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Abstract 

Analysis of experimental data from Bayesian point of view has been considered. Appropriate methodology 

has been developed for application into designed experiments. Normal-Gamma distribution has been 

considered for a prior distribution. Developed methodology has been applied to real experimental data 

taken from long term fertilizer experiments.  
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1.   Introduction 

Bayesian inference is an approach to statistics in which all forms of uncertainty are 

expressed in terms of probability. A Bayesian approach to a problem starts with the 

formulation of a model that is adequate to describe the situation of interest. As opposed to 

the point estimators used by classical statistics, Bayesian statistics is concerned with 

generating the posterior distribution of the unknown parameters given both the data and 

appropriate prior density for the parameters. As such, Bayesian statistics provides a much 

more complete picture of the uncertainty in the estimation of the unknown parameters, 

especially after the confounding effects of nuisance parameters are removed. Bayesian 

statistics has the advantage, in comparison to traditional statistics, of being easily 

established and derived. Intuitively, methods become apparent which in traditional 

statistics give the impression of arbitrary computational rules. For more details one may 

refer to Savage (1972), Raiffa and Schlaifer (1961), DeGroot (1970) and Berger (1985).   

 

Bayesian ideas have also been introduced in recent literature on design of experiments. 

Bayesian design is an exciting and fast-developing area of research. Like most areas of 

Bayesian statistics, Bayesian experimental design has gained popularity in the past two 

decades.  In classical theory, the experimental data are analyzed on the basis of observed 

data. Inferences are drawn after performing analysis of variance. If however some 

information in the form of distribution about the parameters of the model is available that 

is not generally utilized in the classical analysis of variance method. Bayesian approach 

gives an opportunity to exploit this information to improve the overall conclusions. This 

prior information may be extracted from the past experiments. The situation where 

experiments are conducted over the years, analysis of the data can be improved by using 

the previous year’s data. A Bayesian approach to design gives a mechanism for formally 

mailto:lmbhar@gmail.com


Sanjay Kumar Prasad, Lalmohan Bhar 

Pak.j.stat.oper.res.  Vol.IX  No.2 2013  pp225-239 226 

incorporating such information into the design process. By including prior data in the 

current analysis, the researcher avails himself of additional degrees of freedom that can 

reduce inference error risk in the current experiment and increase the precision with 

which results can be reported. That is to say, such a strategy has the potential to 

significantly reduce uncertainty, thereby improving the quality of the final result. 

 

A Bayesian approach to design gives a mechanism for formally incorporating prior 

information into the design process. The subject design of experiments has two major 

components; first component deals with designing the experiment and the second 

component deals with analysis of the data generated from design of experiments. A lot of 

literature is available on designing the experiments from Bayesian point of view. Most of 

the research work centers around obtaining optimal designs.  For an excellent review on 

Bayesian design of experiments one may refer to Chaloner and Verdinelli (1995). It 

seems that not much attention has been paid to the analysis component. Apart from 

Flournoy (1993), there are no “true case studies” that we know of where Bayesian ideas 

have been formally applied to the design of an actual scientific experiment before it is 

done. The Bayesian analysis of experimental data is considered by Broemeling (1985) 

and Box and Tiao (1973). The method of Box and Tiao (1973) uses numerical integration 

to isolate the marginal posterior distribution of each of the variance components, where 

as method of Broemeling (1985) is based on analytical approximation. Tsutakawa (1972) 

argued that when Bayesian inference is considered appropriate, it may be desirable to use 

two separate priors, one for constructing designs and the other for subsequent inference.  

Etzione and Kadane (1993) and Lindley and Singpurwalla (1991) considered the use of 

informative priors for design and noninformative priors for the subsequent statistical 

analysis. Wang and Hsu (2006) gave Bayesian analysis of the additive mixed model for 

Randomized Block Designs. This paper deals with the Bayesian analysis of the additive 

mixed model experiments. 

 

In the present study an attempt has been taken to explore the use of Bayesian techniques 

for analyzing experimental data. Appropriate methodologies for analyzing experimental 

data from Bayesian point of view have been developed. Before considering the analysis 

of experimental data, the concept of Bayesian inference has been introduced. Bayesian 

concept is first explained then its extension to general linear model context is discussed. 

