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Abstract 

In this paper, we have proposed an alternate new technique to find an efficient solution of multi-objective 

fractional programming problems (MOFPP). The multi-objective fractional programming problem will be 

converted into multi-objective linear programming (MOLPP) utilizing the point-slopes formula, which has 

equivalent weights to the original MOFPP. The MOLPP will be diminished to a single objective linear 

programming problem (SOLPP) through using two new techniques for the values of the objective function and 
suggesting an algorithm and flow chart for its solution. Finally, we obtained the optimal solution for MOFPP by 

solving the consequent linear programming problem (LPP) based upon simplex method. The proposed 

practicability is confirmed with the existing approaches, and it has been illustrated with some numerical 

examples. The new techniques outperform other techniques in terms of results, with a smooth pace, and reach an 

efficient solution at a faster rate.  
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1. Introduction 

In the past five decades, the fractional programming problem (FPP), which has been utilized as a significant 

designing tool, has been exercised in various disciplines, for instance, business, manufacturing planning, economic 
and corporate organization, health care, and hospital planning, etc. FPP arises repeatedly in decision making 

implementations, including game theory, transportation, etc. Fractional programming is commonly applied for 

modeling real-world issues with one, two or more objective(s) for example, profit over cost, stocking/sales, cost/ 

time, etc. The idiom multi-objective programming is used to imply a kind of optimization problem where two or 

more objectives are to be maximized, minimized, or both of them subject to definite constraints. Usually, to resolve 

or suggest new methodology issues, we will be able to provide some previous facts and concepts. It has been 

described in section three. Also, for different kinds of FPP, there are some distinct sorts of research. Some of them 

compact with theory, (Borza & Rambely, 2021; Hejazi & Nobakhtian, 2020) or some of them methods of solution 

with applications(Akhtar et al., 2017; Pramy & Islam, 2017; Suleiman & Nawkhass, 2013) and many researchers 

have studied how to convert MOFPP into LPP, using several methods and techniques, such as Chakraborty and 

Gupta’s approach(Chakraborty & Gupta, 2002), Dinkelbach’s methodology(Dinkelbach, 1967), and Nayak, & Ojha 
(Nayak & Ojha, 2019) etc. The aim of the paper is to present a new efficient technique for remediation of the 

MOFPP, with fewer steps and suitable precision to convert the MOFPP into LPP.  In this paper, a new model has 

been suggested for solving MOFPP always yields an efficient solution and reduces the complexity of solving the 

MOFPP. The idea of an efficient solution is considered as an alternative of exact optimal solution. A solution is 
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efficient if moving to an extra solution does not develop all the objectives. Suitable changes have been applied to 

express an equivalent MOLPP and the resulting MOLPP has been solved based on the set of techniques. The 

equivalency has also been established in the feasibility region is affected, and numerical examples have been 

presented to support the model. This work concentrates on MOFPP, where several fractional objective functions (i.e. 

the ratio of two linear functions, ratio of two quadratic functions, or the numerator quadratic function and the 
denominator linear function) are to be optimized together subject to a set of linear inequality constraints and non-

negative decision variables. We have investigated a solution to the MOFPP based on a feasible region, and 

introduced an algorithm and flowchart to solve it. The MOFPP is changed into a MOLPP by the point-slopes 

formula.  After that, we suggested a new mean deviation and advanced mean deviation techniques be used to tackle 

the MOLPP reduced into LPP; this LPP is solved by the classical simplex method. The results were compared with 

different techniques, such as Chandra Sen(Sen, 1983), advanced optimal average(Akhtar et al., 2017), advanced 

harmonic mean(Akhtar & Modi, 2017), Chakraborty and Gupta’s approach, and Lachhwani’s approach. 

This paper is organized into eight sections following the introduction in section 2 we show the literature reviews. In 
section 3, we give some definitions correlated to our work, in section 4, we present two forms of the MOFPP, in 

section 5 we describe in detail our technique to solution with algorithm and flow chart, we present four numerical 

examples in section 6, followed by discussion of the results in section 7, we conclude in section 8. 

2. Literature Review and Problem Statement: 

In this section, we show and cite some related works and approaches with regards to our trend. In the paper 

(Dinkelbach, 1967) Dinkelbach offered to explain an algorithm for solving nonlinear programming based on a 

theorem by Jagannathan. Also (Sen, 1983)Chandra Sen introduced the MOLPP and proposed a technique to solve 

the MOLPP under the definition that the values are optimal for problems individually when the result is positive. 

(Chakraborty & Gupta, 2002)Chakraborty and Gupta presented an equivalent MOLPP form of the multi-objective 

linear programming problem (MOLFPP) using a fuzzy set theoretic approach. Valipour, Yaghoobi, and Mashinchi 

(Valipour et al., 2014) suggested an iterative parametric approach to find an efficient solution to the MOLFPP, that 

extends Dinkelbach’s approach, when solving one LPP in each iteration. Noura, Sherafatmand, and Hajihosseini 

(2013) suggested a new method for solving MOLFPP; the new method is based upon transforming MOLFPP into 

MOLPP using the Primal-Dual approach. Guzel(Güzel, 2013) suggested a new solution to the MOLFPP based on a 

theorem previously studied by Dinkelbach and reduced MOLFPP to LPP. Mehdi, Chergui, and Abbas(Mehdi et al., 
2014) described an improvement to Cherqui and Maulai’s method based on the branch and cut concept, this method 

consists of fractional objectives over the original feasible set and proposes to linearize one of the fractional 

objectives to solve LP as subproblems rather than fractional linear programming, which facilitates the use of the 

Dual Simplex Method. Sulaiman and Mustafa(Sulaiman & Mustafa, 2016) presented a new technique for 

transforming MOLPP into LPP using harmonic mean for values of objective functions, with some limitations. 

