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Abstract

The fixed sample size procedure sometimes fail to deal with the estimation problem in which it is desired
to control the combined risk associated with the estimation of parameters of various probability
distributions simultaneously. In this paper for a general probabilistic model is proposed an “accelerated”
sequential class to minimize the combined risk for simultaneous estimation of parameters of several
probability distributions. The proposed class is shown to provide solutions for many estimation problems
under different probabilistic setups for “given precision” problems. Besides, positive and negative moments
for the stopping times are obtained and they are used for deriving the asymptotic expression for the “regret”
associated with the class of “accelerated” sequential estimation procedure.

Keywords: Loss function, Accelerated sequential procedure, Asymptotic distribution,
Regret.

1.1 Introduction

Sometimes, it is desirable to control the combined risk associated with the estimation of
parameters of various populations and such problems give rise to the simultaneous
estimation problems. The fixed sample size procedures for such problems fail and
affirmative solutions are desired. In this direction, Raatikainer(1987) proposed a
sequential procedure for simultaneous estimation of percentiles under a general set-up.
Then Mukhopadhyay, Hamdy and Darmanto(1988) considered the negative exponential
populations and desired the simultaneous confidence interval estimation of the
parameters as a follow up of certain selection and ranking problems. Later
Mukhopdhyay(1992) provided multi-stage procedures for the simultaneous point
estimation of the parameters of several negative exponential populations. For some
further work on related simultaneous estimation procedures one can cite the papers of
Raatikainer(1993), Mukhopadhyay and Solanky(1998), Aoshima and
Mukhopadhyay(1998), Effron(2004) and Ghosh (2005).
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In this paper we have considered a generalized problem of simultaneous estimation of
parameters of several populations f (xi,ﬁi,l//l.) , 1=1,2,...... k; where 6, and v, are

the unknown parameters, under a family of general loss function and a linear cost
function. The problem of fixed sample size procedure to deal with such problem is
established in Section 1.2. A class of “accelerated” sequential procedure to tackle the
problem is proposed in Section 1.3 and positive and negative moments for the stopping
times are obtained and they are used for deriving the asymptotic expression for the
“regret” associated with the class of “accelerated” sequential estimation procedure.
Finally in Section 1.4.illustrations of estimation problems are provided which can be
dealt with the help of the proposed class.

1.2 The Set-Up of the Problem
Let (X i ), j=12,.... be a sequence of independent and identically distributed (iid) random
variables from the i”,i =1,2,3,..... k t-variate (t>1) population f (Xi ;0, ,\|/i), where 0, and
v, are the unknown parameters. Denoting by R' andR ", respectively, the t- dimensional
euclidean space and the positive —half of the real line, let 6, € R'andy, € R*. Having
observed a random sample X, ,.......,X

0

_mj

of size n, (2 t+1) from the i" population let

mj

respectively, and satisfying the following assumptions:

(A,): There exist a known txt positive definite matrix Q,, a number SE(O,I]and an

integer
r(=1) such that

, 3
1| [~ A A A 2
;. I:(Qin, _Qi) Q; (Qin, _Qi):| ~X.
where Xz denotes a chi-squarer.v’s with r degrees of freedom.
(A,):Foralln,2m=2>t+1, é i and Qm, are stochastically independent.
(Aj;): There exist integers q(>1) and s(>1) such that, forall n, >s+1,

n;-s ) 5
q(n, _s)\_"m, Iy, = ;Z?wnhz? XA,

' k
Our goal is to estimate the vector 0 = (9_' R - k) pointwise. Forn = Zni , an obvious
i=1

!
estimator of0 is0, = (@’lnl . ) . Let the loss incurred in estimating 0 by @n be

L(o.8, )=Ai[(§mi -8, .6, —éi)}u +C(n, +otn,), (11)

where A (>0) is the known weight and C (>0) is the known cost per unit sample
observations from each population.

Utilizing (A, ), the risk corresponding to the loss function (1.1) comes out to be
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k ‘o k
R, (€)=K (u,r,8)> \ p,"+CD n,, where (1.2)
i=1 i=1
Caryen i)
K(uw,r,6) = 27 ar\ns+we)/r()).