Then how this concept is used in designed experiments has been explained. Some 

examples are provided to explain the concept of Bayesian analytical technique for 

experimental data. In Section 2 concept of Bayesian inference has been introduced. 

Application of Bayesian inference to general linear model has also been discussed in this 

Section. Appropriate modification has been done for application into designed 

experiments. This is the subject matter of Section 3. In Section 4, application of the 

Bayesian methodologies is considered. Some real experimental data from long term 

fertilizer experiments have been taken for this purpose. The paper ended with a Section 

on Discussion. 

2.   Bayesian Inference 

When one does Bayesian statistical inference, one is using prior information and sample 

data in order to find the values of the parameters in the model which generated the data. 

The components of statistical inference consist of the prior information, the sample data, 
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calculation of the posterior density of the parameters and sometimes calculation of the 

predictive distribution of future observations. The prior information is expressed by a 

probability density ( )  , of the parameter   of the model f( | ), ,   x x s , where f is 

density of a random variable x, s is the sample space and  is the parametric space. The 

information in the data x = 1 2( , ,..., )nx x x  ,  where x1, x2, …, xn, is a random sample from 

a population with density f is contained in likelihood function ( | )L  x , which is the joint 

density of the sample data.  Then this is combined with the prior density of , by Bayes’ 

theorem, and gives the posterior density of . Thus one may describe inference problem 

in terms of (S, , ( ), ( | ))f   x  and this problem is solved once the posterior density   

( | ) ( | ) ( )L    x x             (2.1) 

is calculated. 

 

From the posterior density one may make inference for   by examining the posterior 

density. Some prefer to give estimates of   either in point or interval estimates which are 

computed from the posterior distribution. If   is one dimensional, a plot of its posterior 

density tells one the story about . But if   is multidimensional one must be able to 

isolate those components of θ (now it is a vector of parameters) in which one is 

interested. Posterior inference mainly involves estimation, tests of hypothesis and 

prediction of future observation. In design of experiments, we are mainly interested in 

testing the significance difference between a pair of treatment effects. Thus our main 

concern here is tests of hypothesis. Regardless of what particular activity is contemplated, 

one must first find the posterior density of θ .Often all the components of θ  are of 

interest, but sometimes some of these components 1θ (say)  are regarded as nuisance 

parameters and the remaining 2θ  are of primary interest. How should one make 

inferences about 2θ ? The Bayesian will use  

1

2 2 1 2 1 2 2 1 2( | ) ( , | ) ( )d 



      θ x θ θ x θ θ   (2.2) 

2  is called the marginal posterior density of 2θ , and as with any posterior density 

function it may be used to estimate and test hypothesis concerning 2θ .   

2.1 Testing of Hypothesis 

To test hypothesis about the parameter 2θ , one perhaps would find a (1 ) Highest 

Posterior Density (HPD), 0 1  , region 2R ( ) θ  from 2 2( | ) θ x . Such a region has a 

property that if 2 2' R ( )θ θ  and 2 2'' R ( )θ θ , then 2 2 2 2( ' | ) ( '' | )  θ x θ x , that is 

parameter values inside the region have larger posterior probability density than those 

excluded from the region which must satisfy 

2 2

2 2 2

( )

1 ( | )

R

d



 



  
θ

θ x θ ,      (2.3) 

that is the HPD region has posterior probability content  1 . To test the hypothesis 

0 2 20:H θ θ  versus 1 2 20:H θ θ  one rejects 0H  if 20θ  is excluded from the region.   
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2.2 Bayesian Analysis in General Linear Model [Broemeling, 1985] 

Let θ  be a 1p  vector of real parameters, '
1 2( , ,..., )Y ny y y  a 1n  vector of 

observations, X a pn  known design matrix. Then the general linear model is  

 Y Xθ e          (2.4) 

where  1~ (0, )e ΙnN  and n Ι  is the precision matrix of e, which has covariance matrix 

2 , Ιn  and 012    is unknown.    