Lachhwani(Lachhwani, 2017) studied an alternate modified method for solving multi-objective quadratic fractional 

programming problems (MOQFPP) based on a fuzzy goal programming approach. Akhter, Modi, and 

Duraphe(Akhtar et al., 2017) defined an advanced optimal average of maximin and minimax technique to convert 

MOQFPP into a single objective quadratic fractional programming problem (SOQFPP), but there were unresolved 

issues related to the value of objectives. Pramy and Islam(Pramy & Islam, 2017) presented a modified method and 

tried to find an efficient solution to MOLFPP. Sirvi, Albayrak, and Temelcan(Sivri et al., 2018) studied a novel 

method that converts quadratic fractional programming problems (QFPP) into LPP using Taylor Series at a chosen 
initial point. Nayak and Ojha(Nayak & Ojha, 2019) proposed a method to solve the MOLFPP using a parametric 

approach. Gupta, Rani, and Goyal(Gupta et al., 2019) proposed an algorithm with an efficient method to obtain a 

solution of the multi-objective quadratic fractional optimization model (MOQFOM) with a trapezoidal fuzzy 

number, used α- cut method, although, this idea tried to reduce the error values of the decision. Chandra Sen(Sen, 

2020) studied existing averaging techniques and suggested improved averaging techniques applied for solving multi 

objective optimization (MOO). Hejazi(Hejazi & Nobakhtian, 2020) proposed the idea of convexificators is used to 

derive the Karush-Kuhn-Tucker conditions at weak efficient solution of MOLFPP, and investigated the relationships 

between equality and inequality constraints. Borza and Rambely(Borza & Rambely, 2021) presented an active 

methodology for processing the MOLFPP that used the max-min technique to transform MOLFPP into LPP, this 

technique is one of the best methods for solving higher numbers of objectives in nonlinear programming. In order to 
solve MOFPP, we have tried to obtain an efficient solution and remove any complexity in the fractional 

programming.  
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3. Some Related Definitions 

3.1 Canonical Form of Linear Programming (LP) 

A LP problem may be defined as the problem of maximizing or minimizing a linear function subject to linear 

constraints. The constraints may be equalities or inequalities. A LP is defined of the form, 

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛 = 𝐶𝑡𝑥 + α                                                                       (1) 

Subject to  Ax(≤, =, ≥)b,       x ≥ 0                                                       (2) 

Where, x ∈ Rn represents the vector of variables to be determined, c ∈ Rn and b ∈ Rm are vectors of coefficients, 

A ∈ Rn×mis a matrix of coefficients and α ∈ R is constant. 

3.2 Vertex:  

A vertex is a corner point of a polygon, polyhedron, or other n-dimensional polytope, in a polygon, a vertex is 

named convex. 

3.3 Feasible Solution:  

Any set 𝑋 = {𝑥1, 𝑥2, … , 𝑥(𝑛+𝑚)} of variables is named a feasible solution of the LP problem, when it accepts the 

limitations (constraints) (2) and non-negativity boundaries.   

3.4 Definition:(Sivri et al., 2018): Let M is a differentiable function, and is continuously differentiable if and only 

if M is of differentiability class C, where M is objective function and C is a feasible region. 

3.5 Point-Slopes Formula:  

An equation for a plane that contains the point (𝑥10, 𝑥20, … , 𝑥𝑛0) and has slopes 𝑚𝑥1 , 𝑚𝑥2 , … , 𝑚𝑥(𝑛−1) in the 

𝑥1, 𝑥2, … , 𝑥𝑛−1 directions respectively is 

(𝑧 = 𝑥𝑛) − 𝑥𝑛0 = 𝑚𝑥1(𝑥1 − 𝑥10) + 𝑚𝑥2(𝑥2 − 𝑥20) + ⋯ + 𝑚𝑥(𝑛−1)(𝑥𝑛−1 − 𝑥(𝑛−1)0)               (3) 

3.6 Mean Deviation (MD):  

Mean deviation is the arithmetic mean of the deviations of a series computed from any measure of central tendency, 

i.e. the mean of the distances of each value from their mean(M). Usually mean deviation is non-negative.   

Mean Deviation (MD) =
∑ (𝑥𝑖−𝑀)𝑛

𝐼=1

𝑛
.                                           (4) 

Where, 𝑥𝑖 =the values (i=1,…,n),  n= the number of values, and 𝑀 =
∑ (𝑥𝑖)𝑛

𝐼=1

𝑛
 

4. Multi-Objective Fractional Programming Problem: 

A fractional programming problem with more than one objective is called a multi-objective function, which consists 

of the ratio of two linear functions, quadratic functions, or numerator quadratic form and denominator linear form, 

which can be defined as follows: 

4.1 Multi-Objective Linear Programming Problem (MOLFPP): 

That means the numerator and denominator are both linear forms. 

𝑀𝑎𝑥. 𝑧1  =
𝑐1

𝑇x+α1

𝑑1
𝑇x+β1
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𝑀𝑎𝑥. 𝑧2  =
𝑐2

𝑇x+α2

𝑑2
𝑇x+β2

  

…                        

𝑀𝑎𝑥. 𝑧𝑟  =
𝑐𝑟

𝑇x+α𝑟

𝑑𝑟
𝑇x+β𝑟

                                                                                         (5) 

𝑀𝑖𝑛. 𝑧𝑟+1  =
𝑐𝑟+1

𝑇 x+α𝑟+1

𝑑𝑟+1
𝑇 x+β𝑟+1

                                                                                      

… 

𝑀𝑖𝑛. 𝑧𝑠  =
𝑐𝑠

𝑇x+α𝑠

𝑑𝑠
𝑇x+β𝑠

  

Subject to: 

Ax [
≥
≤
=

] b, x ≥ 0                                                                                                (6) 

Where 𝑏 a constant vector is having an m-dimensional, 𝑋 is a decision variables vector that an n-dimensional, 

number of maximized objective functions equal to r, minimized objective functions equal to (s-r), r and s are 

positive integer numbers. 𝐴 is an( 𝑚 𝑏𝑦 𝑛) constants matrix, all vectors are supposed to be pillar except if 

transposed (T). 𝑐𝑖 , 𝑑𝑖  (where 𝑖 = 1,2,…,s) are constants vector have  n-dimensional, 𝛼𝑖,𝛽𝑖(where 𝑖 = 1,2,…,s) are 

scalars. 

