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Abstract 

 

We propose a new two-parameter discrete model, called discrete Type-II half-logistics exponential (DTIIHLE) 

distribution using the survival discretization approach. The DTIIHLE distribution can be utilized to model COVID-

19 data. The model parameters are estimated using the maximum likelihood method. A simulation study is 

conducted to evaluate the performance of the maximum likelihood estimators. The usefulness of the proposed 

distribution is evaluated using two real-life COVID-19 data sets. The DTIIHLE distribution provides a superior fit 

to COVID-19 data as compared with competitive discrete models including the discrete-Pareto, discrete Burr-XII, 

discrete log-logistic, discrete-Lindley, discrete-Rayleigh, discrete inverse-Rayleigh, and natural discrete-Lindley.  
 

Key Words: COVID-19 data; Discretization; maximum likelihood estimation; type II half logistics exponential; 

simulations 
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1. Introduction  

In late 2019, a novel coronavirus disease (COVID-19) was first reported in China and has been announced as an 

epidemic by the World Health Organization (WHO) (Lee et al., 2020). The epidemic has mostly been controlled in 

China since March 2020 but continues to inflict public health and socioeconomic situations in all other countries of 

the world. One of the major reasons for controlling the disease is China’s strategy of effective use of its health care 

system and publicity of awareness programs among people which played a vital role in the control of the COVID-19 

pandemic. However, the major source of its rapid spread is human-to-human contact.  

 

It is well recognized that the life duration in the real world is related to continuous non-negative lifetime distributions. 

However, it is sometimes uneasy to obtain the samples from a continuous distribution. The observed data obtained are 

discrete because they are usually measured at only a finite number of decimal places and can not assume all points 

within an interval. When measures are taken on a continuous (ratio or interval) scale, the discrete distributions are 

more appropriate for such observations. Therefore, it is rational to assume that these observations are from a 

discretized distribution which is constructed from a continuous distribution same (Chakraborty, 2015). 
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During the last few decades, many continuous lifetime distributions have been proposed and studied. 

However, research work on discrete distributions is not widely addressed comparatively to continuous distributions. 

The discretization of continuous lifetime models has been applied to derive discrete lifetime distributions. The 

discretization of continuous distributions keeps similar functional form of the survival function (SF), as well as 

resulting in many reliability properties which remain the same (Nakagawa and Osaki, 1975).   

 

Recently, the methods of generating discrete analogues of continuous distributions have been considered by 

several authors. For example, the infinite series discretization method (Good, 1953; Kulasekera and Tonkyn, 1992; 

Kemp,1997; Sato et al., 1999), survival discretization approach has an interesting feature of keeping the original 

functional form of SF (Nakagawa and Osaki, 1975), hazard function discretization approach (Stein, 1984), compound 

two-phase method (Chakraborty, 2015), reversed hazard function discretization method (Ghosh et al., 2013). 

 

Some notable recent proposed discrete distributions include discrete Weibull (Nakagawa and Osaki, 1975), 

discrete skew-laplace (Kozubowski and Inusah, 2006), discrete-laplace (Inusah and Kozubowski, 2006), discrete-

Maxwell (Krishna and Pundir, 2007), discrete-Burr (Krishna and Pundir, 2009), discrete inverse-Weibull (Jazi, 2010), 

discrete-Lindley (Ojeda, 2011), discrete-gamma (Chakraborty and Chakravarty, 2012), discrete Burr-III (Al-Huniti, 

2012), discrete inverse-Rayleigh (Hussain and Ahmad, 2014), discrete generalized-Rayleigh (Alamatsaz et al., 2016), 

natural discrete-Lindley (Al-Babtain et al., 2020), transmuted record type geometric (Almazah et al., 2021), discrete 

inverted Topp-Leone (Eldeeb et al., 2021), and uniform Poisson–Ailamujia (Aljohani et al., 2021), among many 

others. 

 

The main objective of this article is to provide a new flexible two-parameter discrete model, called the 

discrete type-II half-logistics exponential (DTIIHLE) distribution using the survival discretization approach. The 

DTIIHLE distribution can be utilized to model over-dispersed count data sets. Its hazard rate function (HRF) can be 

decreasing or unimodal. We derive some of its properties in explicit forms such as the quantile function (QF), moments 

and probability generating function (PGF). The two parameters are estimated via the maximum likelihood (ML) and 

a simulation study is conducted to explore the performance of the ML estimators. The importance of the newly 

DTIIHLE distribution is illustrated by analyzing two real-life COVID-19 data sets which represent the number of 

COVID-19 deaths in Pakistan and Saudi Arabia. 