 

Here our objective is to provide inference for θ  and   after observing ( )1 2 ny , y ,..., y s . 

In Bayesian analysis all inferences are based on the posterior distribution ofθ . Suppose 

one’s prior information about θ  is represented by a probability density function 

 θ θ R p( , ), , 0,    then Bayes’ theorem combines this information with the 

information contained in the sample. The likelihood functions for θ  and   is  

   2

2


     θ s Y Xθ Y Xθn /L( , | ) exp ' ,    (2.5) 

 

The likelihood function is one’s sample information about the parameters and is the 

conditional density function of the sample random variables given θ  and  . Bayes’ 

theorem gives the conditional density of  θ  given s as 

( , | ) ( , | ) ( , ),θ s θ s θL            (2.6) 

 

The posterior density of θ  is ( , | ) θ s and represents one’s knowledge of  θ  and after 

observing the sample s. On the other hand our information about θ  and  before s is 

observed is contained in the prior density. 
 

From (2.6) the posterior density can be written as  

( , | ) K.L( , | ) ( , ),θ s θ s θ           (2.7) 

where K is a normalizing constant and is given by 

1

0

K


    θ θ θL( , | ) ( , )d d ,   

pR

s        (2.8) 

which is the marginal probability density of Y. 

2.2.1 Normal-Gamma Prior Density 

The prior information about θ  and   can be given in many ways. In the present study we 

consider the case when ( , )θ  is Normal-Gamma prior density, i.e., prior distribution of  

θ  is Normal and that of    is Gamma, i.e., 

1 2( , ) ( | ) ( ),θ θ             (2.9) 

where  

2
1

2
 θ θ -μ)'P(θ -μp /( | ) exp ( )


   ,     (2.10) 
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μ  is a 1p  given vector and Ρ  is known pp  positive definite matrix. Thus 1  is 

conditional density of  θ  given   and is normal with mean vector μ  and precision matrix

Ρ . The marginal prior density of    is gamma with parameters 0  and .0  

1
2( ) exp ,            (2.11) 

 

Since (2.9) is the joint prior density of  θ  and , the marginal density of  θ  is  

1

0

( ) ( , )d



 θ θ     

(( 2 ) / 2 1)

0

exp [2 ( )]
2


    θ -μ)'Ρ(θ -μp d 

    

( 2 ) / 2[2 ( ] ,   θ-μ)'Ρ(θ-μ) p        (2.12) 

which is multidimensional t density with 2p   degrees of freedom, location vector μ  

and precision matrix 1(2 )(2 ) Ρ  .   

 

With regard to the information about    

2 1( )      with  E( )





  and 
2

V( )





      (2.13) 

 

These two equation together with  ( )E θ μ  and 1 1( ) 2 ( 2 2)θ P    D n , which are 

the mean vector and dispersion matrix of  θ  assist one in choosing the four 

hyperparameters for the prior distribution of θ  and  . 

 

By using the Normal-Gamma density as prior for the parameters, one cannot stipulate 

one’s prior information about θ  separately from that of .The parameters of the marginal 

distribution of θ  involves   and  , which are parameters of the prior distribution of  , 

but the marginal prior density of   doesn’t involve parameters of the marginal of θ . The 

parameter μ  is one’s prior mean for θ . Actually Normal-Gamma prior density is a 

member of a conjugate class of distributions. The conjugate families have the advantage 

that one has a scale by which to judge the amount of information added by the sample, 

beyond the amount given a priori. 