The value n; of n, from the i" population, which minimizes the risk (1.2), is given by

% %ml) u
"= {uk(u(,jr, 5)} Wj%m) (1.3)

k
And substituting n,= n; in(1.2),for n" = an , the corresponding minimum risk is
i=l

R.(C)=C(lfu+1)n’ (1.4)

n

However, in the absence of any knowledge abouty,’s, no fixed sample size procedure
uniformly minimizes the risk simultaneously for all values of v, ’s. In such a situation,

motivated by (1.3), we propose the following class of ‘accelerated’ sequential procedure,
determining the sample size as a random variable.

1.3. The Class C of ‘Accelerated’ Sequential Procedure

Takem > max{s + 1,t + 1} to be the initial sample size from each population, where, as

in Hall(1983), m is chosen so as to satisfy m :o(C%‘””) as C—0and

lim Sup(%*) <1. Let 57 € (0,1) be specified. Start sampling sequentially from the 1™
i

c—0

population, with the stopping time M. defined by

%u+l) u
M, = inf{ni >min, > "{M} y}/_({“;” (1.5)

Based on these M, observations, we compute \f/i(Mi) . Then we jump ahead and collect

N, — M, more observations from the i™ population,
where

%uH) u :
M, =max M[{M} e |+l (1.6)

k
After stopping, estimate &by 6, where N = ZNi and

i=1

!
Owm= (Qalvn """" Qk(Nn) .
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It can be seen that the risk associated with the class C of ‘accelerated’ sequential
estimation procedures (1.5)-(1.6) is

e )
Ry (C) = 4 Z n,
i=1

with N, determined by present rule.

E(N, ")+ cZk; E(N,)=c(u+)n" (1.7)

The “Regret” associated with the estimator é w of 0 is
R (c)=Ry(c)-R,.(c)

(1.8)

Now we state and prove some lemmas.
Lemma 1: For the class Cof accelerated sequential procedures and all

m > max{t,s +2u/(u + 1)}, as C >0,

* u
E(N;)=n; |s+———{l+u/(u+1)}|+1/2 +0(l) (1.9)
qu+1)
and
2u’ * 1 u+1)
Var(N,)=———n,; o(C ) (1.10)
179 (u+1)
Proof : Denoting by
1/(u+1) 1/(u+1) +
U, =1- {MK(M,V,5)} @Aul/(uﬂ) _ {u K(u,r,é’)} li,;/(ml)
i C i C i

We can write

E(N;)=1+11, (1.11)
where

1/(u+1) +
=E| N 1M, > HM} \if;;@“*”} . (1.12)
C i
1/(u+1)
K _
1= {%M)} B[ vy l+Ew,,) (1.13)

It follows from Hall (1983) that, as C — 0, I=0(1) and UMi is uniform over (0,1).
Thus, we conclude from (1.11), (1.12) and (1.13) that,as C — 0,

L(u+1)
E(N; )= {M} B[y ] v 1240 (1) (1.14)
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Now we evaluate El ‘i’f/[/'(uﬂ) J To this end, we rewrite the stopping rule (1.5) as
1

n; -
M; = inf[ni >m—S: Z:(q_1 qu) )S (nn’ik) (UJF)/lnilJr(qul)/u 1+ sni_l)(uﬂ)/u (1.15)
=1

Comparing (1.14) with equation (1.1) ofWoodroofe (1977), we obtain in his notations,
S (41 7@ .
Snizzi(q Zj ),(x:1+(u+1)/u,[3:u/(u+1),Kznni,

—

L(n)=(1+sn )" L, =s(u+1)/u, p=1,and 12 = 2q_1 . It follows from his
Theorem 2.4 that, for all m > {s +2u/q(u+ 1)}, as C >0,

u

uv q
(u+1) qu+1)

E(M;)=nn; + (1+u/(u+1)) +o(l), (1.16)

where L 1is specified.

Let us consider the difference

K S 1/(u+1) R
DC=M,»—77{—” (”(‘;V’ )} P (1.17)

It follows from Woodroofe (1977) that the mean of the asymptotic distribution of

D.is uo )
(u+1)

Thus we obtain from (1.15) and (1.16) that, for all
m>{s+2ulqu+1)},as C—0,

uK(u,r,0) e Hu+1) * -1 u
_ E\W; " =n, — + L+u/(u+1)5| +o(l). 1.18
{ - } (V") = =5 Eo b by vo).  (118)

Result (1.7) now follows on substituting the value of (1.7) in (1.14).

