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Abstract

In this paper, a new probability discrete distribution for analyzing over-dispersed count data encountered in biological
sciences was proposed. The new discrete distribution, with one parameter, has a log-concave probability mass function
and an increasing hazard rate function, for all choices of its parameter. Several properties of the proposed distribution
including the mode, moments and index of dispersion, mean residual life, mean past life, order statistics and L-
moment statistics have been established. Two actuarial or risk measures were derived. The numerical computations for
these measures are conducted for several parametric values of the model parameter. The parameter of the introduced
distribution is estimated using eight frequentist estimation methods. Detailed Monte Carlo simulations are conducted
to explore the performance of the studied estimators. The performance of the proposed distribution has been examined
by three over-dispersed real data sets from biological sciences.
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1. Introduction

The discrete probability distributions have their great importance in modeling real count data in many applied sciences
such as public health, medicine, agriculture, epidemiology, and sociology, among others. Several discrete distributions
have been introduced for modeling count data. However, some traditional discrete models such as Poisson geometric
distributions have limited applications in reliability, failure times, and counts. This is so, because some real count
data show either under-dispersion or over-dispersion. This has motivated several statisticians to explore new discrete
models based on classical continuous distributions for modeling discrete failure times and reliability data.

In the last two decades, several authors have introduced discrete models by the discretization of continuous distribu-
tions. For example, Krishna and Pundir (2009) proposed discrete analogues of the Pareto and Burr, Jazi et al. (2010)
introduced the discrete inverse Weibull, and Gómez-Déniz (2010) introduced the discrete generalized exponential dis-
tribution. However, there is still a clear need to construct more flexible discrete distributions to serve several applied
areas such as social sciences, economics, and reliability studies to properly suit different types of count data. Further-
more, Al-Babtain et al. (2020) proposed the natural discrete Lindley distribution. Eliwa et al. (2020a, 2020c) proposed
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discrete Gompertz-G family and the three-parameter discrete Lindley distribution. El-Morshedy et al. (2020a, 2020b)
introduced the discrete Burr-Hatke and exponentiated discrete Lindley distributions, respectively. Almazah et al.
(2021b) proposed the transmuted record type geometric distribution. Aljohani et al. (2021) introduced the uniform
Poisson–Ailamujia model.

Recently, Ramos and Louzada (2019) proposed a new one parameter distribution for instantaneous failures as an
application. The Ramos and Louzada distribution can be specified by the following reliability or survival function
(SF) (for x ≥ 0)

R(x; θ) =
θ2 − θ + x

θ(θ − 1)
e−

x
θ , (1)

where θ ≥ 2 is the shape parameter. The probability density function (PDF) correspond to Equation (1) reduces to

g(x; θ) =
θ2 − 2θ + x

θ2(θ − 1)
e−

x
θ . (2)

In this paper, a discrete version of Equation (1) is proposed, to model over-dispersed count data, using the most
commonly used technique to construct discrete analogies from continuous ones. Consider the underlying continuous
non-negative failure time X with SF, R(x) = P (X ≥ x), and failure times were grouped into unit intervals. The
associated probability mass function (PMF) is specified (for x = 0, 1, 2, ...) by

p(x) = R(x)−R(x+ 1),

The introduced discrete model is referred to as one parameter discrete (OPD) distribution and has closed form expres-
sions for its PMF, moments, and other properties. We have studied some of its statistical and reliability properties.
Further, we derived two important risk measures of the OPD model namely, value at risk and tail value at risk. We
also focus on the estimation of its parameter from frequentist point of view. We briefly study several estimators
called, maximum likelihood estimator (MLE), maximum product of spacings estimator (MPSE), least-squares esti-
mator (LSE), percentile estimator (PCE), Anderson-Darling estimator (ADE), Cramér-von-Mises estimator (CVME),
weighted least-squares estimator (WLSE), and right-tail Anderson-Darling estimator (RADE). The simulation results
were introduced to compare these estimators and assess their performance. Some authors have adopted different es-
timators to estimate the parameters of discrete models such as Al-Babtain et al. (2021) and Almazah et al. (2021a).
Finally, the flexibility of the introduced OPD distribution was illustrated by modeling three real count data from the
medicine field.

We are motivated to propose the OPD distribution due to its desirable properties such as its simple closed form
expressions for the PMF and cumulative distribution function (CDF), moments, and other characteristics. It also can
de adopted to model several real count data in different applied fields.

The rest of the article is unfolded as follows. In Section 2, we defined the proposed OPD distribution. In Section
3, some reliability and mathematical properties of the OPD distribution were derived in explicit forms. We two risk
measures for the OPD distribution and present some numerical computations for them in Section 4. In Section 5,
eight estimation approaches are presented to estimate the model parameter. In Section 6, a simulation study was
performed to assess and explore the performance of the aforementioned eight estimation methods. The importance
and flexibility of the OPD distribution was addressed using three real count data sets in Section 7. Finally, we present
some conclusions in Section 8.

2. The OPD Distribution

The random variable X is said to have the OPD distribution with a parameter θ ≥ 2, if its SF can be expressed as

S(x; θ) =
θ2 − θ + x+ 1

θ(θ − 1)
e−

x+1
θ ; x ∈ N0, (3)

where N0 = {0, 1, 2, 3, ..., v} for 0 < v <∞. The behavior of the SF is given by
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S(x;α) =


θ2−θ+1
θ(θ−1) e

− 1
θ ; x −→ 0

x+3
2 e−

x+1
2 ; θ −→ 2

1; θ −→∞.