2.2.2 Posterior Analysis 

Using Bayes Theorem and using the Normal-Gamma prior density (2.10), the posterior 

density of θ  and is given by 

(( 2 ) / 2 1)( , | ) exp [2 ( ]
2

    θ s θ -μ)'Ρ(θ -μ)+ (Y -Xθ)'(Y -Xθ)n p 
    .  
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Now, completing the square on θ  gives  

(( 2 ) / 2 1) )
( , | ) exp

2 2

 
 

   
  

-1Y'Y -(X'Y +Ρμ)'(X'X+Ρ) (X'Y+Ρμ
θ s n  

      

/ 2 exp [ )
2


  -1θ - (X'X+Ρ) (X'Y+Ρμ)]'(X'X+Ρp  [ )]-1θ-(X'X+Ρ) (X'Y+Ρμ ,  (2.14)  

which is Normal-Gamma density, hence the marginal posterior density of   is gamma 

with parameters  

2( ) /n+2α    and   
2

-1Y'Y - (X'Y +Ρμ)'(X'X+Ρ) (X'Y+Ρμ)
   (2.15) 

 

The marginal posterior density of θ  is found by integrating (2.14) with respect to   and 

yields  

2 2
1

1
1

1

2
  







     
 
 

      
 
     

( ) /
Y'Y (X'Y Ρμ)'(X'X Ρ) (X'Y Ρμ)

(θ | s) [θ (X'X Ρ) (X'Y Ρμ)]'(X'X Ρ)

[θ (X'X Ρ) (X'Y Ρμ)]

n p


  (2.16) 

which is p-dimensional t density with n    degrees of freedom with location vector  

1* ( ' ) ( ' )  μ X X Ρ X Y Ρμ       (2.17) 

and precision matrix 

1 12 2n         D*(θ | s) (X'X Ρ)( )[ Y'Y (X'Y Ρμ)'(X'X Ρ) (X'Y Ρμ)]   (2.18) 

2.2.3    Testing of Hypothesis 

Suppose we are interested in testing the linear combinations of parameters and consider 

the following hypotheses  

 H0: ( )U  θ Aθ b   versus   H1: ( )U  θ Aθ b ; 

where Aθ represents a set of contrasts, A is the matrix of desired contrast of order 

m p . The approach is taken here is based on the Highest Posterior Density (HPD) 

region for θ as discussed earlier.  Since H0 is given in terms of ( )U  θ Aθ b , the 

distribution of )(U θ is denoted by 

1U( ) ~ t [u( ); 2 , *, ( ') ] θ θ Aμ AD*Am n ,     (2.19) 

which is an m-dimensional t distribution. Since )(U θ  has a t distribution, the random 

variable  

1 1G[U( )] [U( ) *]'( ) [U( ) *]   θ θ Aμ AD*A θ Aμm    (2.20) 

has an F distribution with m and 2n    degrees of freedom. Thus (1 ) HPD region 

for U( ) uθ  is given by  

R (u) {u :G(u) F }1 ; 2    m ,n ,     (2.21) 



Bayesian Analysis of Experimental Data 

Pak.j.stat.oper.res.  Vol.IX  No.2 2013  pp225-239 231 

where F ; 2  m ,n  is the upper 100 %  point of the F distribution with m and  2 n  

degrees of freedom. The null hypothesis is rejected if 1b R (u) or when

;G(u) F   m ,  n 2 . 

3.   Bayesian Analysis in Designed Experiments 

Let us consider an additive model   for a block design d (say) as 

ijjiij ey  ,        (3.1) 

where ijy  is the response corresponding to i
th

 treatment in j
th

 block,   is the general 

mean, i  is the i
th

 treatment effect, j  is the  j
th

  block effect, ije  is the error term which 

follows normal distribution with mean 0 and variance 1 , i = 1, 2, …, t  and  

j = 1, 2, …, b. 

 

Equivalently the model (3.1) can be written as  

eδXγX1Y  21  ,       (3.2)  

where Y is a n1  vector of observations, 1X  is n  t incidence matrix of treatments, γ  is 

a  t1 vector of treatment effects,  2X  is a n  b incidence matrix of blocks, δ  is a b1  

vector of block effects, 1  is a unit vector of order n1 and e  is a n1 vector of errors. 

 

We rewrite the model (3.2) as follows  

, Y Xθ e          (3.3) 

where   21 XX1X   and    δγθ  be a 1p  vector of  parameters. It is easy 

to note that the Rank(X) = k =t – b – 1. 