 

The rest of the article is structured as follows. In Section 2, the DTIIHLE distribution is defined with some 

plots of its probability mass function (PMF) and HRF. Some properties of the DTIIHLE distribution are provided in 

Section 3. The ML approach is adopted to estimate the DTIIHLE parameters in Section 4. Simulation results are 

conducted to explore the behavior of the introduced estimators in Section 5. To validate the use of DTIIHLE 

distribution in fitting real-life count data, two sets of data from medicine field are fitted in Section 6. Finally, some 

conclusions are presented in Section 7. 

 

2. The DTIIHLE Distribution 

The SF of type II half-logistic exponential (TIIHLE) distribution (Elgarhy et al., 2019) takes the form 

𝑆(𝑥) =
1 − (1 − 𝑒−𝛿 𝑥)

𝜆

1 + (1 − 𝑒−𝛿 𝑥)𝜆
, 𝑥 > 0,   𝛿, 𝜆 > 0,                                                                           (1) 

where 𝛿 is scale and 𝜆 is the shape parameters.  

The probability density function of the TIIHLE distribution is 

𝑓(𝑥) =  
2 𝛿 𝜆𝑒−𝛿 𝑥(1 − 𝑒−𝛿 𝑥)

𝜆−1

[1 + (1 − 𝑒−𝛿 𝑥)𝜆]2
,                                                                                       (2) 
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A discrete analog of any continuous random variable can be obtained using different discretization approaches. A 

review on such discretization techniques can be explored in Chakraborty (2015). The most common discretization 

method is the one preserving the functional form of the SF. Let 𝑋 be a continuous random variable (RV) with 

SF 𝑆(𝑥). The corresponding PMF of a discrete RV reduces to   

𝑃(𝑋 =  𝑥) =  𝑆 (𝑥) −  𝑆 (𝑥 + 1), 𝑥 = 0,1,2,3, …                                   (3) 

To this end, we apply this discretization method of the continuous TIIHLE distribution to generate the corresponding 

DTIIHLE model which is defined by the PMF 

𝑃(𝑥) =
2[(1 − 𝜃𝑥+1)𝜆 − (1 − 𝜃𝑥)𝜆]

[1 + (1 − 𝜃𝑥)𝜆] [1 + (1 − 𝜃𝑥+1)𝜆]
, 𝑥 = 0,1,2,3, … , 𝜆 > 0, 0 < 𝜃 < 1,       (4) 

where 𝑒−𝛿 = 𝜃 and 0 < 𝜃 < 1.  

The corresponding cumulative distribution function (CDF), 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), of DTIIHLE distribution takes the 

form  

𝐹(𝑥) = 1 − 𝑃(𝑋 > 𝑥) =
2(1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
.                                                                 (5) 

From Equation (5), one can easily derive the QF as follows 

𝑥𝑝 =

log (1 − (
𝑝

2 − 𝑝)

1
𝜆

)

log 𝜃
, 0 < 𝑝 < 1                                                                       (6) 

The SF and HRF of the DTIIHLE model are given as  

𝑆(𝑥) =
1 − (1 − 𝜃𝑥+1)𝜆

 1 + (1 − 𝜃𝑥+1)𝜆
                                                                                    (7) 

and  

ℎ(𝑥) =
2[(1 − 𝜃𝑥+1)𝜆 − (1 − 𝜃𝑥)𝜆]

[1 + (1 − 𝜃𝑥)𝜆] [1 − (1 − 𝜃𝑥+1)𝜆]
.                                                                           (8) 

The reverse HRF and the second rate of failure of the DTIIHLE model are defined by 

𝑟∗(𝑥) =
𝑃(𝑥)

𝐹(𝑥)
=  

(1 − 𝜃𝑥+1)𝜆 − (1 − 𝜃𝑥)𝜆

(1 − 𝜃𝑥+1)𝜆[1 + (1 − 𝜃𝑥)𝜆]
 

and  

𝑟∗∗(x) =  log (
{1−[1−𝜃𝑥+1]

𝜆
}{1+[1−𝜃𝑥+2]

𝜆
}

{1+[1−𝜃𝑥+1]𝜆}{1−[1−𝜃𝑥+2]𝜆}
).                   