Let
h(Mz) = ‘Mi - 77”:'* /<77nz* )1/2

. It follows from a result of Bhattacharya and Mallik (1973)

that A(M,)—t— N(O, 2u® /q(u+ 1)2) , as ¢—0. Moreover, from Theoreml of
Woodroofe(1977), h*(M,) is uniformly integrable for all m > {s +2u/q(u+ 1)}.

Hence, for all m > {s+2u/q(u+1)},as C — 0,
2u’
E\R*(M,))= ———+o(l).
b))z e
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And by the definition,
Var(N,) = 77> Var(M,).Therefore,

2

Var(N,)= 77‘2[77 nl*{ LZ + o(l)H , and (1.9) holds.
nq(u+1)

Lemma 2: As C -0, P(Ni < nn:):o(Cq(’”’”/z“).

Proof: It is easily proved along the lines of Lemma 3 of Chaturvedi, Pandey and Gupta
(1991).

Lemma 3: Let ther.v’s W;'s, i=1,2,...k, be defined by |, —1| < ‘(Ni /n:)— 1‘ . Then, for
0>0, Wi’s’2 is uniformly integrable for all m > {s +2u(2-0)/q(u+ l)}.

Proof: On the event N, >nn; , W, <2—n and W,' <n', so that, on this event, positive,
as well as negative, powers of W, are uniformly integrable. Furthermore,on the event
N, >nn; W, <2 and W' <n, /m.

Now, ford < 2, applying Lemma 2, we get from some B (>0),

e 1y, << 3 o, <)

— O(Cq(m—s)/Zu—(Z—é')/(qul))

o(l), forallm >s+2u(s+2u)(2-9)/q(u+1).
Finally, for 6 > 2, once again applying Lemma 2, we get
Ew? 2 1N, < g )| < B p(N, <))

=0(1), forall m>s+1.
And the lemma follows.

Lemma 4: For any & >0 and all m > {s+2u/q(u+1)},{s+2u(2-5)/qu+1)} , as

C—-0,
E(Nf) = n;m‘ +5n—[2 [(5 - 2)u2 — (u + l){qs(u +1)—u- nq(n + 1)/2}]
ng(u+1)
+o(c Py (1.19)
And
i 5’1*7(&1)
E(Ni_‘s )= ”l,* +"—2 [(5 + 2)u2 - (u + 1){qs(u +1)+u-— nq(n + 1)/ 2}]
ng(u+1)
+ O(C(§+1)/(u+l)) (1.20)
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Proof : Using the expression

B0} [H( 5 Jeln _n?)%((s;l)j}g{(m i H

ni

Lemmas 1 and 3 and the fact that W, —~—1as C — 0, we obtain for all

m >max{{s+2u/q(u+1)},{s+2u(2—5)/q(u+1)}} ,as C—>0,

EWN?)= " +6n {— n{s (S + 1))} £1/2+ o(l)}
q(u + l)

. 2
. 55— 1)n;af_ 2u 0 +o(c Y |
2 nq(u+1)

And (1.19) follows.

Furthermore, using Taylor’s expression for N ;’5, Lemma 1 and 3, and the fact that

W, —~=—1las C — 0, we obtain for all

m>max{s+2u/qu+D}{s+2u(2-5)/ qu+1)}},as C—0,

EN?)= " +om " {— s+ ——(+u fu + 1))} +1/2+ 0(1)}
L q(u + 1)
B 2
" 5(5 + 1) n;—wm 2u . nl* n O(C_l/(u+l)):| ’
2 | nq(u+1)

and (1.20) holds.

Now we prove the main theorem of this section, which provides asymptotic expression
for the ‘regret’ corresponding to the class C of ‘accelerated’ sequential estimation
procedures.

Theorem: For the class C of ‘accelerated’ sequential procedures and for all

m>max{{t,s +2u/qu+)}{s+2u(2-5)/ gu+1}},as C—>0,

Chku*

File)= ng(u +1)

+0(C).