4.2 Multi-Objective Quadratic Fractional Programming Problem (MOQFPP): 

We can write two forms of MOQFPP, One of them is with quadratic form over linear form and the other one is with 

a quadratic form to the numerator and denominator. 

Max. z1 =
(𝑐11

𝑇 x+α1)(𝑐21
𝑇 x+β1)

𝑐1
𝑇x+γ1

  or  Max. z1 =
(𝑐1

𝑇x+α1+
1

2
xTG1x)

(𝑑1
𝑇x+β1+

1

2
xTG2x)

 

Max. z2 =
(𝑐12

𝑇 x+α2)(𝑐22
𝑇 x+β2)

𝑐2
𝑇x+γ2

  or Max. z2 =
(𝑐2

𝑇x+α2+
1

2
xTG3x)

(𝑑2
𝑇x+β2+

1

2
xTG4x)

 

… 

Max. z𝑟 =
(𝑐1𝑟

𝑇 x+α𝑟)(𝑐2𝑟
𝑇 x+β𝑟)

𝑐𝑟
𝑇x+γ𝑟

 or  Max. z𝑟 =
(𝑐𝑟

𝑇x+α𝑟+
1

2
xTG2r−1x)

(𝑑𝑟
𝑇x+β𝑟+

1

2
xTG2rx)

 

Min. z𝑟+1 =
(𝑐1𝑟+1

𝑇 x+α𝑟+1)(𝑐2𝑟+1
𝑇 x+βr+1)

𝑐𝑟+1
𝑇 x+γ𝑟+1

 or  Min. z𝑟+1 =
(𝑐𝑟+1

𝑇 x+α𝑟+1+
1

2
xTG2r+1−1x)

(𝑑𝑟+1
𝑇 x+β𝑟+1+

1

2
xTG2r+1x)

                                 (7) 

… 

Min. z𝑠 =
(𝑐1𝑠

𝑇 x+α𝑠)(𝑐2𝑠
𝑇 x+β𝑠)

𝑐𝑠
𝑇x+γ𝑠

 or Min. z𝑠 =
(𝑐𝑠

𝑇x+α𝑠+
1

2
xTG2s−1x)

(𝑑𝑠
𝑇x+β𝑠+

1

2
xTG2sx)

 

Subject to: 

Ax [
≥
≤
=

] b, x ≥ 0                                                                                                                                      (8) 
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Where, 𝑏 a constant vector is having an m-dimensional, 𝑋 is a decision variables vector that an n-dimensional,  

number of maximized objective functions equal to r, minimized objective functions equal to (s-r), r and s are 

positive integer numbers, and 𝐺𝑖 , is (n by n) symmetric constant matrix (where 𝑖 = 1, … ,2𝑠) 𝐴 is an( 𝑚 𝑏𝑦 𝑛) 

constants matrix, every vector is supposed to be column except if transposed (T). 𝑐1𝑖,𝑑1𝑖  𝑐𝑖, 𝑎𝑛𝑑 𝑑𝑖  (where 𝑖 = 

1,2,…,s) are constants vector have  n-dimensional, 𝛼𝑖,𝛽𝑖   and 𝛾𝑖(where 𝑖 = 1,2,…,s) are scalars. 

5. MOFPP Solution Techniques: 

In this section, the techniques for transforming MOFPP into MOLPP and MOLPP into SOLPP will be explained and 

studied. The objective functions of MOFPP will be converted into MOLPP utilizing the point-slopes formula. This 
approach is the only technique that can be used to convert both fractional programming, linear fractional, and 

quadratic fractional into linear programming of the n-dimension decision variables. In the MOLPP form, it has been 

generated as an approximation of the MOFPP. Then, the MOLPP can be reduced into a SOLPP by using our 

techniques concerning useful mean deviation. The merits of this measure are that it is considered to be the better 

measure of comparison, not much affected by the fluctuations of values, based on an arithmetic mean (average), and 

it is flexible, because it can be calculated from any average. Although this method has some limitations, for 

example, when substituting corner points on the feasible region, the denominators of the objective function must not 

be equal to zero. This method cannot be applied to quadratic programming and linear programming. Meanwhile, the 

measure has some demerits, such as being not capable of further algebraic dealing. It is made more precious by the 

instabilities in sampling. It is hard to calculate when the actual value of an average comes out in fractions. It is not 

appropriate for sociological study. 

5.1 The Derivation of the Study: 

The derivation of this study can be explained as follows. In the beginning, we choose the maximum values of each 

maximized objective function and the minimum values of each minimized objective function by substituting corner 

points without zero point in the convex feasible region (6) or (8) in the fractional objectives. 

∴  𝑀𝑎𝑥. 𝑧𝑖 = 𝑥𝑛
∗ = 𝜃𝑖 , 𝑎𝑡 𝑢𝑖 = (𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛−1

∗ ) 𝑖 = 1, … , 𝑟, are maximum  values 

 𝑎𝑛𝑑 𝑀𝑖𝑛. 𝑧𝑘 = 𝑥𝑛
∗ = ∅𝑘 , 𝑎𝑡 𝑣𝑘 = (𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛−1

∗ )𝑘 = 𝑟 + 1, … , 𝑠, are minimum values. 

