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Abstract

This paper aims to develop a new class of distributions, namely, type II exponentiated half-logistic Topp-Leone-
G power series (TIIEHL-TL-GPS) class of distributions. Some important properties including moments, quantiles,
moment generating function, entropy and maximum likelihood estimates are derived. A simulation study is conducted
to evaluate the consistency of the maximum likelihood estimates. We also present three real data examples to illustrate
the usefulness of the new class of distributions. Results show that the proposed model performs better than nested and
several non-nested models on selected data sets.
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1. Introduction

The limitations of the well-known standard distributions like Weibull distribution, Lindley distribution, Rayleigh dis-
tribution and many others have motivated researchers to generalize and extend existing distributions, in order to offer
flexible models in terms of data modeling. Several extensions of distributions available in the literature are the beta
Marshall-Olkin family of distributions by Alizadeh (3), Topp-Leone generated family of distributions by Rezaei (26),
type II power Topp-Leone generated family of distributions by Bantan et al. (5), sine Topp-Leone-G family of dis-
tributions by Al-Babtain et al. (1), Burr X exponential-G family of distributions by Sanusi (28), type II half logistic
family of distributions by Soliman et al. (32), type II general inverse exponential family of distributions by Jamal et
al. (13), the Zografos–Balakrishnan-G family of distributions by Nadarajah et al. (20), beta Weibull-G by Yousof et
al. (35), new power generalized Weibull-G by Oluyede et al. (24), Weibull-G by Bourguignon et al. (8) developed,
beta-G by Eugene et al. (10).

In this paper, we propose a new class of distributions TIIEHL-TL-GPS class of distributions. An attractive feature
about the model is that the extra parameter introduced has the capability to control both the weights at the tails of the
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density function. Also, the new class of distributions can model different types of failure rate functions that are avail-
able in different areas like reliability, engineering and biological studies. The hazard rate function from the special
cases exhibits increasing, decreasing, bathtub and upside bathtub shapes. Of note is the upside bathtub followed by
bathtub shape of the hazard rate exhibited in some special cases. The method of estimation used in section 4 was used
by Karakaya and Tanis (15), Karakaya and Tanis (16), Tanis and Karakaya (33) and Tanis (34).

The cumulative distribution function (cdf) and probability density function (pdf) of the type II exponentiated half-
logistic Topp-Leone-G (TIIEHL-TL-G) family of distributions are given by

F(x;a,b,ψ) = 1−

1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b


a

(1)

and

f (x;a,b,ψ) =

4abg(x;ψ)
[
1−G2

(x;ψ)
]b−1

G(x;ψ)

(
1−
[
1−G2

(x;ψ)
]b
)a−1

(
1+
[
1−G2

(x;ψ)
]b
)a+1 ,

(2)

respectively, for a,b > 0 and parameter vector ψ.
The basic motivations for developing the type II exponentiated half-logistic Topp-Leone-G power series (TIIEHL-TL-
GPS) class of distributions are;

• to construct and generate distributions with symmetric, left-skewed, right-skewed, reversed-J shapes;

• to define special models that posseses various types of hazard rate functions including monotonic as well as
non-monotonic shapes;

• to provide consistenly better fits than other generated distributions having the same number of parameters;

• to construct heavy-tailed distributions for modeling different real data sets;

• to make the kurtosis more flexible compared to that of the baseline distributon.

Let N be a zero truncated discrete random variable having a power series distribution, whose probability mass function
(pmf) is given by

P(N = n) =
anθ n

C(θ)
,n = 1,2,3, ..., (3)

where C(θ) = ∑
∞
n=1 anθ n is finite, θ > 0 and {an}n≥1 a sequence of positive real numbers. The power series family

of distributions include binomial, Poisson, geometric and logarithmic distributions Johnson et al. (14). Several gener-
alized distributions proposed in the literature involving the power series include the exponentiated power generalized
Weibull power series family of distributions by Aldahlan et al. (2), the T–R {Y} power series family of probability
distributions by Osatohanmwen et al. (25), exponentiated generalized power series class of distributions by Oluyede
et al. (22), a new generalized Lindley-Weibull class of distributions by Makubate et al. (17), the odd Weibull-Topp-
Leone-G power series family of distributions by Oluyede et al. (21), Weibull-power series distributions by Morais and
Barreto-Souza (18), complementary exponential power series by Flores et al. (11), complementary extended Weibull-
power series by Cordeiro and Silva (9), Burr XII power series by Silva and Cordeiro (31), extended Weibull-power
series (EWPS) distribution by Silva et al. (30) and the Burr-Weibull power series class of distributions by Oluyede et
al. (23).
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The rest of the paper is organized as follows: In Section 2, we present the new model and some of the statistical
properties. We present some special cases of the proposed class of distributions in Section 3. A simulation study is
presented in Section 4 and applications in Section 5 followed by concluding remarks.

2. The Model, Sub-Classes and Properties

In this section, we develop the new model, referred to as the type II exponentiated half-logistic Topp-Leone-G power
series (TIIEHL-TL-GPS) class of distributions. Some statistical properties which include hazard rate function, quantile
function, moments and maximum likelihood estimation of model parameters are derived.

2.1. The Model

Let X1,X2, ...,XN be N identically and independently distributed (iid) random variables following the TIIEHL-TL-G
distribution. Let X(1) = min(X1,X2, ...,XN), then the cdf of X(1)|N = n is given by

FX(1)|N=n(x;a,b,θ ,ψ) = 1−


1−

[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b


a

n

, (4)

for a,b,θ > 0, n ≥ 1 and parameter vector ψ. The type II exponentiated half-logistic Topp-Leone power series
(TIIEHL-TL-GPS) class of distributions denoted by TIIEHL-TL-GPS(a,b, θ , ψ) is defined by the marginal distri-
bution of X(1), that is,

FX(1)(x) = 1−

C

(
θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

]a)
C(θ)

, (5)

for a,b, θ > 0 and parameter vector ψ. The corresponding pdf is given by

fX(1)(x) =

4abθg(x;ψ)
[
1−G2

(x;ψ)
]b−1

G(x;ψ)

(
1−
[
1−G2

(x;ψ)
]b
)a−1

(
1+
[
1−G2

(x;ψ)
]b
)a+1

×

C′
(

θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

]a)
C(θ)

.