The corresponding CDF and PMF to Equation (3) are

F (x; θ) = 1− θ2 − θ + x+ 1

θ(θ − 1)
e−

x+1
θ ; x ∈ N0 (4)

and

Px(x; θ) =

{
θ2 − θ + x− (θ2 − θ + x+ 1)e−

1
θ

θ(θ − 1)

}
e−

x
θ ; x ∈ N0, (5)

respectively. The PMF in Equation (5) is log-concave for all values of θ, where Px(x+1;θ)
Px(x;θ) is a decreasing function in

x for all value of θ. The behaviors of the CDF and PMF are given by

F (x;α) =


1− θ2−θ+1

θ(θ−1) e
− 1
θ ; x −→ 0

1− x+3
2 e−

x+1
2 θ −→ 2

0; θ −→∞
(6)

and

Px(x; θ) =


1− θ2−θ+1

θ(θ−1) e
− 1
θ ; x −→ 0

x+2−(x+3)e−
1
2

2 e−
x
2 θ −→ 2

0; θ −→∞,
(7)

respectively. Figure 1 shows the PMF plots for various values of the parameter θ. This figure shows that the OPD
distribution has a unimodal PMF which is skewed to the right.

The hazard rate function (HRF) is

h(x; θ) = 1−
{
θ2 − θ + x+ 1

θ2 − θ + x

}
e−

1
θ ; x ∈ N0. (8)

Based on Gupta et al. (1997) log-concavity concept, it is found that the HRF of the OPD model is increasing where
∆η(w) = η(w + 1)− η(w) > 0; η(w) = 1− Pr(X = w + 1)/ Pr(X = w). The behavior of the HRH is

h(x; θ) =


1− θ2−θ+1

θ2−θ e−
1
θ ; x −→ 0,

1− e− 1
θ x −→∞

1− x+3
x+2e

− 1
2 θ −→ 2

0; θ −→∞.

(9)

Figure 2 shows the HRF plots for various values of θ. This figure illustrates that the HRF of the OPD distribution has
only an increasing shape.

Suppose Z1 and Z2 are two independent OPD random variables with parameters θ1 and θ2, respectively. Then the
HRF of Y = min(Z1, Z2) can be written as

hY (x; θ1, θ2) =
Pr(X1 ≥ x) Pr(X2 ≥ x)− Pr(X1 ≥ x+ 1) Pr(X2 ≥ x+ 1)

Pr(X1 ≥ x)Pr(X2 ≥ x)

=
Pr(X1 ≥ x) Pr(X2 = x) + Pr(X1 = x) Pr(X2 ≥ x)− Pr(X1 = x) Pr(X2 = x)

Pr(X1 ≥ x) Pr(X2 ≥ x)

= 1− θ2
1 − θ1 + x+ 1

θ2
1 − θ1 + x

[
2− θ2

2 − θ2 + x+ 1

θ2
2 − θ2 + x

e−
1
θ2

]
e−

1
θ1 .
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Figure 1: Plots of the PMF of the OPD distribution.

3. Some Properties

3.1. Mode

If X have a OPD distribution, then the mode of X is derived by solving the non-linear equation(
1

θ(θ − 1)
− θ2 − θ + x

θ2(θ − 1)

)
e−

x
θ +

(
1

θ(θ − 1)
− θ2 − θ + x+ 1

θ2(θ − 1)

)
e−

x
θ+1 = 0. (10)

Based on Equation (10), the mode of the OPD distribution is

M(X) =
(
e

1
θ − 1

)−1

− θ(θ − 2). (11)
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Figure 2: Plots of the HRF of the OPD distribution.

3.2. Moments and Index of Dispersion

The probability generating function (PGF) of X has the form

GX(v) =
θ(θ − 1)e

2
θ +

[
(−v − 1) θ2 + (v + 1)θ + v − 1

]
e

1
θ + vθ(θ − 1)

θ(θ − 1)
(
v − e 1

θ

)2 , (12)

where GX(v) =
∑∞
x=0 v

xPx(x; θ). The first two moments of the OPD distribution are

E(X) =

(
θ2 − θ + 1

)
e

1
θ − θ(θ − 1)

θ (θ − 1)
(
e

1
θ − 1

)2 (13)

and

E(X2) =

(
θ2 − θ + 1

)
e

2
θ + 3 e

1
θ − θ (θ − 1)

θ (θ − 1)
(
e

1
θ − 1

)(
e

2
θ − 2 e

1
θ + 1

) ,
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respectively. Based on the first two moments of the OPD distribution, the variance follows as

V ar(X) =


(
θ4 − 2θ3 + 2θ2 − θ

)
e

2
θ + (−2θ4 + 4θ3 − 2θ2 − 1)e

1
θ + θ(θ3 − 2θ2 + 1)(

e
2
θ − 2e

1
θ + 1

) [
θ(θ − 1)

(
e

1
θ − 1

)]2
 e

1
θ . (14)

Based on the first four moments, about origin, of the OPD distribution, the skewness and kurtosis can be derived in
explicit forms by utilizing well-known relationships (see Eliwa et al., 2020c). Another important statistical tool, called
index of dispersion (ID) which is defined by ID = V ar(X)/|E(X)|. The ID indicates whether a certain model is
appropriate to over or (under)-dispersed data. If ID > (<)1, the model is over- (under-dispersed). Table 1 lists some
descriptive statistics of the OPD model for various values of θ.