 

Since X is less than full column rank the Bayesian methodologies as described in Section 

2 cannot be applied directly to designed experiments. We, therefore, reparameterized the 

model (3.3) to get full rank model as follows:  

eZαY           (3.4) 

where Z is n k  (k < p) of full rank, α  is 1k   namely, Uθα  where U is  k p  known 

matrix, and as before  ),0(~ 1
nN Ie

 . Thus the contrasts of interest α  can now easily be 

estimated from the model (3.4). To construct Z and U we followed reparameterization 

method proposed by Graybill (1961) as follows: 

 

Since XX  is pp  and symmetric positive semi-definite matrix then there exists a non-

singular pp matrix W* such that   ** XWXW  = 








00

0B
, where B is a k k matrix of 

rank k. If we write  1* WWW  , where  W is p k , then the matrix B would become 
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( ) W X X W . Now let  
1

1 ** UUUW , where U is k p , then pre-multiplying X 

in (3.3) with W* actually lead to estimation of α in (3.4). Thus remarameterization takes 

the following form.  

Z = XW and   Uθα .       (3.5) 

 

Consider the two way additive model (3.3) with p = (t+b+1) parameters where X is of 

rank k = p-2 = t+b-1, then using the above reparametrization procedure we arrive at a full 

rank representation as given in (3.4). Then problem remains to choose α , U and W 

appropriately.  

 

Since our interest is to compare various comparisons among treatment effects as well as 

block effects one may choose U and αas follows: 

1 1

1 2

1

1 2

1

.

.

. α

.

.

.

t t

b b

  

 

 

 

 





  
 

 
 
 
 
   
   

    
     

 
 
 
 
 

 

1

2

3

α α

α

,       (3.6) 

where  111   . This means U must be  

1; 1, 0, 0, ...,0; 1, 0, ...,0

0;1, 1, 0, ..., 0; 0, 0, ...,0

.

.

.

0;0, ... 1, 1, ..... 0

.

.

.

0;0, ... 0; 0, 0, 1, 1

 
 

 
 
 
 
 

  
 

 
 
 
 
 
  

U ,     (3.7) 

which is a pk   matrix. Then we construct matrix U* as 









1U

U
*U  such that U* is of 

full rank, where  U1 is ( ) p k p  matrix.  Now let 1**  UW , where W* = (W, W1), 

then Z = XW and the reparameterization is complete. 
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3.1 Prior: Normal-Gamma Prior Density  

When prior density is Normal-Gamma, that is, 

1 2( , ) ( | ) ( ),α α             (3.8) 

where  

/ 2
1( | ) exp ( ),

2
 α α -μ)'P(α -μk 

   kRα .    (3.9) 

and μ  is a 1k  given vector and Ρ  is known k k  positive definite matrix. Thus 1  is 

conditional density of  α  given   and is normal with mean vector μ  and precision matrix

Ρ . The marginal prior density of    is gamma with parameters 0  and .0  

,exp)( 1

2       0 .       (3.10) 

 

Following the procedures outlined for general linear model in Section 2, we obtain the 

marginal density of  α  as   

( 2 ) / 2[2 ( ] ,   α -μ)'Ρ(α -μ) k        (3.11) 

which is t density with 2p    degrees of freedom, location vector μ  and precision 

matrix 1(2 )(2 ) Ρ  . 

 

Similarly information regarding    is obtained as  

2 1( )   E( )





    and   
2

V( )





 . 

 

These two equation together with  (α)= μE  and 1 1( ) 2 ( 2 2)   α P D n  are used in 

choosing the four hyperparameters for the prior distribution of α  and  . 

3.2 Posterior Analysis 

Following the procedures as outlined in Section 2, density of α  and can easily be 

obtained as  

(( 2 ) / 2 1)( , | ) exp [2 ( ]
2

    α s α -μ)'Ρ(α -μ)+ (Y - α)'(Y - α)k 
   n Z Z ,       

(( 2 ) / 2 1) )
( , | ) exp

2 2

 
 

   
  

-1Y'Y -( 'Y +Ρμ)'( ' +Ρ) ( 'Y+Ρμ
α s n  

   
Z Z Z Z

  

k / 2 exp [ )
2


  -1α - (Z'Z+Ρ) (Z'Y+Ρμ)]'(Z'Z+Ρ   

[ )]-1α -(Z'Z+Ρ) (Z'Y+Ρμ        (3.12) 

which is Normal-Gamma density. 