(6)

The hazard rate function (hrf) is given by

hF (x) =

4abθg(x;ψ)
[
1−G2

(x;ψ)
]b−1

G(x;ψ)

(
1−
[
1−G2

(x;ψ)
]b
)a−1

(
1+
[
1−G2

(x;ψ)
]b
)a+1

×

C′
(

θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

]a)

C

(
θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

]a) . (7)
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Table 1 below presents the special classes of TIIEHL-TL-GPS distribution when C(θ) is specified in equation (5).

Table 1: Special classes of the TIIEHL-TL-GPS Distribution
Distribution C(θ) an cdf

TIIEHL-TL-G Poisson eθ −1 (n!)−1 1-
exp

θ

 1−[1−G2(x;ψ)]
b

1+[1−G2(x;ψ)]
b

a−1

exp(θ)−1

TIIEHL-TL-G Geometric θ(1−θ)−1 1 1-
(1−θ)

 1−[1−G2(x;ψ)]
b

1+[1−G2(x;ψ)]
b

a
1−θ

 1−[1−G2(x;ψ)]
b

1+[1−G2(x;ψ)]
b

a

TIIEHL-TL-G Logarithmic − log(1−θ) n−1 1-
log

1−θ

 1−[1−G2(x;ψ)]
b

1+[1−G2(x;ψ)]
b

a
log(1−θ)

TIIEHL-TL-G Binomial (1+θ)m−1
(m

n

)
1-

1+θ

 1−[1−G2(x;ψ)]
b

1+[1−G2(x;ψ)]
b

am

−1

(1+θ)m−1

2.2. Sub-classes of TIIEHL-TL-GPS Family of Distributions

• When a = 1, we obtain the type II half-logistic Topp-Leone-G power series (TIIHL-TL-GPS) class of distribu-
tions with the cdf

F(x;b,θ ,ψ) = 1−

C

(
θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

])
C(θ)

,

for b, θ > 0 and parameter vector ψ. This is a new class of distributions.

• When b = 1, we obtain the new class of distributions with the cdf

F(x;a,θ ,ψ) = 1−
C

(
θ

[
G2

(x;ψ)

1+
[
1−G2

(x;ψ)
]
]a)

C(θ)
,

for a, θ > 0 and parameter vector ψ.

• When a = b = 1, we obtain the new class of distributions with the cdf

F(x;θ ,ψ) = 1−
C

(
θ

[
G2

(x;ψ)

1+
[
1−G2

(x;ψ)
]
])

C(θ)
,

for θ > 0 and parameter vector ψ.

• When θ → 0+, we obtain the type II exponentiated half-logistic Topp-Leone-G (TIIEHL-TL-G) class of distri-
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butions with the cdf

F(x;a,b,ψ) = 1−

1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b


a

,

for a, b > 0 and parameter vector ψ. This is a new class of distributions.

• When a = 1 and θ → 0+, we obtain the type II half-logistic Topp-Leone-G (TIIHL-TL-G) class of distributions
with the cdf

F(x;b,ψ) = 1−

1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

 ,
for b > 0 and parameter vector ψ. This is a new class of distributions.

• When b = 1 and θ → 0+, we obtain the new class of distributions with the cdf

F(x;a,ψ) = 1−

 G2
(x;ψ)

1+
[
1−G2

(x;ψ)
]
a

,

for a > 0 and parameter vector ψ.

• When a = b = 1 and θ → 0+, we obtain the new class of distributions with the cdf

F(x;ψ) = 1−

 G2
(x;ψ)

1+
[
1−G2

(x;ψ)
]
 ,

for parameter vector ψ.

2.3. Quantile Function

Let X be a random variable with cdf defined by equation (5). The quantile function QX(1)(u) is defined by FX(1)(QX(1)(u))=
u,0≤ u≤ 1. Note that

1−

C

(
θ

[
1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b

]a)
C(θ)

= u,

so that

C

θ

1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b


a = C(θ)(1−u) .

This is equivalent to 1−
[
1−G2

(x;ψ)
]b

1+
[
1−G2

(x;ψ)
]b


a

=
C−1 (C(θ)(1−u))

θ
,
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that is,

G(x;ψ) =

1−

(
1− (C(θ)(1−u))

1
a

1+(C(θ)(1−u))
1
a

) 1
b


1
2

.

The expression further simplifies to

G(x;ψ) = 1−

1−

(
1− (C(θ)(1−u))

1
a

1+(C(θ)(1−u))
1
a

) 1
b


1
2

.

Therefore, the quantile function of the TIIEHL-TL-GPS class of distributions is given by,

QX(1)(u) = G−1

1−

1−

(
1− (C(θ)(1−u))

1
a

1+(C(θ)(1−u))
1
a

) 1
b


1
2

 . (8)

It follows therefore that random numbers can be generated from the TIIEHL-TL-GPS class of distributions using
equation (8) with the aid of statistical software such as R, MATLAB and SAS.

2.4. Expansion of Density

Expansion of the density function of the TIIEHL-TL-GPS class of distributions is presented in this sub-section. The
TIIEHL-TL-GPS class of distributions can be expressed as an infinite linear combination of exponentiated-G (Exp-G)
densities as

fX(1)(x) =
∞

∑
m=0

τm+1gm+1(x;ψ), (9)

where gm+1(x;ξ ) = (m+1)(G(x;ξ ))m g(x;ξ ) is the exponentiated-G (Exp-G) distribution with power parameter m+1
and

τm+1 =
∞

∑
n=1

∞

∑
j,k,l=0

4abθnanθ n

C(θ)

(
an−1

j

)(
an+ k

k

)(
b( j+ k+1)−1

l

)
×

(
2l +1

m

)
(−1)k+ j+l+m

m+1
. (10)

(See Appendix section for details of the derivation)

2.5. Moments and Generating Function

If X follows the TIIEHL-TL-GPS distribution and Y ∼ Exp−G(m+1). Then using equation (9), the pth raw moment,
µ ′p of the TIIEHL-TL-GPS class of distributions is obtained as

µ
′
p = E(X p) =

∫
∞

−∞

xp f (x)dx =
∞

∑
m=0

τm+1E(Y p),

where τm+1 is given by equation (10). The moment generating function (MGF) M(t) = E(etX ) is given by:

MX (t) =
∞

∑
m=0

τm+1MY (t),
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where MY (t) is the MGF of Y and τm+1 is given by equation (10).