Table 1: Some values of descriptive measures of the OPD model.
Parameter −→ θ

Measure ↓ 2.0 2.5 3.0 3.5 5.5 6.0 6.5 7.0
Mean 3.50034 3.67787 4.01391 4.41429 6.23400 6.71111 7.19231 7.67659

Variance 8.07857 11.79500 15.70791 20.03320 42.12557 48.88338 56.13917 63.89356
ID 2.30794 3.20702 3.91337 4.53826 6.75739 7.28395 7.80545 8.32318

Skewness 1.39503 1.51904 1.62940 1.70797 1.86181 1.88109 1.89658 1.90923
Kurtosis 5.94046 6.35298 6.82090 7.19973 8.05644 8.17617 8.27457 8.35624

From Table 1, one can note that:

1. The mean, variance and ID increase with θ grows.

2. The OPD distribution is convenient only for modeling over-dispersed data. Moreover, it is capable of modeling
leptokurtic and positively skewed data.

3.3. Mean Residual Life and Mean Past Life

The mean residual life (MRL) is a beneficial tool for analyzing the burn-in and maintenance policies. The discrete
MRL is defined as

Λ(i; θ) =
1

1− F (i− 1; θ)

∞∑
z=i+1

[1− F (z − 1; θ)] ; i ∈ N0.

If X have an OPD random variable, then the MRL takes the form

Λ(i; θ) =
1

(θ2 − θ + i) e−
i
θ

∞∑
z=i+1

(
θ2 − θ + z

)
e−

z
θ

=

−
(
−θ2 + θ − i− 1

)
e
i+2
θ +

(
θ2 − θ + i

)
e
i+1
θ

(θ2 − θ + i)
(
e

1
θ − 1

)2

e
i+3
θ

 e
2
θ .

The variance residual life (VRL) function can be defined as

ΩVRL(i; θ) = E(X2|X ≥ i)− [E(X|X ≥ i)]2

=
2e

i
θ

θ2 − θ + i

∞∑
z=i

[
z
(
θ2 − θ + z + 1

)
e−

z+1
θ

]
− (2i− 1)Λ(i)− [Λ(i)]

2

=
2
{

Φ(i, θ)e
i+1
θ + i

(
θ2 − θ + i+ 1

)
e

2i+5
θ

}
e−2(i+1)

(θ2 − θ + i)
(
e

1
θ − 1

) [(
e

1
θ − 2

)
e

2
θ + e

1
θ

] − (2i− 1)Λ(i)− [Λ(i)]
2
,

where

Φ(i, θ) = (i− 1)(θ2 − θ + i)e
i+2
θ − 2e

i+3
θ

{
(i− 1

2
)θ2 + (−i− 1

2
)θ + i2 − 1

}
.
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Thus, X is increasing (decreasing) VRL if

ΩVRL(i+ 1) ≥ (≤)Λ(i) [1 + Λ(i+ 1)] .

The residual coefficient of variation (RCV) is derived in a closed form as RCV(i) =
√

ΩVRL(i)/|Λ(i)|.

The mean past life (MPL) is an important reliability concept and it used to measures the time elapsed since the failure
of X given that the device is failed before i. The discrete MPL is specified by

δ(i; θ) =
1

F (i− 1; θ)

i∑
z=1

F (z − 1; θ); i ∈ N0 − {0},

where δ(0) = 0.
If X have an OPD random variable, then the MPL reduces to

δ(i; θ) =
1

θ(θ − 1)− (θ2 − θ + i)e−
i
θ

i∑
z=1

[
θ(θ − 1)− (θ2 − θ + z)e−

z
θ

]

=
iθ(θ − 1)

(
e

1
θ − 1

)2

+
{

(θ2 − θ + i+ 1)e
1
θ − θ2 + θ − i

}
e−

i
θ −

{
(θ2 − θ + 1)e

1
θ − θ2 + θ

}
{
θ(θ − 1)− (θ2 − θ + i)e−

i
θ

}(
e

1
θ − 1

)2 .

The mean of the OPD model can be defined by

Mean = i− δ(i; θ)F (i− 1; θ) + Λ(i; θ) [1− F (i− 1; θ)] ; i ∈ N0 − {0}.

The reversed HRF (RHRF) and the MPL are related by the following formula

r(i; θ) =
1− δ(i+ 1; θ) + δ(i; θ)

δ(i; θ)
; i ∈ N0 − {0}.

The CDF of the OPD model follows from the MPL as

F (k; θ) = F (0)ki=1

[
δ(i; θ)

δ(i+ 1; θ)− 1

]
; k ∈ N0 − {0},

where F (0) =
(
∞
i=1

[
δ(i;θ)

δ(i+1;θ)−1

])−1

.
Table 2 lists some numerical computations of reliability concepts for different values of the parameter θ at time i = 10,
whereas Table 3 reports the same concepts with θ = 3.5 and different values of i.