 

Hence the marginal posterior density of   is gamma with parameters  

( ) / 2n   and 
2


-1Y'Y - (Z'Y +Ρμ)'(Z'Z+Ρ) (Z'Y+Ρμ)

. 
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The marginal posterior density of α  is found by integrating (3.12) with respect to   and 

yields  
( 2 ) / 2

1

1
1

1

2 ' ( ' ) '( ' ) ( ' )

( | ) [ ( ' ) ( ' )]'( ' )

[ ( ' ) ( ' )]

n k  






     
 
 

      
 
     

Y Y Z Y Ρμ Z Z Ρ Z Y Ρμ

α s α Z Z Ρ Z Y Ρμ Z Z Ρ

α Z Z Ρ Z Y Ρμ




   (3.13) 

which is k-dimensional t density with n    degrees of freedom with location vector  

1* ( ' ) ( ' )  α Z Z Ρ Z Y Ρμ  and precision matrix 

1 1*( | ) ( ' )( 2 )[2 ' ( ' ) '( ' ) ( )]D n         α s Z Z Ρ Y Y Z Y Ρμ Z Z Ρ Z'Y Ρμ   

3.3   Testing of Hypotheses 

We are interested to pair wise comparison of treatment means. Thus in particular, we are 

interested to test   0 1 2 tH :  =  = ... = , which is true for 2α 0 . This can be tested 

using the HPD region as discussed in Section 2.  Since the random variable  

1( | ) ( 1) [ ( | )]' ( | )[ ( | )]   2 2 2 2 2 2α s α α s P α s α α sF t E E    (3.14) 

has an F distribution with t-1 and rbt-(b+t-1) degrees of freedom, (1 ) HPD region for 

02α is given by  

R (u) {u :G(u) F }1 ; 2    m ,n ,      (3.15) 

 

Consequently 

2 1 t 1 2E( | ) = ( , , ) *α y φ I φ α  

 

Where 1φ  is t 1 1   matrix of zeros, t 1I  is the identity matrix of order t-1 and 2φ  is a 

zero matrix of order (t 1) (b 1)   . The precision matrix of  2α  is  

1 1
2 1 t 1 2 1 t 1 2P( | ) =[( , , ) ( | )( , , ) '] 

 α y φ I φ P α y φ I φ , 

where F ; 2  m ,n  is the upper 100 %  point of the F distribution with m and  2 n  

degrees of freedom. The null hypothesis is rejected if 1b R (u) or when

;G(u) F   m ,  n 2 . 

4.   Applications 

In this Section we applied the Bayesian methodologies as developed for designed 

experiments to real experimental data.    

 

Data description 

The data pertaining to Long-Term Fertilizer Experiments conducted at Ranchi, India has 

been considered for the present study. The experiment was conducted using a 
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Randomized Complete Block (RCB) design in 10 treatments and 4 replications. The crop 

sequence is Soybeans–Wheat and the data is available from 1979 to 2003. The plot size 

adopted is 100 sq. m. (12.5 m  8.0 m). The details of the treatments are as given in  

Table 1. 

Table 1:   Treatments for Long Term Fertilizer Experiments 

Treatments Treatment details 

T1 50% Optimal NPK 

T2 100% Optimal NPK 

T3 150% Optimal NPK 

T4 100% Optimal NPK + Hand Weeding 

T5 100% Optimal NPK + Lime 

T6 100% Optimal NP 

T7 100% Optimal N 

T8 100% Optimal NPK + FYM 

T9 100% Optimal NPK (Sulphur free) 

T10 Control 

We now consider some examples based on the data generated through this experiment. 

Example 1:   Here yield data on wheat for 2003 data is taken for the Bayesian analysis 

which serves the purpose of providing the likelihood information and the 2002 data 

serves the purpose of providing the prior information. The analysis is done in SAS 

package (SAS, 1990) in Interactive Matrix Language (IML). SAS codes are available 

with the authors and can be obtained on request. First we carry out usual classical 

analysis and then Bayesian analysis is performed. 