2.6. Order Statistics and Rényi Entropy

In this section, we present the distribution of the ith order statistic and Rényi entropy.

2.6.1. Distribution of Order Statistics

Order statistics are fundamental in many areas of statistical theory and practice. Let X1,X2, ...,Xn be a random sample
from TIIEHL-TL-GPS class of distributions. Then, the distribution of the kth order statistics from TIIEHL-TL-GPS
class of distributions is given by

fi:n(x) =
n!

(i−1)!(n− i)!

∞

∑
m=0

n−i

∑
p=0

(
n− i

p

)
(−1)phm+1gm+1(x;ψ), (11)

where gm+1(x;ψ) = (m+1)g(x;ψ)Gm(x;ψ) is an Exp-G with power parameter m+1 and the linear component

hm+1 =
∞

∑
n,z=1

∞

∑
j,k,l=0

4abθnandq,zθ
n+z(−1)q+ j+l+m

Cq+1(θ)(m+1)

(
i+ p−1

q

)
×

(
a(n+ z)−1

j

)(
a(n+ z)+ k

k

)(
b( j+ k+1)−1

l

)(
2l +1

m

)
.

(See Appendix section for details of the derivation)

2.6.2. Rényi Entropy

In this subsection, Rényi entropy for TIIEHL-TL-GPS class of distributions is derived. An entropy is a measure of
uncertainty or variation of a random variable. Rényi entropy (27) is a generalization of Shannon entropy (29). Rényi
entropy of the TIIEHL-TL-GPS distribution is defined by

IR(v) =
1

1− v
log

(
∞

∑
m=0

w∗e(1−v)IREG

)
, (12)

where IREG =
∫

∞

0 [(1+m/v)g(x;ψ)Gm/v]vdx is Rényi entropy for an Exp-G distribution with power parameter m/ν +1
and

w∗ =
∞

∑
n=1

∞

∑
j,k,l,m=0

(−1)k+ j+l+m ndv,nθ v+n−1

(C(θ))v (4ab)v
(

b(v+ j+ k)− v
l

)
×

(
a(v+n−1)− v

j

)(
a(v+n−1)+ v−1+ k

k

)
×

(
2l + v

m

)
1

(1+m/ν)v . (13)

Consequently, Rényi entropy for TIIEHL-TL-GPS class of distributions can be obtained from Rényi entropy of the Exp-G distribu-
tion (See Appendix section for details of the derivation).

2.7. Maximum Likelihood Estimation

Here we use the maximum likelihood estimation technique to find the maximum likelihood estimates of the parameters of the
TIIEHL-TL-GPS class of distributions. Let Xi ∼ T IIEHL−T L−GPS(x;a,b,θ ,ψ) and ∆ = (a,b,θ ,ψ)T be the vector of unknown
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parameters. The total log-likelihood `= `(∆) function is given by

`(∆) = n ln(4abθ)+(b−1)
n

∑
i=1

ln
[
1−G2

(xi;ψ)
]
−n ln(C(θ))

+ (a−1)
n

∑
i=1

(
1−
[
1−G2

(xi;ψ)
]b
)
− (a+1)

n

∑
i=1

ln
(

1+
[
1−G2

(xi;ψ)
]b
)

+
n

∑
i=1

ln

C′

θ

1−
[
1−G2

(xi;ψ)
]b

1+
[
1−G2

(xi;ψ)
]b


a


+
n

∑
i=1

ln
(

g(xi;ψ)
)
+

n

∑
i=1

ln
(

G(xi;ψ)
)
.

The maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
( ∂`n

∂a ,
∂`n
∂b ,

∂`n
∂θ

, ∂`n
∂ψk

)T = 0, using a numerical method such as Newton-Raphson procedure. The multivariate normal

distribution Nq+3(0,J(∆̂)−1), where the mean vector 0 = (0,0,0,0)T and J(∆̂)−1 is the observed Fisher information
matrix evaluated at ∆̂, can be used to construct confidence intervals and confidence regions for the individual model
parameters and for the survival and hazard rate functions.

3. Some Special Sub-classes of the TIIEHL-TL-GPS Class of Distributions

In this section, special classes of TIIEHL-TL-GPS class of distributions are presented by specifying the baseline cdf
G(x;ψ) and pdf g(x;ψ) in equations (5) and (6).

3.1. Type II Exponentiated Half-Logistic Topp-Leone-Log-Logistic Power Series (TIIEHL-TL-LLoGPS) Class
of Distributions

If the baseline cdf and pdf are given by G(x;c) = 1− (1+ xc)−1 and g(x;c) = cxc−1 (1+ xc)−2, for c > 0, and x > 0,
then the cdf and pdf of the TIIEHL-TL-LLoGPS class of distributions are given by

FX(1)(x) = 1−
C
(

θ

[
1−[1−(1+xc)−2)]

b

1+[1−(1+xc)−2)]
b

]a)
C(θ)

, (14)

and

fX(1)(x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1 C′

(
θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)
C(θ)

,

(15)
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respectively. The hrf is given by

hF (x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1 C′

(
θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)
C
(

θ

[
1−[1−(1+xc)−2)]

b

1+[1−(1+xc)−2)]
b

]a) , (16)

for a,b, θ , c and x > 0.

3.1.1. Type II Exponentiated Half-Logistic Topp-Leone-Log-Logistic Logarithmic (TIIEHL-TL-LLoGL) Dis-
tribution

The cdf and pdf of TIIEHL-TL-LLoGL distribution are given by

FX(1)(x) = 1−
− log

(
1−θ

[
1−[1−(1+xc)−2)]

b

1+[1−(1+xc)−2)]
b

]a)
− log(1−θ)

,

and

fX(1)(x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1

(
1−θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)−1

− log(1−θ)
,

respectively. The hrf is given by

hF (x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1

(
1−θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)−1

− log
(

1−θ

[
1−[1−(1+xc)−2)]

b

1+[1−(1+xc)−2)]
b

]a) ,

for a,b, θ , c and x > 0.