Table 2: Some numerical computations of reliability concepts for various values of θ.
Parameter −→ θ

Measure ↓ 2.0 2.5 3.0 3.5 5.5 6.0 6.5 7.0
MRL 1.86797 2.48178 3.08505 3.67268 5.88325 6.41180 6.93449 7.45261
VRL 5.14411 8.23863 11.98135 16.31913 38.98868 45.91049 53.32271 61.22410
RCV 1.21419 1.15655 1.12100 1.09993 1.06133 1.056759 1.053032 1.04991
MPL 6.85219 6.95595 6.93975 6.88505 6.61423 6.55416 6.49875 6.44782

Table 3: Some numerical computations of reliability concepts for various values i.
Parameter −→ Time (i hour)|θ=3.5

Measure ↓ 1.0 1.5 2.0 3.0 6.0 9.0 12.0 15.0
MRL 4.27168 4.21080 4.15559 4.05927 3.84866 3.70924 3.61014 3.53607
VRL 19.40438 19.12360 18.86252 18.39243 17.29997 16.52799 15.95560 15.51498
RCV 1.03122 1.03853 1.04512 1.05651 1.08072 1.09604 1.10645 1.11392
MPL 0.999100 1.26234 1.53115 2.09001 3.95468 6.10769 8.51856 11.13375
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From Tables 2 and 3, it is noted that:

1. The MRL and VRL increase whereas the RCV and MPL decrease for increased values of θ and fixed time i.

2. The MRL and VRL decrease whereas the RCV and MPL increase for increased values of i and fixed θ.

3.4. Order Statistics and L-moment Statistics

Let X1:n, X2:n, ..., Xn:n be the order statistics of a random sample from the OPD model. Hence, the CDF of ith order
statistic is

Fi:n(x; θ) =

n∑
k=i

(
n
k

)
[Fi(x; θ)]

k
[1− Fi(x; θ)]

n−k

=

n∑
k=i

n−k∑
j=0(m)

Υ
(n,k)
(m) Fi(x; θ, k + j), (15)

where Υ
(n,k)
(m) = (−1)j

(
n
k

)(
n− k
j

)
and Fi(x; θ, k + j) represents the CDF of the exponentiated-OPD distri-

bution with a power parameter k + j.
The corresponding PMF to Equation (15) is

fi:n(x; θ) =

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) fi(x; θ, k + j), (16)

where fi:n(x; θ) = Fi:n(x; θ)− Fi:n(x− 1; θ). The cth moments of Xi:n can be expressed as

E(Xc
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) x

cfi(x; θ, k + j). (17)

Based on Equation (17), the L-moments (L-Ms) can be derived from the following relation

Θq =
1

q

q−1∑
j=0

$(j, q) rE (Xq−j:q) , (18)

where $(j, q) = (−1)j
(
q − 1j.

)
Utilizing Equation (18), we can introduce some statistical measures like L-M of mean = Θ1, L-M coefficient of
skewness = Θ3

Θ2
and L-M coefficient of kurtosis = Θ4

Θ2
.

4. Actuarial Measures

Probability distributions can be used to describe risk exposure. Actuaries are often interested in key risk indicators
which are important in determining the degree to which their companies are subject to risks due to the changes in
interest rates, prices of equity or exchange rates.
In this section, we determine the value at risk (VaR) and tail value at risk (TVaR) of the OPD distribution, which play
a crucial role in portfolio optimization.

4.1. VaR Measure

The VaR of any random variable X is V arp = F−1
X (p), for a probability level p ∈ (0, 1). It is the pth quantile of its

CDF (Artzner, 1999). The VaR of the OPD distribution is defined by

V arp = θ − 1− θ2 − θW ((θ − 1)(p− 1) exp(1− θ)) ,
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where W (·) is the Lambert W function (see, Lambert, 1758).

4.2. TVaR Measure

The TVaR is also known as conditional-value at-risk or conditional tail expectation. The TVaR is defined by (Klugman
et al., 2012)

TV aRp = E(X|X > xp) = xp +

∑∞
x=xp

(x− xp)
p(x)

= xp +
E(X)− xp +

∑xp−1
x=0 (xp − x)p(x)

1− F (xp)
.

Using the QF and mean of the OPD distribution, the TVaR of the OPD distribution can be derived as

TV aRp = xp + 1 +
θ2 − θ + xp + 2[

exp( 1
θ )− 1

]
[θ2 − θ + xp + 1]

+
1[

exp( 1
θ )− 1

]2
[θ2 − θ + xp + 1]

.

4.3. Simulations of VaR and TVaR

In this sub-section, some numerical results for the VaR and TVaR measures of the OPD distribution are obtained for
some values of θ. These results are obtained based on the following two steps.

1. We generated random sample of size n = 100 from the OPD distribution and estimated θ using the maximum
likelihood method.

2. The two measures are calculated from 2,000 repetitions.

Tables 4 and 5 report the results of our simulation. These results are also summarize graphically in Figures 3 and 4.
We conclude that the two measures are increasing functions in the parameter θ and the significance level (SL).

Table 4: Numerical results of the VaR and TVaR for the OPD distribution.