Where, 𝑢𝑖𝑎𝑛𝑑 𝑣𝑘 ∈ 𝑆 𝑖 = 1, … , 𝑟 𝑎𝑛𝑑 𝑘 = 𝑟 + 1, … , 𝑠, are corner points, and 𝑆 = {𝑥 ∈ 𝑅𝑛: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}, then 

by definition (3.4)(𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑛) objective functions 𝑧𝑖 , 𝑖 = 1, … , 𝑠. has continuous at 𝑢𝑖𝑎𝑛𝑑 𝑣𝑘 , 𝑖 = 1, … , 𝑟 , 𝑘 =
𝑟 + 1, … , 𝑠, and it is differentiable. After that, by using formula (3), we get: 

𝑧𝑖 − 𝜃𝑖 = 𝑀𝑥1(𝑥1 − 𝑥1
∗) + 𝑀𝑥2(𝑥2 − 𝑥2

∗) + ⋯ + 𝑀𝑥(𝑛−1)(𝑥𝑛−1 − 𝑥(𝑛−1)0), 𝑎𝑡 𝑢𝑖 = (𝑥1
∗, 𝑥2

∗ , … , 𝑥𝑛−1
∗ ) , 𝑖 = 1, … , 𝑟  

𝑧𝑘 − ∅𝑘 = 𝑀𝑥1(𝑥1 − 𝑥1
∗) + 𝑀𝑥2(𝑥2 − 𝑥2

∗) + ⋯ + 𝑀𝑥(𝑛−1)(𝑥𝑛−1 − 𝑥(𝑛−1)0), 𝑎𝑡 𝑣𝑘 = (𝑥1
∗, 𝑥2

∗ , … , 𝑥𝑛−1
∗ ) , 𝑘 = 𝑟 + 1, … , 𝑠        (9)                                        

And we obtain the multi-linear function. 

 𝑧𝑖 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑒, 𝑖 = 1, … , 𝑟, and  𝑧𝑘 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛−1𝑥𝑛−1 + 𝑡, 𝑘 = 𝑟 + 1, … , 𝑠               (10) 

Where,𝑎1 = 𝑀𝑥1 =
𝜕𝑧𝑖

𝜕𝑥1
, … , 𝑎𝑛−1 = 𝑀𝑥(𝑛−1) =

𝜕𝑧𝑖

𝜕𝑥𝑛−1
, 

𝑒 = 𝜃𝑖 − (𝑀𝑥1𝑥1
∗ + ⋯ + 𝑀𝑥(𝑛−1)𝑥𝑛−1  

∗ )according to  𝑢𝑖 = (𝑥1
∗ , 𝑥2

∗ , … , 𝑥𝑛−1
∗ ), 𝑖 = 1, … , 𝑟,  

And,𝑏1 = 𝑀𝑥1 =
𝜕𝑧𝑖

𝜕𝑥1
, … , 𝑏𝑛−1 = 𝑀𝑥(𝑛−1) =

𝜕𝑧𝑖

𝜕𝑥𝑛−1
, 

𝑡 =  ∅𝑘 − (𝑀𝑥1𝑥1
∗ + ⋯ + 𝑀𝑥(𝑛−1)𝑥𝑛−1  

∗ )according to 𝑣𝑘 = (𝑥1
∗ , 𝑥2

∗ , … , 𝑥𝑛−1
∗ ), 𝑘 = 𝑟 + 1, … , 𝑠.  

The techniques convert MOLPP into SOLPP, for each linear objective in (10) will be solved by the simplex method 

individually. Then we obtain the values, 𝑧𝑖 = 𝛾𝑖 , 𝑖 = 1, … , 𝑟, and 𝑧𝑘 = 𝜀𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠  after that, calculate the 

mean deviation using formula (4) of 𝛾𝑖 , 𝑖 = 1, … , 𝑟, we get, 𝑀𝐷1 =
∑ (𝛾𝑖−�̅�)𝑟

𝑖=1

𝑟
, where �̅� =

∑ 𝛾𝑖
𝑟
𝑖=1

𝑟
               (11) 
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Also, same calculate of 𝜀𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠, we get, 𝑀𝐷2 =
∑ (𝜀𝑘−�̅�)𝑠

𝑘=𝑟+1

𝑠−𝑟
, where 𝜀̅ =

∑ 𝜀𝑘
𝑠
𝑘=𝑟+1

𝑠−𝑟
                (12) 

Let, 𝑧1
∗ = ∑ 𝑧𝑖

𝑟
𝑖=1 , and 𝑧2

∗ = ∑ 𝑧𝑘
𝑠
𝑖=𝑟+1  

Then, we suggest two techniques for process of the converting MOLPP into LPP. 

1- New Mean Deviation(NMD) Technique: 

𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗−𝑧2
∗

𝑁𝑀𝐷
,                                               (13) 

where, 𝑁𝑀𝐷 =
𝑀𝐷1+𝑀𝐷2

𝑅
, 𝑅 =

number of objectives

types of objectives
             

2- Advanced Mean Deviation(AMD) Technique:  

 𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗−𝑧2
∗

𝐴𝑀𝐷
.                                             (14) 

Where, 𝐴𝑀𝐷 =
𝑀𝐷1+𝑀𝐷2

𝑠
, s is number of objectives.      

There are more details about the values of 𝛾𝑖 , 𝑖 = 1, … , 𝑟, and 𝜀𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠, so we have four cases. 

In the first case, if one or more of each values 𝛾𝑖 , 𝑖 = 1, … , 𝑟, and 𝜀𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠, are different from each other’s, 

then𝑀𝐷1 & 𝑀𝐷2will not equal to zero. It is illustrated in equations (13), (14). In the second case, if𝛾1 = 𝛾2 = ⋯ =
𝛾𝑟 ≠ 0 𝑜𝑟 𝜀𝑟+1 = 𝜀𝑟+2 = ⋯ = 𝜀𝑠 ≠ 0, then, 𝑀𝐷1, or 𝑀𝐷2, will be zero, that is not an issue. We can use the same 

previous equations (13), (14). But in the third case, if 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑟 ≠ 0is equal and 𝜀𝑟+1 = 𝜀𝑟+2 = ⋯ = 𝜀𝑠 ≠

0 is equal, then𝑀𝐷1, &𝑀𝐷2, it will be zero, we have to mention; 𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗

𝛾
−

𝑧2
∗

|𝜀|
. In the last case, if𝛾1 = 𝛾2 =

⋯ = 𝛾𝑟 = 𝜀𝑟+1 = 𝜀𝑟+2 = ⋯ = 𝜀𝑠 ≠ 0, then 𝑀𝐷1& 𝑀𝐷2 will be zero, therefore 𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗−𝑧2
∗

𝛾
.  