Figure 1 shows the pdfs of the TIIEHL-TL-LLoGL distribution. The pdf can take various shapes that include almost
symmetric, reverse-J, left, or right-skewed. Furthermore, the hazard rate functions (hrfs) for the TIIEHL-TL-LLoGL
distribution exhibit increasing, reverse-J, bathtub, upside bathtub and upside bathtub followed by bathtub shapes.

We present in Figures 2 and 3, 3D plots of skewness and kurtosis of the TIIEHL-TL-LLoGL distribution. We ob-
serve that
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Figure 1: Plots of the pdf and hrf for the TIIEHL-TL-LLoGL distribution

• When we fix the parameters θ and a, the skewness and kurtosis of the TIIEHL-TL-LLoGL distribution decreases
as b and λ increase.

• When we fix the parameters θ and λ , the skewness and kurtosis of the TIIEHL-TL-LLoGL distribution increases
as a and b increase.

b

la
m

bd
a

skew
ness

TIIEHL − TL − LLoGP(2.5, b, 0.5, λ)

b

la
m

bd
a

kurtosis

TIIEHL − TL − LLoGP(2.5, b, 0.5, λ)

Figure 2: 3 D Plots of skewness and kurtosis for TIIEHL-TL-LLoGL distribution
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Figure 3: 3 D Plots of skewness and kurtosis for TIIEHL-TL-LLoGL distribution

3.1.2. Type II Exponentiated Half-Logistic Topp-Leone-Log-Logistic Poisson (TIIEHL-TL-LLoGP ) Distri-
bution

The cdf and pdf of TIIEHL-TL-LLoGLP distribution are given by

FX(1)(x) = 1−
exp
(

θ

[
1−[1−(1+xc)−2)]

b

1+[1−(1+xc)−2)]
b

]a

−1
)

exp(θ −1)
,

and

fX(1)(x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1 exp

(
θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)
exp(θ −1)

,
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respectively. The hrf is given by

hF (x) =
4abθcxc−1 (1+ xc)−2

[
1− (1+ xc)−2)

]b−1
(1+ xc)−1(

1+
[
1− (1+ xc)−2

]b
)a+1

×
(

1−
[
1− (1+ xc)−2

]b
)a−1 exp

(
θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a)
exp
(

θ

[
1−[1−(1+xc)−2]

b

1+[1−(1+xc)−2]
b

]a

−1
) ,

for a,b, θ , c and x > 0.

Figure 4: Plots of the pdf and hrf for the TIIEHL-TL-LLoGP distribution

Figure 4 shows the pdfs of the TIIEHL-TL-LLoGP distribution. The pdf can take various shapes that include almost
symmetric, reverse-J, left, or right-skewed. Furthermore, the hazard rate functions (hrfs) for the TIIEHL-TL-LLoGP
distribution exhibit increasing, reverse-J, bathtub, upside bathtub and bathtub followed by upside bathtub shapes.

We present in Figures 5 and 6, 3D plots of skewness and kurtosis of the TIIEHL-TL-LLoGP distribution. We ob-
serve that

• When we fix the parameters θ and a, the skewness and kurtosis of the TIIEHL-TL-LLoGP distribution decreases
as b and λ increase.

• When we fix the parameters θ and λ , the skewness and kurtosis of the TIIEHL-TL-LLoGP distribution increases
as a and b increase.

3.2. Type II Exponentiated Half-Logistic Topp-Leone-Weibull Power Series (TIIEHL-TL-WPS) Class of Dis-
tributions

Suppose the cdf and pdf of the Weibull distribution are given by G(x;λ ) = 1− exp
(
−xλ

)
, for x ≥ 0,λ > 0 and

g(x;λ ) = λxλ−1 exp
(
−xλ

)
, for λ > 0, and x > 0, then, the cdf and pdf of the TIIEHL-TL-WGPS class of distributions

are given by

FX(1)(x) = 1−
C
(

θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
C(θ)

,
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Figure 5: 3 D Plots of skewness and kurtosis for TIIEHL-TL-LLoGP distribution

and

fX(1)(x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1 C′

(
θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
C(θ)

,

respectively. The hrf is given by

hF (x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1 C′

(
θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
C
(

θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a) ,

for a,b, θ , λ and x > 0.

3.2.1. Type II Exponentiated Half-Logistic Topp-Leone-Weibull Logarithmic (TIIEHL-TL-WL) Distribution

The cdf and pdf of TIIEHL-TL-WL distribution are given by
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Figure 6: 3 D Plots of skewness and kurtosis for TIIEHL-TL-LLoGP distribution

FX(1)(x) = 1−
− log

(
1−θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
− log(1−θ)

,

and

fX(1)(x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1

(
1−θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)−1

− log(1−θ)
,

respectively. The hrf is given by

hF (x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1

(
1−θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)−1

− log
(

1−θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a) ,
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for a,b, θ , λ and x > 0. Figure 7 shows the pdfs of the TIIEHL-TL-WL distribution. The pdf can take various shapes

Figure 7: Plots of the pdf and hrf for the TIIEHL-TL-WL distribution

that include almost symmetric, reverse-J, left, or right-skewed. Furthermore, the hrfs for the TIIEHL-TL-WL distri-
bution exhibit increasing, reverse-J, bathtub, upside bathtub and upside bathtub followed by bathtub shapes.

We present in Figures 8 and 9, 3D plots of skewness and kurtosis of the TIIEHL-TL-WL distribution. We observe that

• When we fix the parameters θ and λ , the skewness and kurtosis of the TIIEHL-TL-WL distribution increases
as a and b increase.

• When we fix the parameters θ and b, the skewness and kurtosis of the TIIEHL-TL-WL distribution increases as
a and λ increase.