The recurrence relation which can be used to generate probabilities from the DTIIHLE distribution has the form 

𝑃(𝑥 + 1) =  
[1 + (1 − 𝜃𝑥)𝜆][(1 − 𝜃𝑥+2)𝜆 − (1 − 𝜃𝑥+1)𝜆]

[1 + (1 − 𝜃𝑥+2)𝜆] [(1 − 𝜃𝑥+1)𝜆 − (1 − 𝜃𝑥)𝜆]
 𝑃(𝑥). 

The PMF plots for different values of its parameters are presented in Figure 1. The HRF plots are displayed in Figure 

2. The plots reveal that its PMF can be unimodal, as well as its HRF can be decreasing or unimodal. 
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Figure 1: Some plots for the PMF of the DTIIHLE distribution for selected parameters.  

 

 

Figure 2: The HRF plots of DTIIHLE distribution for selected parameters.  

3. The PGF and moments 
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The PGF of the DTIIHLE distribution follows as 

G𝑥(𝑍) = ∑ 𝑍𝑥

∞

𝑥=0

P(𝑥) = ∑ 𝑍𝑥

∞

𝑥=0

 [𝑆(𝑥) − 𝑆(𝑥 + 1)], 

G𝑥(𝑍) = 1 +  (𝑍 − 1) ∑ 𝑍𝑥−1

∞

𝑥=1

 𝑆(𝑥), 

G𝑥(𝑍) = 1 +  (𝑍 − 1) ∑ 𝑍𝑥−1

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
. 

Differentiating G𝑥(𝑍) with respect to 𝑍 and setting 𝑍 = 1, we obtain the mean of DTIIHLE distribution as  

Gʹx (Z) = (1) ∑ 𝑍𝑥−1

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
+ (𝑍 − 1) ∑(𝑥 − 1)𝑍𝑥−2

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
, 

Gʹx (1)  = ∑
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆

∞

𝑥=1

 

Again differentiate 𝐺𝑋
′ (𝑍) with respect to (wrt) 𝑍 and setting 𝑍 = 1, we obtain 

Gʹʹx (1) = 2 ∑(𝑥 − 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
. 

On differentiating Gʹʹx (Z)  wrt Z and setting Z=1, we have 

𝐺ʹʹʹ𝑥 (1) =  3 ∑(𝑥 − 2)

∞

𝑥=1

(𝑥 − 1) 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
. 

On differentiating Gʹʹʹx (Z) wrt Z and putting Z=1, we get 

Gʹʹʹʹx (1) =  4 ∑(𝑥 − 3)(𝑥 − 2)(𝑥 − 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
. 

Moments about the origin can be calculated using the factorial moments as 

𝜇 = 𝐺ʹ𝑥 (1) = ∑
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆

∞

𝑥=1

, 

𝜇2
ʹ =  ∑(2𝑥 − 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
, 

𝜇3
ʹ = ∑(3𝑥2 − 3𝑥 + 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
, 

𝜇4
ʹ = ∑(4𝑥3 − 6𝑥2 + 4𝑥 − 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
. 

Now variance is  
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σ2 = μ2
′  – (μ1

′ )2 =  ∑(2𝑥 − 1)

∞

𝑥=1

 
1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆
− ( ∑

1 − (1 − 𝜃𝑥+1)𝜆

1 + (1 − 𝜃𝑥+1)𝜆

∞

𝑥=1

)

2

. 

The coefficient of skewness and kurtosis can be calculated by the formulae 

𝑆𝐾 =
𝜇3

(𝜎2)
3
2

=
𝜇3

ʹ − 3𝜇2
ʹ μ + 2μ3

(𝜎2)
3
2

 

and 

𝐶𝐾 =
𝜇4

ʹ −4𝜇3
ʹ μ + 6𝜇2

ʹ μ2 − 3μ4

(𝜎2)2
. 

The dispersion index (DI) is defined by 𝐷𝐼 = σ2/𝜇.  