Note that, if the number of minimized objective functions of the equation (5) or (7) is equal to zero then, which is 

the same situation as in the second case 𝑀𝐷2 = 0 .  

𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗

𝑁𝑀𝐷
, where 𝑁𝑀𝐷 =

𝑀𝐷1

𝑅
 ,and  𝑀𝑎𝑥. 𝑧∗ =

𝑧1
∗

𝐴𝑀𝐷
, where 𝐴𝑀𝐷 =

𝑀𝐷1

𝑠
      

Otherwise, the same situation will happen if the number of maximized objective functions of the equation (5) or (7) 

is equal to zero𝑀𝐷1 = 0. Then, 𝑀𝑎𝑥. 𝑧∗ =
−𝑧2

∗

𝑁𝑀𝐷
, where 𝑁𝑀𝐷 =

𝑀𝐷2

𝑅
 and 𝑀𝑎𝑥. 𝑧∗ =

−𝑧2
∗

𝐴𝑀𝐷
, where 𝐴𝑀𝐷 =

𝑀𝐷2

𝑠
       

Finally, 𝑀𝑎𝑥. 𝑧∗ subject to the same constraint (6) or (8) will be SOLPP, solving this problem by the simplex 
routine. Because this SOLPP is exact equivalent weighted and has an efficient solution to basic MOFPP, it is 

thought to have the same properties as the objective functions. 

5.2 Algorithm: 

This algorithm is to get the optimal solution for the MOFPP that we cleared previously; it can be briefed as follows. 

Step1: Determine nonzero corner points in the feasible region. 

Step2: Find maximum values of each maximized objective functions; named 𝜃𝑖 , 𝑖 = 1, … , 𝑟 and minimum values of 

each minimized objective functions, named  ∅𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠.  by substituting corner points in step1 on objective 

function (5) and (7). 

Step3: Select points 𝑢𝑖 = (𝑥1
∗ , 𝑥2

∗ , … , 𝑥𝑛−1
∗ ), 𝑖 = 1, … , 𝑟, of maximum values and 𝑣𝑘 = (𝑥1

∗ , 𝑥2
∗ , … , 𝑥𝑛−1

∗ ), 𝑘 = 𝑟 +
1, … , 𝑠, of minimum values 

Step4: Transform each fractional objective function into linear objective functions by formula (9) at the points in 

step3; we obtain equations (10). 

Step5: Solve each objective function in (10) subject to the constraint (6) or (8) by simplex method. 



Pak.j.stat.oper.res.  Vol.17  No. 4 2021 pp 1051-1064  DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3789 
 

 
A new Mean Deviation and Advanced Mean Deviation Techniques to Solve Multi-Objective Fractional Programming Problem via Point-Slopes Formula 1057 

 

Step6: Test feasibility of optimal solution obtains in step5, if it’s infeasible, use dual simplex method to avoid 

infeasibility, otherwise go to step7. 

Step7: Assign each optimal values of objective functions obtain in step6, 𝑧𝑖 = 𝛾𝑖 , 𝑖 = 1, … , 𝑟 𝑎𝑛𝑑 𝑧𝑘 = 𝜀𝑘 , 𝑘 = 𝑟 + 1, … , 𝑠.  

Step8: Calculate 𝑀𝐷1& 𝑀𝐷2, using formula (11) and (12). 

Step9: Construct the single objective function which has formula (13), (14). 

Step10: Optimize the single objective function subject to the same basic constraint (6) or (8).    

5.3 Flow Chart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Flow Chart 

 

 

Find the maximum value of each maximized objectives and the 

minimum value of each minimized objectives, and select its points. 

Transform each fractional objective to the linear objective using the Point-Slopes Formula for a 

Plane  

𝑓𝑜𝑟 𝑖 = 1 → 𝑠 

𝑖𝑓 𝑖 ≤

Stop 

Start 

Determine nonzero corner points in the feasible region  

𝛾𝑖  , 𝑖𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑎𝑥. 𝑧𝑖, 𝑖 = 1, … , 𝑟, and  𝜀𝑘 , 𝑖𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑖𝑛. 𝑧𝑘 , 𝑘 = 𝑟 +

1, … , 𝑠 

Yes 𝑧1
∗ =

∑ 𝑧𝑖
𝑟
𝑖=1  

Consider MOFPP (5) or (7) 

No 𝑧2
∗ =

∑ 𝑧𝑘
𝑠
𝑘=𝑟+1  

𝑀𝐷1 =
∑ (𝛾𝑖−𝛾)𝑟

𝑖=1

𝑟
,  where �̅� =

∑ 𝛾𝑖
𝑟
𝑖=1

𝑟
,𝑀𝐷2 =

∑ (𝜀𝑘−�̅�)𝑠
𝑘=𝑟+1

𝑠−𝑟
, where 𝜀 ̅ =

∑ 𝜀𝑘
𝑠
𝑘=𝑟+1

𝑠−𝑟
, 𝑁𝑀𝐷 =

𝑀𝐷1+𝑀𝐷2

𝑅
, 𝐴𝑀𝐷 =

𝑀𝐷 +𝑀𝐷

𝑀𝑎𝑥. 𝑧∗ =
𝑧1

∗−𝑧2
∗

𝑁𝑀𝐷
   ,  𝑀𝑎𝑥. 𝑧∗ =

𝑧∗−𝑧∗

 Solve  𝑀𝑎𝑥. 𝑧∗ by simplex 

 Solve linear objective function by simplex routine subject to same 
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6. Numerical Examples: 

Example 1: 