SL VaR TVaR VaR TVaR
θ = 2.5 θ = 3.5

0.70 4.58777 8.88141 5.10367 9.99363
0.75 5.31731 9.56545 5.94021 10.78697
0.80 6.19179 10.39204 6.94738 11.74781
0.85 7.29484 11.44304 8.22317 12.9723
0.90 8.81275 12.90121 9.98613 14.67517
0.95 11.33398 15.34509 12.92726 17.53666
0.99 16.96094 20.85813 19.52380 24.01228

Table 5: Numerical results of the VaR and TVaR for the OPD distribution.

SL VaR TVaR VaR TVaR
θ = 5.0 θ = 10.0

0.70 6.27630 12.34423 11.83046 22.79134
0.75 7.32231 13.35345 13.75414 24.69535
0.80 8.58940 14.57994 16.10262 27.02089
0.85 10.20437 16.14853 19.12130 30.01171
0.90 12.45037 18.33829 23.35990 34.21394
0.95 16.22425 22.03441 30.56695 41.36560
0.99 24.76200 30.44703 47.14509 57.84021
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Figure 3: Plots of the VaR and TVaR of the OPD distribution.
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Figure 4: Plots of the VaR and TVaR of the OPD distribution.

5. Parameter Estimation

In this section, we estimate the unknown parameter θ of the OPD distribution using eight classical estimators.

5.1. Maximum Likelihood Estimator

In this section, we present the MLE of the parameter of the OPD distribution. Let x1, x2, ..., xn be n independent
random variables with OPD(θ) distribution, then the log-likelihood function of the OPD distribution is given by

L(θ;x) =

n∑
i=0

log
[
θ2 − θ + xi − (θ2 − θ + xi + 1)e−

1
θ

]
− 1

θ

n∑
i=0

xi − n log [θ(θ − 1)] . (19)

To estimate the unknown parameter θ, we take the partial derivative of the L(θ;x) function with respect to θ and equate
the result equation to zero. The result equation ∂

∂θL(θ;x) = 0 cannot be solved in closed form. Thus, we obtain the
solution of the MLE for θ using the Newton-Raphson procedure.
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5.2. Least Square Estimator

Let x(1), x(2), · · · , x(n) be the order statistics of a random sample from the OPD distribution. The LSE of the OPD
parameter, say θ̂OLS , can be derived by solving the non-linear equation defined by

n∑
i=1

[
1− θ2 − θ + xi + 1

θ(θ − 1)
e−

xi+1

θ − i

n+ 1

]
∆θ

(
x(i)|θ

)
= 0, (20)

where

∆θ

(
x(i)|θ

)
=

∂

∂θ

[
1− θ2 − θ + xi + 1

θ(θ − 1)
e−

xi+1

θ

]
. (21)

Note that the solution of ∆θ

(
x(i)|θ

)
can be obtained numerically.

5.3. Weighted Least Square Estimator

The WLSE of the OPD parameter, θ̂WLS , can be derived by solving the non-linear equation defined by

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
1− θ2 − θ + xi + 1

θ(θ − 1)
e−

xi+1

θ − i

n+ 1

]
∆θ

(
x(i)|θ

)
= 0, (22)

where ∆θ

(
x(i)|θ

)
is provided in Equation (21).

5.4. Cramer-von Mises Estimator

The CVME has less bias than other minimum distance estimators. The CVME follows as the difference between
the estimate of the CDF and the empirical CDF. The CVME of the OPD parameter can be derived by solving the
non-linear equation defined by

n∑
i=1

[
1− θ2 − θ + xi + 1

θ(θ − 1)
e−

xi+1

θ − 2i− 1

2n

]
∆θ

(
x(i)|θ

)
= 0, (23)

where ∆θ

(
x(i)|θ

)
is defined in Equation (21).

5.5. Maximum Product of Spacings Estimator

For i = 1, 2, . . . , n+ 1, let
Di(θ) = F

(
x(i)|θ

)
− F

(
x(i−1)|θ

)
,

be the uniform spacings of a random sample from the OPD distribution, where F
(
x(0)|θ

)
= 0, F

(
x(n+1)|θ

)
= 1 and∑n+1

i=1 Di(θ) = 1. The MPSE of θ, θ̂MPS , can be obtained by maximizing the geometric mean of the spacings

G (θ) =

[
n+1∏
i=1

Di(θ)

] 1
n+1

,

with respect to θ. Or by maximizing the logarithm of the geometric mean of sample spacings

H (θ) =
1

n+ 1

n+1∑
i=1

logDi(θ).
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5.6. Percentile Estimator

Let ui = i/ (n+ 1) be an unbiased estimator of F
(
x(i)|θ

)
. Hence, the PCE of θ, denoted by θ̂PT , can be obtained by

minimizing

P (θ) =

n∑
i=1

(
x(i) −Q (ui)

)2
,

with respect to θ, where Q (ui) = F−1
(
x(i)|θ

)
is the quantile function of the OPD distribution.

5.7. Anderson-Darling and Right-Tail Anderson-Darling Estimators

The ADE is another kind of minimum distance estimators. The ADE of the OPD parameter, θ̂AD, is obtained by
minimizing

AD(θ) = −n− 1

n

n∑
i=1

(2i− 1)
[
logF

(
x(i)|θ

)
+ log

(
1− F

(
x(i)|θ

))]
,

with respect to θ, whereas the RADE of θ, θ̂RTAD, can be obtained by minimizing

RTAD(θ) =
n

2
− 2

n∑
i=1

F
(
x(i:n)|θ

)
− 1

n

n∑
i=1

(2i− 1)
[
log
(
1− F

(
x(n+1−i:n)|θ

))]
,

with respect to θ.