Table 1 shows descriptive measures of the DTIIHLE distribution for different parameter values. One can note that the 

skewness decreases as the value of the shape parameter increases. If the value of the DI is greater than 1, then the 

proposed distribution is applicable for over-dispersed data.  

Table 1: Some descriptive measures of DTIIHLE distribution for selected parameter values.  

(𝜆, 𝜃) Mean Variance Skewness Kurtosis DI 

(0.5,0.2) 0.06844 0.09545 5.66623 44.59604 1.39465 

(0.5,0.5) 0.30866 0.74495 4.22006 27.90377 2.41346 

(0.5,0.7) 0.77976 3.18343 3.81945 23.94728 4.08255 

(0.5,0.9) 3.28509 39.4304 3.57159 21.77556 12.0028 

(1.0,0.2) 0.13654 0.18128 3.84640 22.13221 1.32770 

(1.0,0.5) 0.60670 1.29990 2.87381 15.10421 2.14260 

(1.0,0.7) 1.50133 5.23722 2.67496 14.16982 3.48838 

(1.0,0.9) 6.09633 61.4726 2.60192 14.27673 10.0835 

(1.5,0.2) 0.20394 0.25742 3.01399 14.79993 1.26219 

(1.5,0.5) 0.88562 1.68872 2.30202 11.57471 1.90683 

(1.5,0.7) 2.13358 6.48712 2.23105 12.14343 3.04048 

(1.5,0.9) 8.37513 74.2518 2.23195 13.36564 8.86576 

 

4. Parameter Estimation  

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  be a random sample of size 𝑛 from the DTIIHLE model. Then, the log-likelihood function is given 

by  

𝐿 = 𝑛 ln 2 + ∑ ln((1 − 𝜃𝑥𝑖+1)𝜆 − (1 − 𝜃𝑥𝑖)𝜆)

𝑛

𝑖=1

− ∑ ln[1 + (1 − 𝜃𝑥𝑖)𝜆]

𝑛

𝑖=1

− ∑ ln[1 + (1 − 𝜃𝑥𝑖+1)𝜆]

𝑛

𝑖=1

.                     

The first derivatives wrt 𝜃 and 𝜆 are 

𝜕𝐿

𝜕𝜃
= − ∑

𝑥𝑖  𝜃
𝑥𝑖−1𝜆 (1 − 𝜃𝑥𝑖+1)𝜆 −  𝜆 (𝑥𝑖 + 1) 𝜃𝑥𝑖  (1 − 𝜃𝑥𝑖)𝜆

(1 − 𝜃𝑥𝑖+1)𝜆 −  (1 − 𝜃𝑥𝑖)𝜆
+

𝑛

𝑖=1

∑
𝜆 𝑥𝑖  𝜃

𝑥𝑖−1(1 − 𝜃𝑥𝑖)𝜆−1

1 + (1 − 𝜃𝑥𝑖)𝜆

𝑛

𝑖=1

+ ∑
𝜆 (𝑥𝑖 + 1) 𝜃𝑥𝑖  (1 − 𝜃𝑥𝑖+1)𝜆−1

1 + (1 − 𝜃𝑥𝑖+1)𝜆

𝑛

𝑖=1
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and 

𝜕𝐿

𝜕𝜆
= ∑

(1 − 𝜃𝑥𝑖+1)𝜆 ln(1 − 𝜃𝑥𝑖+1) − (1 − 𝜃𝑥𝑖)𝜆 ln(1 − 𝜃𝑥𝑖 )

(1 − 𝜃𝑥𝑖+1)𝜆 − (1 − 𝜃𝑥𝑖 )𝜆
−

𝑛

𝑖=1

∑
(1 − 𝜃𝑥𝑖)𝜆 ln(1 − 𝜃𝑥𝑖 )

1 + (1 − 𝜃𝑥𝑖)𝜆

𝑛

𝑖=1

− ∑
(1 − 𝜃𝑥𝑖+1)𝜆 ln(1 − 𝜃𝑥𝑖+1)

1 + (1 − 𝜃𝑥𝑖+1)𝜆

𝑛

𝑖=1

. 

The ML estimates (MLEs) of 𝜃 and 𝜆 can be obtained using numerical methods.  