𝑀𝑎𝑥. 𝑍1 =
(2𝑥1+𝑥2+1)(2𝑥1+𝑥2+2)

(2𝑥1+2𝑥2+2)
, 𝑀𝑎𝑥. 𝑍2 =

(4𝑥1+2𝑥2+2)(6𝑥1+3𝑥2+6)

(3𝑥1+3𝑥2+3)
, 𝑀𝑎𝑥. 𝑍3 =

(4𝑥1+2𝑥2+2)(6𝑥1+3𝑥2+6)

(6𝑥1+6𝑥2+6)
 

𝑀𝑖𝑛. 𝑍4 =
(−8𝑥1−4𝑥2−4)(6𝑥1+3𝑥2+6)

(5𝑥1+5𝑥2+5)
 , 𝑀𝑖𝑛. 𝑍5 =

(−4𝑥1−2𝑥2−2)(10𝑥1+5𝑥2+10)

(2𝑥1+2𝑥2+2)
 

Subject to: 

𝑥1 + 2𝑥2 ≤ 4 

3𝑥1 + 𝑥2 ≤ 6                                                                            (15) 

𝑥1, 𝑥2 ≥ 0 

Solution: 

 

Figure2: Constraints (15) 

The corner points without (0, 0) on the feasible region in figure2 are {(2, 0), (0, 2) and (1.6, 1.2)} 

It is observed that, 𝜃1 = 5, 𝜃2 = 20, 𝜃3 = 10 are maximum values and ∅4 = −24, ∅5 = −50 are minimum values. 

And 𝑢1 = 𝑢2 = 𝑢3 = 𝑣1 = 𝑣2 = (2, 0), 

Through using formula (9) for each quadratic fractional objective function, we obtain the multi linear form, 

𝑧1 = 2𝑥1 + 0.1666𝑥2 + 1  

𝑧2 = 8𝑥1 + 0.6666𝑥2 + 4 

𝑧3 = 4𝑥1 + 0.3333𝑥2 + 2                                                          (16) 

𝑧4 = −9.6𝑥1 − 0.8𝑥2 − 4.8 

𝑧5 = −20𝑥1 − 1.6666𝑥2 − 10 

Now, 𝑧𝑖 ,i=1,…,5, subject to constraint  (15), is called MOLPP. Solving each 𝑧𝑖 ,i=1,…,5, subject to (15) by simplex 

method, we obtain the values 𝛾1 = 5, 𝛾2 = 20, 𝛾3 = 10, 𝜀4 = −24, 𝜀5 = −50. 

After that, 𝑧1
∗ = 𝑧1 + 𝑧2 + 𝑧3 , 𝑧2

∗ = 𝑧4 + 𝑧5 and 𝑧∗ = 𝑧1
∗ − 𝑧2

∗ 

∴  𝑧∗ = 43.6𝑥1 + 3.6325𝑥2 + 21.8 
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Then, use formulas (11) & (12) to find mean deviations. 

𝑀𝐷1 = 5.5555 , 𝑀𝐷2 = 13, 𝑁𝑀𝐷 = 7.4222, and 𝐴𝑀𝐷 = 3.7111,  

Here, we apply the two techniques that were created by us: 

New Mean Deviation Technique: 

𝑀𝑎𝑥. 𝑧 =
𝑧∗

𝑁𝑀𝐷
 

∴ 𝑀𝑎𝑥. 𝑧 = 5.8742𝑥1 + 0.4994𝑥2 + 2.9371 

Subject to constraint (15), we obtained the optimal solution. 

𝑥1 = 2, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 14.6855 

Advanced Mean Deviation Technique: 

𝑀𝑎𝑥. 𝑧 =
𝑧∗

𝐴𝑀𝐷
 

∴ 𝑀𝑎𝑥. 𝑧 = 11.7485𝑥1 + 0.9788𝑥2 + 5.8742 

Subject to constraint (15), we obtained the optimal solution. 

𝑥1 = 2, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 29.3712 

Next, we calculate some other techniques used in this study to solve equation (16) as below: 

Chandra Sen Technique: 

𝑀𝑎𝑥. 𝑍 = ∑
𝑧𝑖

|𝛾𝑖|
− ∑

𝑧𝑘

|𝜀𝑘|

𝑠

𝑘=𝑟+1

𝑟

𝑖=1

 

∴ 𝑀𝑎𝑥. 𝑧 = 2𝑥1 + 0.1666𝑥2 + 1 

Subject to constraint (15), we obtained the optimal solution. 

𝑥1 = 2, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 5 

Advanced Optimal Average Technique: 

𝑀𝑎𝑥. 𝑍 =
∑ 𝑧𝑖−∑ 𝑧𝑘

𝑠
𝑘=𝑟+1

𝑟
𝑖=1

𝐴𝑂𝐴𝑣
, Where, 𝐴𝑂𝐴𝑣 =

𝑚1+𝑚2

𝑠
 

∴ 𝑀𝑎𝑥. 𝑧 = 7.5172𝑥1 + 0.6262𝑥2 + 3.7586 

Subject to constraint (15), we obtained the optimal solution. 

𝑥1 = 2, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 18.793 

Advanced Harmonic Average Technique: 

𝑀𝑎𝑥. 𝑍 =
∑ 𝑧𝑖−∑ 𝑧𝑘

𝑠
𝑘=𝑟+1

𝑟
𝑖=1

𝐴𝐻𝑎𝑣
, Where 𝐴𝐻𝑎𝑣 =

2|𝑚1||𝑚2|

|𝑚1|+|𝑚2|
 

𝑚1 = min(|𝛾𝑖|) , 𝑖 = 1, … , 𝑟, 𝑚2 = min(|𝜀𝑘|), 𝑘 = 𝑟 + 1, … , 𝑠 
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∴ 𝑀𝑎𝑥. 𝑧 = 5.2683𝑥1 + 0.4389𝑥2 + 2.6341 

Subject to constraint (15), we obtained the optimal solution. 