6. Simulation Results

In this section, we provide a simulation study to explore the behavior of the proposed estimators for some values of the
parameter θ and several samples sizes. The performance of these estimators is explored using some measures called,
average values of the estimate (AVE), average of mean squared error (MSE), average absolute bias (ABB), and mean
relative error (MRE). The MSE, ABB, and MRE are calculated as follows

MSE =
1

N

N∑
i=1

(θ̂ − θ)2, |ABB| = 1

N

N∑
i=1

|θ̂ − θ|, MRE =
1

N

N∑
i=1

|θ̂ − θ|
θ

.

We generate N = 5, 000 random samples from the OPD distribution using its QF of sizes n = {20, 50, 100, 250} for
some values of the parameter θ, where θ = (2.5, 3.5, 5, 10). The QF of the OPD distribution takes the form

Q(p) = θ − 1− θ2 − θW ((θ − 1)(p− 1) exp(1− θ)) , 0 < p < 1, (24)

where W (·) is the Lambert W function. The simulations results are obtained by the R software©. The performance
of the proposed estimators are assessed in terms of MSE, ABB, and MRE of the estimates.

The AVE, MSE, ABB, and MRE for the parameter θ are reported in Tables 6-9. One can note that, from Tables 6-9,
that the estimates of the parameter θ of the OPD distribution are obtained using eight estimation methods are quite
good, where the estimates are very close to the true parameter values of θ, showing small bias, MSE and MRE for all
considered values of θ. The eight estimators show the consistency property, i.e., the MSE, ABB and MRE decrease as
sample size increases, for all values of θ. We conclude that the MLE, LSE, WLSE, CME, MPSE, ADE, RTADE, and
PCE perform very well in estimating the parameter θ of the OPD distribution.
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Table 6: Numerical results of the AVE, MSE, ABB, and MRE for θ = 2.5.
Measures n MLE LSE WLSE CVME MPSE ADE RADE PCE
AVE 20 2.98204 3.09203 2.95475 2.97104 2.61870 2.62104 2.85873 2.92243

50 2.99163 2.85804 2.66745 2.77306 2.50674 2.50609 2.68817 2.73691
100 2.99673 2.73274 2.58621 2.67722 2.50000 2.50085 2.60857 2.64418
250 2.99323 2.62212 2.50983 2.60472 2.50000 2.50000 2.56046 2.58134

MSE 20 0.45134 1.16927 1.03838 1.06737 0.20829 0.35717 0.76454 0.82853
50 0.30710 0.53061 0.36116 0.47177 0.00689 0.02055 0.31741 0.32828
100 0.27677 0.27351 0.19272 0.24482 0.00000 0.00098 0.15118 0.15528
250 0.25382 0.10218 0.06894 0.10142 0.00000 0.00000 0.06400 0.06396

ABB 20 0.55475 0.74053 0.70357 0.69665 0.15961 0.20412 0.63087 0.68541
50 0.49855 0.50828 0.43477 0.47947 0.01078 0.01757 0.42136 0.44700
100 0.49677 0.36594 0.32117 0.34554 0.00000 0.00085 0.29829 0.31006
250 0.49323 0.22444 0.19881 0.22744 0.00000 0.00000 0.19538 0.20054

MRE 20 0.22190 0.29621 0.28143 0.27866 0.06384 0.08165 0.25235 0.27416
50 0.19942 0.20331 0.17391 0.19179 0.00431 0.00703 0.16854 0.17880
100 0.19871 0.14638 0.12847 0.13822 0.00000 0.00034 0.11932 0.12402
250 0.19729 0.08978 0.07952 0.09097 0.00000 0.00000 0.07815 0.08022

Table 7: Numerical results of the AVE, MSE, ABB, and MRE for θ = 3.5.
Measures n MLE LSE WLSE CVME MPSE ADE RADE PCE
AVE 20 3.56567 3.87908 3.78959 3.75153 3.60695 3.63561 3.71572 3.95809

50 3.54583 3.68157 3.64641 3.63438 3.50373 3.50873 3.59399 3.75927
100 3.53142 3.58719 3.55792 3.56949 3.50016 3.50000 3.54830 3.66344
250 3.52304 3.56417 3.54242 3.54392 3.50000 3.50000 3.53108 3.58360

MSE 20 0.52856 1.65105 1.51221 1.60044 0.28887 0.44941 1.29720 1.58121
50 0.19163 0.75533 0.65317 0.73510 0.00847 0.01803 0.56323 0.61812
100 0.09029 0.37058 0.33509 0.38321 0.00013 0.00000 0.27631 0.28591
250 0.03541 0.17048 0.13746 0.16833 0.00000 0.00000 0.11648 0.10799

ABB 20 0.54448 0.99444 0.97249 1.00291 0.17436 0.23214 0.91209 0.98813
50 0.33278 0.70078 0.64560 0.69425 0.00868 0.01257 0.60425 0.62277
100 0.23266 0.49173 0.46383 0.50078 0.00016 0.00000 0.42211 0.42601
250 0.14840 0.33289 0.29923 0.32902 0.00000 0.00000 0.27145 0.26224