5. Simulation Study 

A comprehensive simulation study has been conducted by generating 10,000 samples of various sample sizes from 

the DTIIHLE distribution. Particularly, we generate the samples using the following combination of parameters (𝜃, 𝜆) 

i.e., (0.50,0.50), (0.50,1.50), (0.50,2.50), (0.50,3.0), (0.80,0.50), (0.80,1.50), (0.50,2.50), (0.80,3.0). 

 The average estimates (MLEs), mean square errors (MSEs), and convergence probabilities are listed in Table 2. The 

MLEs are quite stable and very close to the true values of the parameters. The MLEs are consistent as shown from 

Table 2. 

6. Modeling COVID-19 Data 

In this section, we illustrate the importance of the newly DTIIHLE distribution by utilizing two real-life data sets. We 

compared the fits of the DTIIHLE model with the following competitive distributions: discrete Burr XII (DBXII) and 

discrete Pareto (DPr) (Krishna and Pundir, 2009), discrete log-logistic (DLoL) (Para and Jan, 2016), discrete Rayleigh 

(DR) (Roy, 2004), discrete-Lindley (DL) (Bakouch et al., 2014), discrete inverse-Rayleigh (DIR) (Hussain and 

Ahmad, 2014), discrete Burr-Hutke (DBH) (El-Morshedy et al., 2020), discrete Bilal (DBi) (Altun et al., 2020), and 

natural discrete Lindley (NDL) (Al-Babtain et al., 2020).  

 

The first data refer to number of coronavirus deaths in Pakistan from 19 March 2020 to 30 June 2020. The 

data set is reported at: https://www.worldometers.info/ . The data are: 1,  0,   2,   1,   1,   1,   1,   2,   1,   2,   7,   5,   1,   

7,   6,   1,   6,   6, 4,   4,   4,   1,  20,   5,   2,   3,  15,  17,   7,   8,  25,   8,  25, 11,  25,  16, 16,  12,  11,  20,  31,  42,  32,  

23,  17,  19,  38,  50,  21, 14,  37,  23,  47,  31,  24,   9,  64,   0,  39,  30,  36,  46,  32,  50,  34,  32,  34,  30,  28,  35,  

57,  78, 88,  60,  78,  67,  82,  68,  97,  67,  65, 105,  83, 101, 107,  0,  88, 178, 110, 136,  118, 136, 153, 119,  89, 105,  

60, 148,  59,  73,  83,  49, 137, 91. The second data refer to number of deaths due to coronavirus in Saudi Arabia from 

19 March 2020 to 30 June 2020. The data are: 1, 1, 1, 0, 1, 4, 0, 2, 6, 5, 4, 4, 5, 4, 3, 3, 3, 5, 7, 6, 8, 6, 4, 4, 5, 5, 6, 6, 

5, 7, 6, 9, 3, 5, 8, 5, 5, 7, 7, 8, 7, 9, 9, 10, 10, 10, 7, 9, 9, 9, 10, 9, 10, 10, 8, 9, 10, 12, 13, 15, 11, 9, 12, 14, 16, 17, 22, 

23, 22, 24, 30, 32, 31, 34, 36, 34, 37, 36, 38, 36, 39, 40, 39, 41, 39, 48, 45, 46, 37, 40, 39, 41, 41, 46, 37, 40, 48, 50, 

49.  

The MLEs, standard errors (SE) and 95% confidence intervals (C.I.) for the estimates are listed in Tables 3 

and 5 for the two data sets, respectively. Some goodness-of-fit measures including log-likelihood (ℓ), AIC, BIC and 

KS statistic are presented in Tables 4 and 6 for the respective two data sets. 
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Table 2: Simulation results of selected values of parameters of the DTIIHLE model 