𝑥1 = 2, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 13.1707 

Example 2: 

𝑀𝑎𝑥. 𝑍1 =
3𝑥1−2𝑥2

𝑥1+𝑥2+1
 , 𝑀𝑎𝑥. 𝑍2 =

9𝑥1+3𝑥2

𝑥1+𝑥2+1
 , 𝑀𝑎𝑥. 𝑍3 =

3𝑥1+5𝑥2

2𝑥1+2𝑥2+2
 

𝑀𝑖𝑛. 𝑍4 =
−6𝑥1+2𝑥2

2𝑥1+2𝑥2+2
 , 𝑀𝑖𝑛. 𝑍5 =

−3𝑥1−𝑥2

𝑥1+𝑥2+1
 

Subject to: 

𝑥1 + 𝑥2 ≤ 2 

9𝑥1 + 𝑥2 ≤ 9                                                                                 (17)      

𝑥1, 𝑥2 ≥ 0 

Solution: 

 

Figuer3: Constraints (17) 

The corner points without (0, 0) on the feasible region in figure 3 are {(1, 0), (0, 2) and (7/8, 9/8)} 

It is cleared that, 𝜃1 = 1.5, 𝜃2 = 4.5, 𝜃3 = 0.75 , ∅4 = −1.5, ∅5 = −1.5, and 𝑢1 = 𝑢2 = 𝑢3 = 𝑣1 = 𝑣2 = (1, 0). 

Through using formula (9), for each linear fractional objective function, we obtain the multi linear form, 

𝑧1 = 0.75𝑥1 − 1.75𝑥2 + 0.75  

𝑧2 = 2.25𝑥1 − 0.75𝑥2 + 2.25 

𝑧3 = 0.375𝑥1 − 1.625𝑥2 + 0.375                                              (18) 

𝑧4 = −0.75𝑥1 + 1.25𝑥2 − 0.75 

𝑧5 = −0.75𝑥1 + 0.25𝑥2 − 0.75 

Now, solving each 𝑧𝑖 ,i=1,…,5, subject to (17) by simplex method, we obtain the values 𝛾1 = 1.5, 𝛾2 = 4.5, 𝛾3 =
0.75, 𝜀4 = −1.5, 𝜀5 = −1.5.  

After that, 𝑧1
∗ = 𝑧1 + 𝑧2 + 𝑧3,  𝑧2

∗ = 𝑧4 + 𝑧5 and 𝑧∗ = 𝑧1
∗ − 𝑧2

∗ 
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∴  𝑧∗ = 4.875𝑥1 − 5.625𝑥2 + 4.875 

Then, use formulas (11) & (12) to find mean deviations. 𝑀𝐷1 = 1.5 , 𝑀𝐷2 = 0, 𝑁𝑀𝐷 = 0.6, and 𝐴𝑀𝐷 = 0.3  

Here, we apply the two techniques that were created by us: 

New Mean Deviation Technique: 

∴ 𝑀𝑎𝑥. 𝑧 = 8.125𝑥1 − 9.375𝑥2 + 8.125 

Subject to constraint (17), we obtained the optimal solution. 

𝑥1 = 1, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 16.25 

Advanced Mean Deviation Technique: 

∴ 𝑀𝑎𝑥. 𝑧 = 16.25𝑥1 − 18.75𝑥2 + 16.25 

Subject to constraint (17), we obtained the optimal solution. 

𝑥1 = 1, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 32.5 

Next, we calculate some other techniques used in this study, to solve equation (18) as below: 

Chandra Sen Technique: 

∴ 𝑀𝑎𝑥. 𝑧 = 2.5𝑥1 − 4.497𝑥2 + 2.5 

Subject to constraint (17), we obtained the optimal solution. 

𝑥1 = 1, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 5 

Advanced Optimal Average Technique: 

∴ 𝑀𝑎𝑥. 𝑧 = 10.8333𝑥1 − 12.5𝑥2 + 10.8333 

Subject to constraint (17), we obtained the optimal solution. 

𝑥1 = 1, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 21.6666 

Advanced Harmonic Average Technique: 

∴ 𝑀𝑎𝑥. 𝑧 = 4.875𝑥1 − 5.625𝑥2 + 4.875 

Subject to constraint (17), we obtained the optimal solution. 

𝑥1 = 1, 𝑥2 = 0 and 𝑀𝑎𝑥. 𝑧 = 9.75 

Example 3:(Lachhwani, 2017) 

𝑀𝑎𝑥. 𝑍1 =
(2𝑥1+20𝑥2+12)(𝑥1+10𝑥2+17)

(−2𝑥1−5𝑥2+15)(2𝑥1+5𝑥2+11)
, 𝑀𝑎𝑥. 𝑍2 =

(2𝑥1+20𝑥2+12)(3𝑥1+30𝑥2+51)

(−4𝑥1−10𝑥2+30)(2𝑥1+5𝑥2+11)
 

Subject to: 

𝑥1 + 15𝑥2 ≤ 2 

3𝑥1 + 20𝑥2 ≤ 4                                                                                   (19) 

𝑥1, 𝑥2 ≥ 0 
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Solution: 

The corner points without (0, 0) on the feasible region are {(0, 0.13), (1.3, 0) and (0.8, 0.08)} 

It is clear that, 𝜃1 = 1.6728, 𝜃2 = 2.5093,  and 𝑢1 = 𝑢2 = (0.8, 0.08) 

Through using formula (9), for each quadratic fractional objective function, we obtain the multi linear form, 

𝑧1 = 0.31𝑥1 + 3.1𝑥2 + 1.1768  

𝑧2 = 0.465𝑥1 + 4.65𝑥2 + 1.7653                                                      (20) 

Now, solving each 𝑧𝑖 ,i=1,2, subject to (19) by simplex method, we obtain the values 𝛾1 = 1.6728, 𝛾2 = 2.5093.  