Table 2:   Yield of wheat in quintal/hectare year 

Treatments 

2002 2003 

Blocks Blocks 

1 2 3 4 1 2 3 4 

1 22.10 15.90 20.40 20.40 29.15 29.70 32.00 28.30 

2 28.50 27.85 28.50 27.35 38.80 33.20 37.50 40.50 

3 23.85 30.38 30.40 28.55 27.50 42.60 39.00 28.15 

4 33.30 32.30 31.57 30.00 37.90 44.45 39.25 41.15 

5 32.10 40.40 42.50 43.90 37.25 43.20 46.20 48.60 

6 30.30 29.65 33.37 30.25 42.55 33.25 42.91 39.50 

7 0.75 0.50 0.48 0.50 0.90 0.75 2.39 0.80 

8 41.70 42.40 40.50 42.00 43.40 42.10 47.50 51.20 

9 8.35 8.25 10.02 8.43 8.90 12.30 9.74 6.55 

10 3.80 3.43 3.90 3.60 4.20 5.10 5.55 5.80 
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Classical Analysis 

We first conducted usual (classical) analysis of the data. The analysis of variance table is 

given in Table 3.  

Table 3:   Analysis of variance with the original 2003 data 

Source of 

variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

F-value p-value 

Treatment 9 10337.024  1148.558  79.80 <.0001 

Block 3 50.872  16.957  1.18 0.3365 

Error 27 388.621  14.393    

Total 39 10776.519      

 

From the table it is observed that the treatment effects are significant at 5% level of 

significance and block effects are not significant at 5% level of significance. We then 

performed the test for pair wise comparison, i.e., whether there is any significance 

difference between a pair of treatment effects or not.   Under this pair wise treatment 

effects comparison it is found that there are 12 number of treatment pairs which are not 

significant and these are (1,3), (2,3), (2,4), (2,6), (3,6), (4,5), (4,6), (4,8), (5,6), (5,8), 

(7,10) and (9,10).   For example, treatment 1 is not significantly different from treatment 

3 for the treatment comparison (1, 3) and so on. 

Bayesian analysis   

Now we apply Bayesian method of analysis of designed experiment. The model for 

Bayesian analysis is as given by (3.1). Here our interest is to test whether treatment 

effects are significantly different or not, i.e., whether the parameters i ’s in (3.1) are 

significantly different from each other or not.  Similarly if we are interested in the block 

parameters, then we can perform similar test for the parameters i ’s. Here we considered   

Normal-Gamma prior as prior distribution as described in Section 3. Since we are 

interested to test the treatment comparisons, we developed HPD region for the parameter 

vector 2α  as described in Section 3.3. Similarly for comparison of block effects HPD 

region is developed for parameter vector 3α . Firstly, for testing the overall significance of 

treatment effects the probabilities of HPD regions for 2α and 3α are calculated using F-

value as described in Section 3.3. Then for testing individual treatment effects 

comparison, probabilities of HPD regions are computed by taking individual component 

form 2α and 3α one by one. For the analysis of the year 2003 data, the 2002 data is taken 

as prior, i.e., data of 2002 has been used to estimate the hyperparameters.  From (3.15), 

we calculate the F-value for the comparisons of overall treatment effects and it is found 

to be 110.75. Then the probability  of HPD region with   = 0.05 has been calculated. As 

explained in Section 3.3, this is calculated through F-distribution. The corresponding 

degrees of freedom are 9 and 27. From the table this value is obtained as 2.25. Since the 

calculated value is greater than the tabulated value, the null hypothesis that there is no 

difference between any treatment effects is rejected and concluded that the treatment 

effects are significant at 5% level of significance. However, the block effects are found to 

be non significant, as the F-test value for the block effects is 1.99, while tabulated value 
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for F (= 0.05, 3, 27) is 2.96. We then carry out testing for individual treatment effects 

comparisons. It was found that 7 treatment pairs are non significant. These pairs are (2,3), 

(2,4), (2,6), (4,5), (4,6), (5,8), and (7,10). 