Parameters n 
MLEs MSEs 95% CP 

�̂� �̂� �̂� �̂� �̂� �̂� 

𝜃 = 0.5, 𝜆 = 0.5 

20 0.4105 27.391 0.0651 26.891 0.8125 0.7880 

50 0.4617 1.7259 0.0254 1.2259 0.9082 0.9330 

100 0.4773 0.7310 0.0141 0.2310 0.9187 0.9431 

200 0.4881 0.5408 0.0067 0.0408 0.9351 0.9497 

300 0.4919 0.5251 0.0044 0.0251 0.9393 0.9536 

𝜃 = 0.5, 𝜆 = 1.5 

20 0.4602 3.9690 0.0232 2.4690 0.9003 0.9406 

50 0.4834 1.7708 0.0091 0.2708 0.9296 0.9504 

100 0.4913 1.5882 0.0044 0.0882 0.9418 0.9526 

200 0.4955 1.5433 0.0022 0.0433 0.9458 0.9477 

300 0.4977 1.5251 0.0014 0.0251 0.9459 0.9513 

𝜃 = 0.5, 𝜆 = 2.5 

20 0.4748 3.1482 0.0136 0.6482 0.9141 0.9462 

50 0.4894 2.7216 0.0054 0.2216 0.9358 0.9531 

100 0.4945 2.6044 0.0026 0.1044 0.9433 0.9546 

200 0.4973 2.5500 0.0012 0.0500 0.9478 0.9494 

300 0.4981 2.5334 0.0008 0.0333 0.9497 0.9508 

𝜃 = 0.5, 𝜆 = 3.0 

20 0.4766 3.8646 0.0117 0.8646 0.9227 0.9495 

50 0.4895 3.2622 0.0045 0.2622 0.9363 0.9580 

100 0.4951 3.1189 0.0023 0.1189 0.9379 0.9503 

200 0.4979 3.0570 0.0011 0.0570 0.9503 0.9527 

300 0.4980 3.0427 0.0007 0.0427 0.9439 0.9505 

𝜃 = 0.8, 𝜆 = 0.5 

20 0.7483 0.7667 0.0197 0.2667 0.9316 0.9520 

50 0.7804 0.5426 0.0056 0.0426 0.9452 0.9546 

100 0.7905 0.5189 0.0024 0.0189 0.9440 0.9528 

200 0.7948 0.5103 0.0011 0.0103 0.9530 0.9530 

300 0.7967 0.5076 0.0007 0.0076 0.9468 0.9520 

𝜃 = 0.8, 𝜆 = 1.5 

20 0.7786 1.7279 0.0052 0.2279 0.9374 0.9562 

50 0.7922 1.5826 0.0016 0.0826 0.9446 0.9542 

100 0.7958 1.5415 0.0007 0.0415 0.9508 0.9506 

200 0.7981 1.5179 0.0004 0.0179 0.9496 0.9496 

300 0.7986 1.5150 0.0002 0.0150 0.9502 0.9552 

𝜃 = 0.8, 𝜆 = 2.5 

20 0.7823 2.9864 0.0034 0.4864 0.9436 0.9576 

50 0.7933 2.6488 0.0011 0.1488 0.9490 0.9600 

100 0.7961 2.5810 0.0005 0.0810 0.9490 0.9526 

200 0.7984 2.5409 0.0003 0.0409 0.9494 0.9540 

300 0.7988 2.5312 0.0002 0.0312 0.9488 0.9510 

𝜃 = 0.8, 𝜆 = 3.0 

20 0.7819 3.6572 0.0031 0.6572 0.9434 0.9622 

50 0.7933 3.2203 0.0011 0.2203 0.9438 0.9572 

100 0.7968 3.1042 0.0005 0.1042 0.9456 0.9506 

200 0.7983 3.0493 0.0002 0.0493 0.9542 0.9546 

300 0.7990 3.0328 0.0002 0.0328 0.9506 0.9488 

 

From Tables 4 and 6, it is observed that the DTIIHLE distribution outperforms all other fitted models in 

analyzing number of deaths in Pakistan and Saudi Arabia. It can provide the best fit to the analyzed data among all 

other competitive distributions. Figures 3 and 4 display the PP plots for all the competitive distributions for the two 

data and they support the findings in Tables 4 and 6.  
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Table 3: The MLEs, SE of the competing discrete distributions for the number of deaths in Pakistan 

Model 
𝜃 95% C.I. 𝜆 95% C.I. 

