)
On using (45) in (44), we have the result given in (39).

Sufficiency part can be proved on the lines of casem = -1.

Theorem 4. Let X be a non-negative random variable having an absolutely continuous df F (x) with F(0)=0
and 0<F(x)<1 forall x>0, then

ELX 7 (r,n,m, k)] = E[X 1 (r =L n,m,k)

+ AL e xi2e r nmk)] (46)
[24 r

if and only if
F)=@-e")’, x>0, a>0, 6>0.

Proof. The necessary part follows immediately from (21). On the other hand if the recurrence relation in (46) is
satisfied. In view of Khan et al. (2008), note that
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_(1=0)Cry J'wxj—a—l[F(x)]Vr gnt(F(x)dx =

v (r=t Jo
(j_a)cr* © =20 4 X* - r—
_m.[o xi-22g [F(x)]” 1f(X)gml(F(X))dX
(j_a)Cr* © . j-2a = r—
+mjo XI2AE OO (X) gt (F (X)) dx . 47)
(=a)Crs e (prtgt FO) x“ e 1],
Vo (r—1) J.O x! [F(X)]y Onm (F (X))dX{Xf(X) 20 e +a0}dx 0 (48)

Now applying a generalization of the Miintz-Szasz Theorem (Hwang and Lin, 1984) to (48), we get

F(x) _ (¥ -1)
xf (x) abx*

which proves that

F)=@1-e)’, x>0, a,6>0.

Theorem 5. Suppose an absolutely continuous (with respect to Lebesgue measure) random variable X has the df

F(x) and pdf f(x) for 0 < X <00, such that f'(x) and E(X | X <x) existforall X, 0<x<o, then

E(X[X <x)=g(X)n(x), (49)
where
"09=1 0
and
e [[a-e") du
900= afx* 2 e ) afxt (1)t x" '
if and only if

f(x)=a0x*t 1-e ) e x>0, qa,6>0.

Proof. In view of Ahsanullah, et al. (2016) and (1), we have

al x _u%\pH1 _y«
E(X|X<x)=——| u*@-e ") e du. 50
(XX <=2 [jud-e) (50)
Integrating (50) by parts treating (u""l(l—e’“a)"’le’”a) for integration and rest of the integrant for
differentiation, we get
1 a X a

E(X|X <x)=——ix(-e *)’ - [ @-e" Hdu}. 51

(X1X 2= rsfut=e ) =[a-e ) (51)
After multiplying and dividing by f(x) in (51), we have the result given (49).
To prove sufficient part, we have from (49)

1

— [“uf(u)du _ 9T
F(x)-0 F(x)
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or joxu f(u)du = g(x) f (x).
Differentiating (52) on both the sides with respect to x, we find that
xf()=g'(x)F()+9(x)f'(x).

Therefore,
T _x-9'(x [Ahsanullah, et al. (2016)]
f(x) 9(x)
_a(@-9) Xaj e X" La-l y@te
1-e7* X
where

a(@-1)x*? e L@ -1 RN

9'(x) =x+g(x)

a

1-e7* X
Integrating both the sides in (53) with respect to x, we get
f(x)=cx®t @1-e X" )0 Te”,
It is known that
jof(x)dx=1.
Thus,
1 ©La-1 — X% \0-1,-x% 1
== x 1-e e dx=—,
c -[0 ( ) al

which proved that

f(x)=a0x*t Q- ¥ ) e x>0,q,6>0.

6. Conclusion

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3810

(52)

(83)

This paper demonstrates the explicit expressions for ratio and inverse moment for single moment as well as product
moment through lower (dual) generalized order statistics. Some recurrence relations for single and product moments
of dgos from the exponentiated Weibull distribution have been established. We calculate for both cases E[x/y] and
E[y/x] on j<a and i<a respectively. Further, conditional expectation of function, recurrence relation and
truncated expectation of dgos has been utilized to obtain a characterization of the exponentiated Weibull distribution

and some important results are deduced.
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