Proof: Substituting the values of R, (C) and R, (C) from (1.4) and (1.7) in (1.8)
respectively, we obtain

R,(C)= (C/u)zk: n"E(N")+ Czk: E(N,)-C(/u+1)n". (1.21)

i=l1
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Now, applying Lemma 4, we obtain for any 0 > 0 and all
m > max{{t,s +2u/q(u +1)},{s + 2u(2 —5)/q(u +1)}} ,as C — 0, we get

R,(c)=(C/u) inf‘”*” {n L {(u +2)u’” + (u+1)(gs(u+1)) +u— g +1) + O(C)H
= ng(u+1) 2

.
Y nn |\ n-n S+L2(1+u/(u +1)t=1/2+0() |-C(1/u+n)n",
= qlu+1)
and the theorem follows .

1.4 Estimation Problems Having Solutions Provided by Class C of*“Accelerated”
Sequential Procedure

1.4.1 Simultaneous estimation of the means of several normal populations

Let us consider a sequence (Xij ), j= 1,2,.... of iidr.v’s from the ith,i=1,2, ...... k

univariate normal population N(x, 1,,0;) , where p; € (—0,%0) and O'l.2 € (6,) are

the unknown mean and variance, respectively. Having recorded a random sample

— 77
, X, of size n;(22) from the i" population, let Xion :ni_IZXij and

=1
nl' _ 2
Siz(ni) =(n; — 1)_12()(1./. —X,,,) It can be verified (see Starr(1966)] that
j=l
. 2 A - &2 2
(4)—(4;) are satisfied for 6, =p,y,=07,0,, = X.,. Yi)=Sin)

r=gq=s=t=1, Q; =I;x; = 1 and 6 =1.

1.4.2. Simultaneous estimation of the mean vectors of several multinormal
populations

Let us consider a sequence (Xij), j= 1,2,.... of iidr.v’s from the i J=1,2,...... k
univariate normal population N, (x; y[,af 2z.) , where M. is the px1 unknown mean

vector, o] € (0,0) are the unknown scalar and 2., is a known pxp positive definite

th

matrix. Given a random sample X ;,........ , X, of size n(=p+1) from the i

in
— 7y 71; _ 2
population, let X, | nl._lzgij and 61%,11_) :(p(nl. —1))_12(Xij -X ) It
j=1 j=1

—i(n)
can be verified (see, Wang, 1980) that (A4,) —(A4;) hold for 6, = 1., y; = 01,2, éini -
’ ‘{A]iz(nl-)zo,\-z%ni) , I=t=p, Qi = Zl_l and d =1.

—i(n)
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1.4.3. Simultaneous estimation of the regression parameters of several linear models

Consider the i linear model Y =Xiw) ﬂ +2,,), 1=1,2,....k,,

i(n;)
whereY, , | is an observed n, *1 random vector, X ,,, is a n; * p

Matrix of rank p, # is the p*1 vector of unknown regression parameters, and ). ) 18
I~ i(n

the disturbance term following N, (0, o’ 1, ) distribution. The ordinary least squares

estimator of g is S = (Xl(n)Xl(n)) _l(n)Yl(n) and we use

L i —i(n;)

A2 -1y -1 :
Oi(n;) :(ni - P) Y iopll, — X, (X i) X i(n,)) X itn)]Y sy to estimate
O'l-2 . It can be seen [see, Judge and Bock (1978, P.20)] that (A4,) — (A4;) are satisfied for

2 ~
r:t:pagl‘: éi’ l//[:Gi’Qini :ﬁ
22 A2 v -
Yi)= Ot =150, 0= 1 (X ity X)) and =1

i(n;) >

1.4.4. Simultaneous estimation of the location parameters of several negative
exponential populations

Let (K ij), j=1,2,..... be a sequence of the iidr.v’s from the i negative exponential

populations,

fGxip,0)= O; "exp[— / I x; 2 u,1=1,2,.....k, where p, €(-o0,0) and
o, €(0,0) are the unknown location and scale parameters, respectively. For a random

X . of size n(>2) from the ithpopulation, we define

il’ ........ ) l}’ll

sample X

X;nl)=min(Xil, ........ ,X,,)and &, = Z(X -X )

Assumptions (A4,) — (4;) are satisfied [see Basu (1971)] for r=2, t=1,60. = i1, v, = o;,