3.2.2. Type II Exponentiated Half-Logistic Topp-Leone-Weibull Poisson (TIIEHL-TL-WP) Distribution

The cdf and pdf of TIIEHL-TL-WP distribution are given by

FX(1)(x) = 1−
exp
(

θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a

−1
)

exp(θ −1)
,

and

fX(1)(x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1 exp

(
θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
exp(θ −1)

,
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Figure 8: 3 D Plots of skewness and kurtosis for TIIEHL-TL-WL distribution

respectively. The hrf is given by

hF (x) =
4abθλxλ−1 exp

(
−xλ

)[
1− exp

(
−2xλ

)]b−1
exp
(
−xλ

)(
1+
[
1− exp

(
−2xλ

)]b)a+1

×
(

1−
[
1− exp

(
−2xλ

)]b
)a−1 exp

(
θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a)
exp
(

θ

[
1−[1−exp(−2xλ )]

b

1+[1−exp(−2xλ )]
b

]a

−1
) ,

for a,b, θ , λ and x > 0. Figure 10 shows the pdfs of the TIIEHL-TL-WP distribution. The pdf can take various
shapes that include almost symmetric, reverse-J, left, or right-skewed. Furthermore, the hrfs for the TIIEHL-TL-WP
distribution exhibit increasing, reverse-J, bathtub, upside bathtub and upside bathtub followed by bathtub shapes.

We present in Figures 11 and 12, 3D plots of skewness and kurtosis of the TIIEHL-TL-WP distribution. We ob-
serve that

• When we fix the parameters θ and a, the skewness and kurtosis of the TIIEHL-TL-WP distribution decreases as
b and λ increase.

• When we fix the parameters θ and λ , the skewness and kurtosis of the TIIEHL-TL-WP distribution increases as
a and b increase.
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Figure 9: 3 D Plots of skewness and kurtosis for TIIEHL-TL-WL distribution

Figure 10: Plots of the pdf and hrf for the TIIEHL-TL-WP distribution

4. Simulation Study

In this section, the performance of the TIIEHL-TL-WL distribution is examined by conducting various simulations
for different sizes (n=25, 50, 100, 200, 400 and 800). We simulate N = 1000 samples for the true parameters values
given in Table 2. The table lists the mean MLEs of the model parameters along with the respective bias and root mean
squared errors (RMSEs). The precision of the MLEs is discussed by means of the following measures: mean, mean
square error (MSE) and average bias.
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Figure 11: 3 D Plots of skewness and kurtosis for TIIEHL-TL-WL distribution

The bias and RMSE for the estimated parameter, say, θ̂ , are given by:

Bias(θ̂) =
∑

N
i=1 θ̂i

N
−θ , and RMSE(θ̂) =

√
∑

N
i=1(θ̂i−θ)2

N
,

respectively. The results show that the estimation method used is appropriate for estimating the TIIEHL-TL-WL model
parameters as the means of the parameters tend to be closer to the true parameter values when n increases.

5. Application

In this section, we present two real data examples to demonstrate the importance and applicability of the TIIEHL-
TL-WL distribution. The R software was used for data fitting and model diagnostics. The following goodness-of-fit
statistics Cramer-von-Mises (W ∗) and Andersen-Darling (A∗), -2loglikelihood (-2 log L), Akaike Information Cri-
terion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC), Kolmogorov-
Smirnov (K-S) statistic (and it’s p-value), and sum of squares (SS) are used to assess the performance of the model.
The model with the smallest values of the goodness-of-fit statistics and a bigger p-value for the K-S statistic is regarded
as the best model.

The TIIEHL-TL-WL distribution was compared to its nested models and to the following non-nested models:
type II exponentiated half logistic Weibull (TIIEHLW) distribution by Al-Mofleh et al. (4) with the pdf

fT IIEHLW (x;a,λ ,δ ,γ,) = 2aλδγxγ−1 exp(−δxγ) [1− exp(−δxγ)]λ−1

×

[
1− [1− exp(−δxγ)]λ

]a−1

[
1+[1− exp(−δxγ)]λ

]a+1 ,
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Figure 12: 3 D Plots of skewness and kurtosis for TIIEHL-TL-WL distribution

Table 2: Monte Carlo Simulation Results
(1.5, 1.0, 0.9, 0.6) (1.0, 0.5, 0.5, 1.0) (0.7, 0.4, 0.4, 1.0)

parameter Sample Size Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias
a 25 1.9519 1.8074 0.4519 1.5811 0.9439 0.5811 0.7142 0.5022 0.0142

50 1.9491 1.4855 0.4491 1.3136 0.6695 0.3136 0.8110 1.0306 0.1110
100 1.7883 1.2965 0.2883 1.2610 0.5273 0.2610 0.7431 0.2660 0.0431
200 1.6299 0.8137 0.1299 1.1773 0.3629 0.1773 0.7219 0.1962 0.0219
400 1.5915 0.6830 0.0915 1.1275 0.2876 0.1275 0.7045 0.1395 0.0045
800 1.5061 0.3518 0.0061 1.0643 0.1726 0.0643 0.7030 0.0990 0.0030

b 25 1.3639 1.0016 0.3639 0.4056 0.2439 -0.0943 0.3518 0.3813 -0.0481
50 1.2581 0.7241 0.2581 0.4474 0.2104 -0.0525 0.3186 0.1624 -0.0813
100 1.1998 0.7133 0.1998 0.4516 0.1688 -0.0483 0.3188 0.1349 -0.0811
200 1.0563 0.4182 0.0563 0.4577 0.1595 -0.0422 0.3220 0.1230 -0.0779
400 1.0169 0.3898 0.0169 0.4723 0.1321 -0.0276 0.3305 0.1077 -0.0694
800 0.9833 0.2126 -0.0166 0.5074 0.1090 0.0074 0.3527 0.0827 -0.0472