MRE 20 0.15557 0.28413 0.27785 0.28654 0.04982 0.06633 0.26060 0.28232
50 0.09508 0.20022 0.18446 0.19836 0.00248 0.00359 0.17264 0.17793
100 0.06648 0.14049 0.13252 0.14308 0.00005 0.00000 0.12060 0.12172
250 0.04240 0.09511 0.08549 0.09401 0.00000 0.00000 0.07756 0.07493
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Table 8: Numerical results of the AVE, MSE, ABB, and MRE for θ = 5.
Measures n MLE LSE WLSE CVME MPSE ADE RADE PCE
AVE 20 4.68899 5.25656 5.29537 5.15667 5.15979 5.17956 5.19811 5.60445

50 4.67416 5.11881 5.12834 5.05247 5.01190 5.02033 5.09926 5.35302
100 4.66358 5.04919 5.09114 5.04139 4.99995 5.00019 5.05142 5.21303
250 4.65870 5.05304 5.07396 5.02636 5.00000 5.00000 5.03099 5.10970

MSE 20 1.60743 2.94715 2.67999 2.91031 0.64442 0.71902 2.32940 2.85430
50 0.70834 1.27397 1.06567 1.17503 0.02933 0.03815 0.93027 1.03983
100 0.41075 0.58926 0.53409 0.58652 0.00001 0.00010 0.47041 0.50944
250 0.23797 0.24494 0.20902 0.23560 0.00000 0.00000 0.18003 0.19306

ABB 20 1.04696 1.36973 1.29660 1.37691 0.29271 0.30636 1.21460 1.31245
50 0.69163 0.90528 0.82520 0.86600 0.02011 0.02352 0.76466 0.80177
100 0.52902 0.60941 0.58237 0.60699 0.00005 0.00019 0.54734 0.56579
250 0.40796 0.39499 0.36476 0.38842 0.00000 0.00000 0.33637 0.34921

MRE 20 0.20939 0.27395 0.25932 0.27538 0.05854 0.06127 0.24292 0.26249
50 0.13833 0.18106 0.16504 0.17320 0.00402 0.00470 0.15293 0.16035
100 0.10580 0.12188 0.11647 0.12140 0.00001 0.00004 0.10947 0.11316
250 0.08159 0.07900 0.07295 0.07768 0.00000 0.00000 0.06727 0.06984

Table 9: Numerical results of the AVE, MSE, ABB, and MRE for θ = 10.
Measures n MLE LSE WLSE CVME MPSE ADE RADE PCE
AVE 20 9.41989 10.33912 10.42736 10.29962 10.50932 10.50630 10.35437 11.10173

50 9.51970 10.17165 10.17896 10.12099 10.09009 10.07717 10.19161 10.64467
100 9.47265 10.07099 10.12363 10.09440 10.00789 10.00981 10.06349 10.41150
250 9.49873 10.04040 10.08735 10.06305 10.00000 10.00000 10.03086 10.22152

MSE 20 6.37866 8.94238 8.22124 8.71524 3.57644 3.57743 6.97808 9.37872
50 2.61956 3.46709 3.11047 3.43227 0.37851 0.35012 2.64606 3.41852

100 1.50702 1.77445 1.52994 1.70201 0.01679 0.02239 1.32356 1.69434
250 0.71957 0.67454 0.59375 0.66860 0.00000 0.00000 0.53625 0.66498

ABB 20 2.04410 2.34491 2.24850 2.31773 0.95606 0.95478 2.07088 2.36470
50 1.29706 1.47632 1.40372 1.46990 0.16628 0.15500 1.29243 1.44570

100 0.99170 1.06220 0.98404 1.03939 0.01125 0.01339 0.91688 1.03698
250 0.69434 0.65342 0.61376 0.65053 0.00000 0.00000 0.58654 0.64279

MRE 20 0.20441 0.23449 0.22485 0.23177 0.09561 0.09548 0.20709 0.23647
50 0.12971 0.14763 0.14037 0.14699 0.01663 0.01550 0.12924 0.14457

100 0.09917 0.10622 0.09840 0.10394 0.00112 0.00134 0.09169 0.10370
250 0.06943 0.06534 0.06138 0.06505 0.00000 0.00000 0.05865 0.06428

7. Applications to Biological Real Data

This section is devoted to illustrating the importance of the OPD distribution in modeling count data from the medicine
field, using three real count data sets. The first data set contains 64 observations, and it refers to numbers of daily cases
in Egypt due to COVID-19 infections from 8 March to 10 May, 2020. The data are: 12, 33, 7, 4, 8, 13, 13, 17, 16, 40,
30, 14, 46, 29, 9, 33, 39, 36, 54, 39, 41, 40, 33, 47, 54, 69, 86, 120, 85, 103, 149, 128, 110, 139, 95, 145, 126, 125, 160,
155, 168, 171, 188, 112, 189, 157, 169, 232, 201, 227, 215, 248, 260, 226, 269, 358, 298, 272, 348, 388, 387, 393, 495,
488. The data are available on worldometer website at https://www.worldometers.info/coronavirus/country/egypt/.
The second data represents survival times (in weeks) for 33 patients. The patients are suffering from acute myeloge-
nous leukaemia (Feigl and Zelen, 1965). The data are: 3, 3, 30, 3, 8, 4, 2, 4, 4, 65, 100, 108, 121, 4, 134, 16, 39, 26,
22, 1, 143, 56, 1, 5, 65, 17, 7, 16, 56, 65, 22, 43, 156. The third data set refers to survival times of 44 patients suffering
from head and neck cancer who retreated using a combination of radiotherapy (). The data are: 12, 32, 37, 24, 24, 74,
81, 26, 41, 58, 63, 68, 78, 47, 55, 84, 155, 159, 92, 94, 110, 127, 130, 133, 140, 112, 119, 146, 173, 179, 194, 195,
339, 432, 209, 249, 281, 319, 469, 725, 817, 519, 633, 1776.
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Some descriptive statistics for the three data sets are reported in Table 10. It is clear that the three data sets are
over-dispersed data.