 

There are 12 treatment pairs which are not significant in classical method of analysis. On 

performing Bayesian analysis of the same set of data and combining the related prior 

information in the procedure of analysis there are only 7 non-significant pairs of 

treatment effects under Normal-Gamma prior. Thus we find improvement over 5 

treatment pairs. These pairs are (1,3), (3,6), (4,8), (5,6) and (9,10 ), i.e., these treatment 

pairs are now significant under Bayesian analysis. 

Example 2: Here the data for the year 1999 on wheat is considered as data providing 

prior information while the data for year 2000 is taken as current data for likelihood 

information.  

Table 4:   Yield of wheat in quintal/hectare   

Treatment  

1999 2000 

Block Block 

1 2 3 4 1 2 3 4 

1 21.78 22.80 27.70 23.40 20.10 19.30 18.60 20.30 

2 37.40 32.10 40.20 35.55 30.00 28.10 32.85 32.95 

3 35.50 34.80 40.85 39.80 29.40 33.35 36.30 37.40 

4 36.45 34.10 39.40 37.10 30.15 33.25 34.25 39.10 

5 40.90 44.80 41.10 39.35 43.40 40.80 41.10 38.90 

6 30.80 32.95 28.00 28.83 30.40 24.60 30.85 32.65 

7 1.85 1.25 1.23 1.65 1.95 1.10 1.25 1.80 

8 40.10 42.10 40.00 47.70 32.80 38.80 41.50 43.90 

9 19.20 20.88 19.35 11.38 15.60 13.75 14.87 13.55 

10 3.90 3.60 5.10 2.90 3.40 3.95 4.90 3.40 

Table 5:   Analysis of variance with the original year 2000 data 

Source of 

variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum 

of Squares 

F-value p-value 

Treatment 9 7286.691  809.632  134.97 <.0001 

Block 3 56.206  18.735  3.12 0.0423 

Error 27 161.967  5.998    

Total 39 7504.865     

 

From the above table it is observed that the treatment effects and block effects both are 

significant at 5% level of significance. Under the comparison of various pair wise 

treatment contrasts it was found that treatment pairs (2,3), (2,4), (2,6), (3,4), (5,8) and 

(7,10)  are not significant.  
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Bayesian analysis   

We find that the F-test value in case of Normal-Gamma prior for the treatment effects is 

199.2010, while tabulated value for F (=0.05, 9, 27) is 2.2501. Therefore treatment 

effects are significant at 5% level of significance. The block effects are also found to be  

significant, as the F-test value for the block effects is 5.6264, while tabulated value for F 

(=0.05, 3, 27) is 2.9603. Under pair wise comparison of treatment effects we found that 

pairs (2,3) and (2,4)  have now become significant. However, pairs (2,6), (3,4), (5,8) and 

(7,10) are still not significant. Thus there is a significant change is observed in using 

Bayesian methods. 

5.   Discussion 

In the present study we present the Bayesian methodologies for analyzing experimental 

data. Here we restricted ourselves to the case of conjugate prior distributions of the 

parameters. Bayesian methods are well established in general linear models, where the 

design matrix is of full column rank. Here the approach is taken as that of Broemeling 

(1985), who developed usual F-statistics and t-statistic for testing the parameters or a 

linear function of parameters. However, these methods cannot be applied directly to 

designed experiments, because of rank deficiency of its design matrix. Therefore, 

reparameterization has been done in order to obtain full rank model.  

 

One point to note is that though we need prior information for the parameters, yet one 

may wonder how old this prior information should be. For application in the present 

study, we had a series of experiments. Analysis was done by taking the data for a 

particular year and the data corresponding to its previous year was taken as prior 

information. However, we have also analyzed a data set for a particular year by taking a 

long series of data of previous years as prior separately. But there is not much change in 

the results as compared to that obtained by taking just previous year’s data as prior. This 

suggests that for analyzing data from Bayesian point of view we need only the previous 

information about the parameters, it does not matter how old that information is. 
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