θ 25 0.7043 0.3329 -0.1956 0.7530 0.3573 0.2530 0.7075 0.4034 0.3075
50 0.7716 0.2709 -0.1283 0.7483 0.3547 0.2483 0.7115 0.4024 0.3115
100 0.7890 0.2659 -0.1109 0.7229 0.3299 0.2229 0.6827 0.3751 0.2827
200 0.8380 0.2141 -0.0619 0.6908 0.3039 0.1908 0.6611 0.3553 0.2611
400 0.8810 0.1298 -0.0189 0.6606 0.2835 0.1606 0.6409 0.3310 0.2409
800 0.8972 0.1220 -0.0027 0.5940 0.2620 0.0940 0.5683 0.2905 0.1683

λ 25 0.8853 0.8499 0.2853 1.5311 0.9999 0.5311 1.2960 0.5125 0.2960
50 0.7385 0.4875 0.1385 1.3954 0.7584 0.3954 1.2479 0.4104 0.2479
100 0.7017 0.3609 0.1017 1.3538 0.5857 0.3538 1.1968 0.3186 0.1968
200 0.6890 0.2650 0.0890 1.2874 0.4607 0.2874 1.1580 0.2651 0.1580
400 0.6571 0.1780 0.0571 1.2136 0.3445 0.2136 1.1145 0.1936 0.1145
800 0.6535 0.1411 0.0535 1.0962 0.1973 0.0962 1.0716 0.1362 0.0716
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for a,λ ,δ ,γ > 0 and x > 0,
type II general inverse exponential Burr III (TIIGIE-BIII) distribution by Jamal et al. (13) with the pdf

fT IIGIE−BIII (x;λ ,θ ,c,k) =
λθckx−c−1 (1+ x−c)

−k−1
[
1− (1+ x−c)

−k
]θ−1

(
1−
[
1− (1+ x−c)−k

]θ
)2

× exp

−λ

[
1− (1+ x−c)

−k
]θ

1−
[
1− (1+ x−c)−k

]θ

 ,

for λ ,θ ,c,k > 0 and x > 0, and
type II general inverse exponential Lomax (TIIGIE-Lx) distribution by Hamedani et al. (12) with the pdf

fT IIGIE−Lx(x;λ ,α,a,b) = λα
a
b

(
1+

x
b

)−(a+1)(
1+

x
b

)a(α+1)

× exp
(

λ

(
1−
(

1+
x
b

)aα))
,

for λ ,α,a,b > 0 and x > 0.
Application results are shown in Tables 3 and 4. Histogram of data, fitted densities and probability plots are shown in
Figures 13 and 14.

5.1. Survival Times (in years)

The first real data set is a subset of data reported by Bekker et al. (7) which corresponds to the survival times (in
years) of a group of patients given chemotherapy treatment alone. The data consisting of survival times (in years) for
46 patients are:
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529,
0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863,
1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658,
3.743, 3.978, 4.003, 4.033.

From the results in Table 3, we conclude that the TIIEHL-TL-WL distribution is the “best” model compared to the

Table 3: MLEs and goodness-of-fit statistics
Estimates Statistics

Model a b θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value
TIIEHL-TL-WL 3.2823 ×10−01 1.4055 1.0674 ×10−06 1.0753 114.412 122.412 123.412 129.6387 0.0556 0.3916 0.0960 0.7647

(1.1778 ×10−01) (7.1513 ×10−10) (1.8747 ×10−01) (2.6972 ×10−01)
TIIEHL-TL-WL(1, b, θ , λ ) 1 1.1021 1.3610 ×10−10 6.8916 ×10−01 196.9675 202.9643 203.5497 208.3843 0.0613 0.4242 0.5308 2.321 ×10−12

- (1.5849 ×10−01 ) (1.8371 ×10−03) (7.1734 ×10−02)
TIIEHL-TL-WL(a, 1, θ , λ ) 9.7192×10−01 1 1.9653×10−10 2.4731 ×10−01 268.0722 274.073 274.6584 279.493 0.0571 0.4111 0.7854 2.2×10−16

(1.4490×10−01) - (2.2104×10−03) (3.4972×10−02)
TIIEHL-TL-WL(a, b, θ , 1) 9.9680×10−01 1.9004 2.7632×10−09 1 174.8767 180.8763 181.4617 186.2963 0.0596 0.4164 0.3571 1.21×10−05

(2.2545×10−01) (3.8360×10−10) (8.1565×10−03) -
TIIEHL-TL-WL(1, 1, θ , λ ) 1 1 16.3267 ×10−10 7.0003 ×10−02 385.1095 389.1099 389.3956 392.7232 0.0598 0.4362 0.8895 2.2 ×10−16

- - (4.1664×10−03) (1.0384 ×10−02)
TIIEHL-TL-WL(1, b, θ , 1) 1 2.8752 1.4472×10−08 1 166.6634 170.6634 170.9491 174.2767 0.0565 0.4008 0.3138 0.0002

- (3.7626 ×10−01 ) (2.1368 ×10−02) -
TIIEHL-TL-WL(a, 1, θ , 1) 9.9617×10−01 1 4.3253×10−10 1 211.5891 215.5888 215.8745 219.2021 0.0785 0.5277 0.4819 3.87×10−10

(1.4850×10−01) - (3.4541×10−03) -
λ θ c k

TIIGIE-BIII 17.0303 1.1525 1.3717 0.0720 119.7969 127.7969 128.7969 135.0236 15.8450 90.2978 0.9901 2.2×10−16

(0.0038) (0.5246) (0.6776) (0.0967)
a λ δ γ

TIIEHLW 3.5837×1002 1.1514 12.4872×10−03 9.1589×10−01 116.2558 124.2558 125.2558 131.4824 0.0811 0.5427 0.1094 0.6152
(1.6288×10−03) (1.7314) (2.2467×10−02) (1.3684)

λ α a b
TIIGIE-Lx 6.8295 3.7824×1004 9.1447 ×10−02 3.5879×1004 115.9789 123.9789 124.9789 131.2055 0.0882 0.5867 0.1164 0.5365

(1.1302 ×1001) (1.9479 ×10−07) (1.3345×10−01) (4.0338×10−07)

selected models since it has the lowest values for the goodness-of-fit statistics −2logL, AIC, AICC, BIC, A∗, W ∗ and
K-S (and the largest p-value for the K-S statistic). Also, the plots in figure 13 show that the TIIEHL-TL-WL fitted the
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data better than the other models of comparison and also has the smallest SS value, hence termed the better model.