After that, 𝑧1
∗ = 𝑧1 + 𝑧2 , 𝑧2

∗ = 0 and 𝑧∗ = 𝑧1
∗ − 𝑧2

∗ 

∴  𝑧∗ = 0.775𝑥1 + 7.75𝑥2 + 2.9421 

Then, use formulas (11) & (12) to find mean deviations. 

𝑀𝐷1 = 0.4182, 𝑀𝐷2 = 0, 𝑁𝑀𝐷 = 0.2091, and 𝐴𝑀𝐷 = 0.2091  

Here, we apply the techniques that were created by us: 

Since𝑁𝑀𝐷 = 𝐴𝑀𝐷 = 0.2091, then, 

∴ 𝑀𝑎𝑥. 𝑧 = 3.7𝑥1 + 37.06𝑥2 + 14.07 

Subject to constraint (19), we obtained the optimal solution. 

𝑥1 = 0.08, 𝑥2 = 0.08 and 𝑀𝑎𝑥. 𝑧 = 19.9948 

This example has the same optimal solution as that of Lachhwani. 

𝑥1 = 0.08, 𝑥2 = 0.08. 

Example 4:(Borza & Rambely, 2021; Chakraborty & Gupta, 2002) 

𝑀𝑎𝑥. 𝑍1 =
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
 , 𝑀𝑎𝑥. 𝑍2 =

7𝑥1+2𝑥2

5𝑥1+2𝑥2+1
  

Subject to: 

𝑥1 − 𝑥2 ≥ 1 

2𝑥1 + 3𝑥2 ≤ 15 

𝑥1 ≥ 3                                                                                               (21) 

𝑥1, 𝑥2 ≥ 0 

Solution: 

The corner points on the feasible region are {(3, 2), (3, 0), (3.6, 2.6) and (7.5, 0)} 

It is cleared that, 𝜃1 = −0.6086, 𝜃2 = 1.3636,  and 𝑢1 = (3.6, 2.6), 𝑢2 = (7.5, 0). 

Through using formula (9), for each linear fractional objective function, we obtain the multi linear form, 

𝑧1 = −0.2599𝑥1 + 0.2835𝑥2 − 0.41  
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𝑧2 = 0.004722𝑥1 − 0.04486𝑥2 + 1.2382                                          (22) 

Now, solving each 𝑧𝑖 ,i=1, 2 subject to (21) by simplex method, we obtain the values 𝛾1 = −0.60854, 𝛾2 =
1.273615. 

After that, 𝑧1
∗ = 𝑧1 + 𝑧2,  𝑧2

∗ = 0 and 𝑧∗ = 𝑧1
∗ − 𝑧2

∗ 

∴  𝑧∗ = −0.255178𝑥1 + 0.23864𝑥2 + 0.9182 

Then, use formulas (11) & (12) to find mean deviations. 𝑀𝐷1 = 0.941 , 𝑀𝐷2 = 0, 𝑁𝑀𝐷 = 0.3136, and 𝐴𝑀𝐷 =
0.3136 

Here, we apply our techniques that were created by us: 

Since𝑁𝑀𝐷 = 𝐴𝑀𝐷 = 0.3136, then, 

∴ 𝑀𝑎𝑥. 𝑧 = −0.8137𝑥1 + 0.7609 + 2.9279 

Subject to constraint (21), we obtained the optimal solution. 

𝑥1 = 3, 𝑥2 = 2 and 𝑀𝑎𝑥. 𝑧 = 2.0086. 

This example has the same optimal solution as that of Chakraborty and Gupta.  

𝑥1 = 3, 𝑥2 = 2, 𝑀𝑎𝑥. 𝑧1 = −0.625, and 𝑀𝑎𝑥. 𝑧2 = 1.15 

7. Discussion and Comparison: 

It is clear from the results of the examples above that our technique is efficient in solving MOFPP. The solutions of 
MOFPP in examples 1, 2 indicate that Chnadra sen, Advanced optimal average, and Advanced harmonic average are 

incapable of providing the cooperating solution. In Table 1, it is clear that the results obtained when using NMD and 

AMD are better than the other results. In examples 3, 4 Chakraborty & Gupta, and Lachhwani are difficult to solve 

and do not dominate our proposed solution. The ordinary of association functions shows that our suggested 

technique has a better efficiency. The comparison of the set of techniques is based on the values of the objective 

functions. After solving the numerical examples, we found the Max.Z. One of the features of our proposal, is to 

convert any fractional programming into linear programming under some limitations, such as this method cannot 

apply to the coefficients of variable objective functions that are not fixed numbers (rough interval, grey interval, or 

fuzzy number), but this issue is to be treated by using some of the definitions and theorems in advanced differential 

equations in the future. 

Comparison of the numerical results which are attained from previous examples 1 and 2 is presented in the 

following Table 1: 

Table 1 

No. Techniques  Example1 Example2 

1 Chandra Sen 5 5 

2 Advanced Optimal Average  18.793 21.6666 

3 Advanced Harmonic Average 13.1707 9.75 

4 New Mean Deviation 14.6855 16.25 

5 Advanced Mean Deviation 29.3712 32.5 

8. Conclusion: 

In this paper, we presented a new technique to solve the MOFPP. In the approach, the MOFPP was finally 

transformed into a LPP using some suitable formula for each fractional objective function in the feasible region. 
MOFPP is reduced to MOLPP, and MOLPP is reduced to SOLPP.The obtained LPP is solved by 

considering   (NMD& AMD) of the weights in the linear objective functions. The proposed solution to MOFPP 

continually produces efficient solutions and to the difficulty of solving MOFPP, our method has a summary easy 
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calculation. Four examples are explained to show the approach. Our technique is a very fast way to get solutions to 

particular situations in real-life problems, and it gives better outcomes compared to Chandra sen, advanced optimal 

average, advanced harmonic average, and smooth calculation according to Chakraborty and Gupta, Pramy and 

Islam, Borza and Rambely, and Lachhwani. 
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