Table 10: Descriptive measures for the three real data sets.
Data Min. 1st Qu. Mean 3rd Qu. Variance ID Max.
Data Set I 4 37.5 140.0156 208 15642.8728 111.7223 495
Data Set II 1 4 40.8788 65 2181.1724 53.3571 156
Data Set II 12 65.5 223.4091 229 93307.6427 417.6537 1776

The estimates of the parameter θ and some goodness-of-fit measures including Cramér–von Mises (CM), Anderson-
Darling (AD), Kolmogorov-Smirnov (K-S) with its p-value are reported in Table 11 for the three over-dispersed data
sets, respectively. These estimates and analytical measures are obtained for the eight estimation methods using the R
software. It is shown, based on p-values in Table 11, that the LS method is recommended to estimate the parameter
θ of the OPD distribution for COVID-19 data, whereas the AD method is recommended to estimate θ for myeloge-
nous leukaemia data. Further, the p-values in Table 11 reveal that the WLS method is recommended to estimate the
parameter θ of the OPD distribution for survival times of head and neck cancer data.

Probability–probability (P-P) plots of all estimation methods for the three data sets are depicted in Figures 5, 6 and 7,
respectively. These plots support the results in Table 11, that the OPD distribution can be used to model over-dispersed
data encountered in biomedical science.

Table 11: Analytical measures and the estimates of θ using various methods of estimation.

Method CM AD K-S p-value θ̂
Daily cases in Egypt due to COVID-19 infections data

LSE 0.09137 0.53766 0.06888 0.92829 167.4075
CVME 0.09128 0.53725 0.07024 0.91789 166.7384
ADE 0.09065 0.53415 0.08048 0.81764 161.8059
RADE 0.09037 0.53280 0.08501 0.76397 159.6820
MPSE 0.08974 0.52975 0.09540 0.63192 154.9529
MLE 0.08912 0.52677 0.10576 0.50198 150.4155
PCE 0.08876 0.52502 0.11194 0.43022 147.7858
WLSE 0.08864 0.52441 0.11409 0.40668 146.8857

Myelogenous leukaemia data
LSE 0.05126 0.40694 0.15310 0.62650 46.5452
CVME 0.05134 0.40740 0.15607 0.60290 45.9891
ADE 0.05097 0.40519 0.15287 0.62839 48.7649
RADE 0.05035 0.40149 0.16740 0.51505 54.0284
MPSE 0.05039 0.40173 0.16647 0.52203 53.6636
MLE 0.05084 0.40445 0.15580 0.60506 49.7513
PCE 0.05005 0.39975 0.17409 0.46570 56.8095
WLSE 0.05295 0.41691 0.20579 0.27003 36.3343

Survival times of head and neck cancer data
LSE 0.17077 0.97535 0.09639 0.78360 195.1669
CVME 0.17082 0.97567 0.09654 0.78208 194.9109
ADE 0.16858 0.96299 0.10790 0.658816 205.4386
RADE 0.16905 0.96563 0.10390 0.70319 203.1994
MPSE 0.16578 0.94712 0.13206 0.40611 219.5054
MLE 0.16426 0.93855 0.14511 0.29614 227.5379
PCE 0.15643 0.89414 0.21237 0.03516 274.8875
WLSE 0.17008 0.97150 0.09499 0.797100 198.3105
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Figure 5: The PP plots of various estimation methods for COVID-19 data.
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Figure 6: The PP plots of various estimation methods for myelogenous leukaemia data.
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Figure 7: The PP plots of various estimation methods for survival times of head and neck cancer data.

8. Conclusions

In this paper, we propose and study a new discrete distribution which has a log-concave probability mass function
and an increasing discrete hazard rate function, for all choices of its parameter. The new distribution is called one
parameter discrete (OPD) distribution and it can be used effectively in analyzing over-dispersed count data. Several
statistical and reliability properties are derived in closed forms, including the mode, moments, index of dispersion,
mean residual life, mean past life, order statistics and L-moment statistics. Further, we derive closed form expressions
for the two risk measures of the OPD distribution. The numerical computations for the VaR and TVaR measures for
different parametric values of θ showed that these measures are increasing functions of θ. Eight classical estimators
the parameter θ are proposed. Simulation results to explore the behavior of these estimators are conducted. Based on
our study, the eight classical methods of estimation can be used effectively to estimate the OPD parameter θ. Three
over-dispersed real data sets from the medicine field are used to validate the use of OPD distribution in fitting lifetime
count data.
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