Figure 13: Fitted pdfs and probability plots for survival times (in years) data set

5.2. Time to Failure of Kevlar 49/epoxy Data

The second data is concerned with the study of the lifetimes of kevlar 49/epoxy spherical pressure vessels that are
subjected to a constant sustained pressure until vessel failure, commonly known as static fatigue or stress-rupture. The
data set consists of 101 observations of stress-rupture life of kevlar 49/epoxy strands which are subjected to constant
sustained pressure at the 90% stress level until all have failed, so that the complete data set with the exact times of
failure is recorded. These failure times in hours, are originally given by Barlow et al. (6). The data are
0.01,0.01,0.02,0.02,0.02,0.03,0.03,0.04,0.05,0.06,0.07,0.07,0.08,0.09,0.09, 0.10,
0.10,0.11,0.11,0.12,0.13,0.18,0.19,0.20,0.23,0.24,0.24,0.29,0.34,0.35, 0.36,0.38,
0.40,0.42,0.43,0.52,0.54,0.56,0.60,0.60,0.63,0.65,0.67,0.68,0.72, 0.72,0.72, 0.73,
0.79,0.79,0.80,0.80,0.83,0.85,0.90,0.92,0.95,0.99,1.00,1.01, 1.02,1.03, 1.05,1.10,
1.10,1.11,1.15,1.18,1.20,1.29,1.31,1.33,1.34,1.40,1.43, 1.45,1.50, 1.51,1.52,1.53,
1.54,1.54,1.55,1.58,1.60,1.63,1.64,1.80,1.80,1.81, 2.02,2.05, 2.14, 2.17,2.33,3.03,
3.03,3.34,4.20,4.69,7.89.

Table 4: MLEs and goodness-of-fit statistics
Estimates Statistics

Model a b θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value
TIIEHL-TL-WL 0.3180 0.7098 0.0494 1.2281 206.5335 214.5335 214.9502 224.994 0.1581 0.9407 0.0850 0.4584

(0.1586) (0.2100) (1.2284) (0.2595)
TIIEHL-TL-WL(1, b, θ , λ ) 1 4.3039 3.3319 ×10−05 4.3119 ×10−01 224.1607 230.1607 230.4081 238.006 0.5829 3.1213 0.1752 0.0040

- (5.6589 ×10−01 ) (1.9637 ×10−02) ( 4.8213 ×10−02)
TIIEHL-TL-WL(a, 1, θ , λ ) 9.9909×10−01 1 1.8028×10−09 9.7888 ×10−02 700.859 706.8599 707.1073 714.7052 0.5696 3.0477 0.8371 2.2×10−16

(9.9890×10−02) - (4.4638×10−03) (9.6435×10−03)
TIIEHL-TL-WL(a, b, θ , 1) 9.9787×10−01 9.0097×10−01 1.1956×10−08 1 341.6717 347.6722 347.9196 355.5176 0.1802 1.0344 0.4630 2.2×10−16

(1.6895×10−01) ( 1.3937×10−01) (1.4043×10−02) -
TIIEHL-TL-WL(1, 1, θ , λ ) 1 1 1.4105 ×10−09 7.0003 ×10−02 771.8714 775.8723 775.9948 781.1026 0.5885 3.1505 0.8669 2.2 ×10−16

- - (3.9364×10−03) (6.9093 ×10−03)
TIIEHL-TL-WL(1, b, θ , 1) 1 9.0000×10−01 1.3713×10−08 1 342.503 346.5031 346.6255 351.7333 0.1801 1.0333 0.4638 2.2 ×10−16

- ( 8.1773 ×10−02 ) (1.4051 ×10−02) -
TIIEHL-TL-WL(a, 1, θ , 1) 4.9999×10−01 1 3.4527×10−09 1 214.2777 218.2774 218.3998 223.5076 0.2330 1.2794 0.2026 0.0005

(4.9759×10−02) - (6.9473×10−03) -
λ θ c k

TIIGIE-BIII 5.1829 3.3191×1003 5.9244×10−02 1.0274×1001 233.0062 241.0063 241.4229 251.4667 32.0684 197.6112 0.9981 2.2×10−16

(3.4987) (3.2371×10−04) (9.7386×10−03) (3.3749×10−01)
a λ δ γ

TIIEHLW 0.3523 0.7289 1.8270 1.2123 206.6925 214.6925 215.1092 225.153 0.1673 0.9811 0.0891 0.3978
(0.4424) (0.2131) (3.1301) (0.2386)

λ α a b
TIIGIE-Lx 1.7010×1002 1.0186×10−03 9.0000 9.1000×10−01 221.7345 229.7345 230.1511 240.1949 0.4843 2.6166 0.1706 0.0056

(7.5375 ×10−07) (2.1156×10−04) (1.0787×10−04) (2.5260×10−01)

from the results shown in Table 4, we conclude that the TIIEHL-TL-WL distribution is indeed the “best” model
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compared to several selected models since it is associated with the lowest values for all the goodness-of-fit statistics
(and the largest p-value for the K-S statistic). Also, the plots in figure 14 show that the TIIEHL-TL-WL fitted the data
better than the other models of comparison and also has the smallest SS value.

Figure 14: Fitted pdfs and probability plots for time to failure of kevlar 49/epoxy data set

5.3. Failure Times of 50 Components Data Set

The third data set taken from Murthy et al. (19) represents the failure times of 50 components (per 1000 hours). The
data are
0.036,0.148,0.590,3.076,6.816,0.058,0.183,0.618,3.147,7.896,0.061,0.192,0.645,
3.625,7.904,0.074,0.254,0.961,3.704,8.022,0.078,0.262,1.228,3.931,9.337,0.086,
0.379,1.600,4.073,10.940,0.102,0.381,2.006,4.393,11.020,0.103,0.538,2.054,4.534,
13.880,0.114,0.570,2.804,4.893,14.73,0.116,0.574,3.058,6.274,15.08.