~

0., =X, IiIi(ni)zo-z%n,-)’ =2, 571, Q= I,y =land 5:%'

! i(n;)

1.4.5. Simultaneous estimation of the parameters of several Pareto distribution

Let (Xij), j=1,2,..... be a sequence of the iidr.v’s from the ith(i= 1,2,.....k)
first kind of Pareto distribution
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S
f(xi;ﬁi,o'l.)— o; ,ul ; xi2£i>0, 0;>0, where g and o; are

respectively , unknown scale and shape parameters. Based on random sample
n, of size, for n;(=2) ka A =min(Xl.1, ........ X, ), We use

= logX® and 6, =(n-1) ZIOg/
i(nj)

i(nj) i(nj)
as the estimators of log H, and o; are respectively.We observe that [see, Wang

(1973)] (A4,) — (4;) are satisfied forr=2,t=1,0,=log1;, ¥, =0, 0,, “H

~

LPz( )2(3'( ) ,q=2,s=1, O, = I,,=land 0= /

1.4.6. Simultaneous estimation of the means of the several inverse Gaussian
populations

Let (K i ), j=1,2,..... be a sequence of the iidr.v’s from an inverse Gaussian distribution

1
fOesp,2)= 4 Aexp A (v = ) ; X;>0
522D T

where M € (— oo,oo) and 1A' €(0,0) are the unknown mean and scalar parameters

respectively. Given a random sample X ,........ , X, of size, n;(=2) from the i

in;
i
population, we use X, —n'IZXy, /1,(”) =(n, —1)_12()(_1 X,(n )
= ’
as the estimators of £/, and are /1; respectively.We observe that (see, Chaturvedi,1985)
(4,) — (4y) aresatisfied forr=t=1,0,= i, y; = /1;1, émi X

i(nj)”’

‘P.(nl_) i(n) q=s=0=I and Ql(n) I, =1.

1 1

1.4.7.Simultaneous estimation problem related to multiple comparison procedures

Let us consider the linear regression models of sections 3. In multiple comparison

procedures [see Hochberg and Tamhane(1987)] for a brief discussion], one may be

interested in estimating the parametric functions of the components of a Ix1 (1</< p)

subvector S “of S .Let ,B* be the corresponding subvector of ,B ’ )and V. is
—i —i — it —i(n;

4 *
Ix1submatrix of (X ,'(n,.)Xl.(nA))_l corresponding to the g part of g . For a
i i) —n;

known
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p x1 matrix G;= (g/j5eeer &) Vi = (&' f e ,gipﬁj)z G, . We use the least-

~

2
, where ¥ =

—i(n)

)

A

va _X(”f)

to estimated by s, =v;"
i) !

Ak
squares estimator ¥;= G, S
—_— —i(n

A~

K,( )ﬁ ,Vv=mn;—S,;, 1is the error degree of freedom ands, = rank(X'( :
D) = i(n;) 1(nj

~

Assumptions (4;) —(4;) are satisfied forr= t=p,0,= y, ¥, = c2,0. =Y

Lo =i —i(n;) ’
~

W)= Sty +a= 15 =5, 5=land 0= (GG

1

1.4.8. Simultaneous estimation of the means of several random one-way models

Let us consider the i (i=1,2,...... ,k) random one way model:
Yijlzlui Tt &y, =1.2,..n =1, o

where 7,’s are independently distributed as N(€o;), &;’s are independently

distributed as N (97(711 ), 7;;and &;; are independent for all i ,j and 1 and o, € (0,)and
0;, €(0,00) are unknown. We assume that 7;-the number of samples per treatment is
— 1
known. Let ¥; = (n r)_IZZY be the over all 1 from the i lati
: i s i ver all sample mean from the i~ population
j=li=1

and MST and MSE denotes, respectively, the usual ANOVA mean squares for the
treatments and errors. We notice that the assumptions (4,) — (4;) are valid forr=t=1,

_ _ 2 2N A 9
Qi_ﬁi’ Vi _(rl'o-il+o-ie)ﬂ Qini _Zi’

N n; ( ?y _ ?1)2
IPz'(n-)ZMST=V,-Z‘, , q=n,~,s=5=l and Ql.= rl  =r.
l J=1 (”i - 1)
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