MLE SE  MLE SE  

DTIIHLE 0.9850 0.0024 [0.9803-0.9897] 0.9188 0.1002 [0.7224-1.1151] 

DBXII 0.9206 0.0439 [0.8345-1.0066] 3.9835 2.2732 [0.4719-8.4389] 

DLoL 23.452 3.4905 [16.611-30.294] 1.1582 0.0955 [0.9710-1.3454] 

DL 0.9553 0.0030 [0.9494-0.9612] - - - 

NDL 0.0443 0.0030 [0.0384-0.0502] - - - 

DPr 0.3190 0.0313 [0.2577-0.3803] - - - 

DR 42.402 2.0796 [38.326-46.478] - - - 

DIR 14.286 1.4987 [11.349-17.223] - - - 

DBH 0.9997 0.0016 [0.9966-1.0028] - - - 

DBi 50.692 3.5993 [43.637-57.747] - - - 
 

 

Table 4: The goodness-of-fit criteria of the competing discrete distributions for the number of deaths in Pakistan 

Model ℓ AIC BIC KS 

DTIIHLE -493.94 991.87 997.16 0.4300 

DBXII -541.81 1087.63 1092.91 0.0000 

DLo -503.75 1011.49 1016.78 0.3400 

DL -523.08 1048.16 1050.80 0.0002 

NDL -520.27 1042.54 1045.18 0.0000 

DPr -549.09 1100.19 1102.83 0.0000 

DR -570.36 1142.72 1145.36 0.0000 

DIR -717.98 1437.96 1440.61 0.0000 

DBH -652.19 1306.38 1309.03 0.0000 

DBi -530.64 1063.28 1065.92 0.0001 
 

 

Table 5: The MLEs, SE of the competing discrete distributions for the number of deaths in Saudi Arabia 

Model 
𝜃 95% C.I. 𝜆 95% C.I. 

MLE SE  MLE SE  

DTIIHLE 0.94695 0.00732 [0.9326 - 0.9613] 1.52020 0.19062 [1.1466 - 1.8938] 

DBXII 0.89516 0.05171 [0.7938 - 0.9965] 3.70604 1.90433 [0.0264 - 7.4385] 

DLoL 10.2389 1.20670 [7.8738 - 12.604] 1.67939 0.13983 [1.4053 - 1.9535] 

DL 0.89782 0.00689 [0.8843 - 0.9113] - - - 

NDL 0.10015 0.00678 [0.0869 - 0.1134] - - - 

DPr 0.39185 0.03938 [0.3147 - 0.4690] - - - 

DR 16.5490 0.83194 [14.918 - 18.179] - - - 

DIR 20.0897 2.09370 [15.986 - 24.193] - - - 

DBH 0.99818 0.00444 [0.9895 - 1.0069] - - - 

DBi 21.0474 1.53030 [18.048 - 24.047] - - - 
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Table 6: The goodness-of-fit measures of the competing discrete distributions for the of deaths in Saudi Arabia 

Model ℓ AIC BIC KS 

DTIIHLE -381.06 766.11 771.30 0.0390 

DBXII -432.58 869.15 874.34 0.0000 

DLoL -384.86 773.72 778.91 0.0140 

DL -386.57 775.15 777.74 0.0002 

NDL -385.81 773.62 776.22 0.0000 

DPr -444.56 891.13 893.72 0.0000 

DR -414.96 831.93 834.52 0.0000 

DIR -467.63 937.26 939.85 0.0000 

DBH -505.30 1012.6 1015.2 0.0000 

DBi -388.88 779.77 782.36 0.0001 

 
Figure 3: The PP plots of the competing discrete distributions for the number of deaths in Pakistan 
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Figure 4: The PP plots of the competing discrete distributions for the number of deaths in Saudi Arabia 

7. Conclusion  

In this article, a two-parameter discrete distribution is proposed to model COVID-19 new cases in Pakistan and Saudi 

Arabia, called the discrete Type-II half-logistics exponential (DTIIHLE) distribution. Several mathematical properties 

of the DTIIHLE model are discussed. Its parameters have been estimated by using the maximum likelihood approach. 

A simulation study was carried out to check the performance of parameters based on MSEs and CP. The DTIIHLE 

model is utilized to model two real-life data sets about the number of COVID-19 deaths in Pakistan and Saudi Arabia 

due to COVID-19. The newly DTIIHLE model is important to elaborate on the existing discrete distributions in the 

literature. It has the lowest goodness-of-fit measures values among all discrete competing models. Hence, the proposed 

model is best among competitive distributions.  
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