Table 5: MLEs and goodness-of-fit statistics
Estimates Statistics

Model a b θ λ −2log L AIC AICC BIC W ∗ A∗ K-S p-value
TIIEHL-TL-WL 0.0896 1.0133 0.9023 0.9389 200.1913 208.1913 209.0802 215.8394 0.1179 0.7430 0.1157 0.479

(0.1290) (0.3564) (0.3241) (0.3977)
TIIEHL-TL-WL(1, b, θ , λ ) 1 1.1021 3.7550 ×10−10 3.9163 ×10−01 323.7181 329.7176 330.2394 335.4537 0.1505 0.9358 0.5971 8.882×10−16

- (1.5167×10−01 ) (2.8821 ×10−03) (3.6788×10−02)
TIIEHL-TL-WL(a, 1, θ , λ ) 9.4878×10−01 1 3.8253×10−09 2.4777×10−01 340.7781 346.778 347.2997 352.514 0.1606 0.9952 0.7332 8.882×10−16

(1.4217×10−01) - (9.7940×10−03) (3.1658×10−02)
TIIEHL-TL-WL(a, b, θ , 1) 8.5440×10−01 9.2572×10−01 3.0344×10−09 1 546.6781 552.6787 553.2005 558.4148 0.3004 2.3604 0.4657 1.849×10−10

(1.9039×10−01) (2.0649×10−01) (9.2514×10−03) -
TIIEHL-TL-WL(1, 1, θ , λ ) 1 1 1.2491 ×10−09 7.0003×10−02 459.5549 463.5551 463.8104 467.3792 0.1758 1.0886 0.8858 8.882×10−16

- - (7.2458×10−03) (9.7717×10−03)
TIIEHL-TL-WL(1, b, θ , 1) 1 2.0371 0.0001 1 606.0939 610.0939 610.3492 613.9179 0.1176 0.8470 0.4614 2.909 ×10−10

- (0.2601) (0.1831) -
TIIEHL-TL-WL(a, 1, θ , 1) 4.7096×10−01 1 4.9115×10−09 1 326.3046 330.307 330.5623 334.131 0.1504 0.9845 0.3885 2.628×10−07

(6.6607×10−02) - (1.0310×10−02) -
λ θ c k

TIIGIE-BIII 1.4492 1.1742×1003 7.4801×10−02 9.9836 204.9782 212.9781 213.8679 220.6262 17.9579 99.9618 0.9813 8.882×10−16

(2.4554) (1.9884×10−03) (2.3451×10−02) (1.3601)
a λ δ γ

TIIEHLW 1.0704 1.5713×10−01 8.9786×10−05 3.5666 201.4852 209.4852 210.3741 217.1333 0.1193 0.8021 0.1360 0.2865
(7.5006×10−04) (1.8898×10−02) (4.5116×10−05) (8.8732×10−04)

λ α a b
TIIGIE-Lx 1.4663×10−03 1.6231×1001 4.0485×10−02 1.2245×10−04 204.6059 212.6059 213.4948 2 220.254 0.1517 0.9504 0.1252 0.3812

(8.1400×10−03) (1.2061×10−05) ( 4.8355×10−03) (9.8404×10−04)

Furthermore, from the results shown in Table 5, we conclude that the TIIEHL-TL-WL distribution is indeed the “best”
model compared to several selected models since it is associated with the lowest values for all the goodness-of-fit
statistics (and the largest p-value for the K-S statistic). Also, the plots in figure 15 show that the TIIEHL-TL-WL fitted
the data better than the other models of comparison and also has the smallest SS value.
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Figure 15: Fitted pdfs and probability plots for failure times of 50 components data set

Table 6: Likelihood ratio test results
Survival Times (in years) Time to failure of kevlar 49/epoxy

Model d f χ2(p− value) χ2(p− value)
TIIEHL-TL-WL(1, b, θ , λ ) 1 82.5525(<0.00001) 17.6272(0.00003)
TIIEHL-TL-WL(a, 1, θ , λ ) 1 153.6602(<0.00001) 494.3255(<0.00001)
TIIEHL-TL-WL(a, b, θ , 1) 1 60.4647(<0.00001) 135.1382(<0.00001)
TIIEHL-TL-WL(1, 1, θ , λ ) 2 270.6975(<0.00001) 565.3379(<0.00001)
TIIEHL-TL-WL(1, b, θ , 1) 2 52.2514(<0.00001) 135.9695(<0.00001)
TIIEHL-TL-WL(a, 1, θ , 1) 2 97.1771(<0.00001) 7.7442(0.0208)

Table 7: Likelihood ratio test results
Failure Times of 50 Components Data Set

Model d f χ2(p− value)
TIIEHL-TL-WL(1, b, θ , λ ) 1 123.5628(<0.00001)
TIIEHL-TL-WL(a, 1, θ , λ ) 1 140.5868(<0.00001)
TIIEHL-TL-WL(a, b, θ , 1) 1 346.4868(<0.00001)
TIIEHL-TL-WL(1, 1, θ , λ ) 2 259.3636(<0.00001)
TIIEHL-TL-WL(1, b, θ , 1) 2 405.9026(<0.00001)
TIIEHL-TL-WL(a, 1, θ , 1) 2 126.1133(<0.00001)

5.4. Likelihood Ratio Test

The likelihood ratio test results in Table 6 and 7 indicates that the TIIEHL-TL-WL performs better than its nested
models at 5% level of significance, since all p-values are less than 0.05 among all the data sets considered.

6. Conclusion

A new class of distributions called the type II exponentiated half-logistic Topp-Leone-G power series (TIIEHL-TL-
GPS) class of distributions is introduced. Some mathematical properties including moments and moment generating
function, order statistics, entropy and quantiles are provided. Model parameters are estimated using the maximum
likelihood method and the performance of the estimates is assessed by means of a simulation study. The potentiality
of the new model is demonstrated by means of three real data sets.

Type II Exponentiated Half-Logistic-Topp-Leone-G Power Series Class of Distributions with Applications 907



Pak.j.stat.oper.res. Vol.17 No.4 2021 pp 885-909 DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3775

Appendix

The following URL contains the appendix material https://drive.google.com/file/d/1TTrilDRb5cFul49QiVl7XwTMtV6wKMZx/
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