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Abstract 

 

It has been repeatedly shown that the ridge regression model is a desirable shrinking technique to lessen the 

consequences of multicollinearity. When the response variable involves binary data, the logistic regression model 

is a well-known model in use. However, it is well known that multicollinearity has a detrimental impact on the 

variance of the logistic regression coefficients' maximum likelihood estimate. Numerous scholars have suggested 

a logistic ridge estimator as a solution to this issue. The jackknifing logistic ridge estimator (JLRE) is suggested 

and derived in this study. The goal of the JLRE is to obtain a diagonal matrix with low diagonal element values, 

which will reduce the shrinkage parameter and enable a better, less biassed estimator to be produced. According 

on the results of our Monte Carlo simulation, the JLRE estimator can significantly outperform other available 

estimators. Additionally, the JLRE estimator surpasses the logistic ridge estimator and the maximum likelihood 
estimator in terms of predictive performance, according to the practical application findings. 
 

Key Words: Multicollinearity; ridge estimator; logistic regression model; Jackknife estimator; Monte Carlo 

simulation. 

 

1. Introduction  

Binary classification using a logistic regression model has often been adopted in several real data applications, “such 

as cancer classification. Various studies have attempted to apply the logistic regression model as a base to build a 

classification model.  

In the presence of multicollinearity, when estimating the regression coefficients for logistic regression model using 

the maximum likelihood (ML) method, the estimated coefficients are usually become unstable with a high variance, 

and therefore low statistical significance (Kibria, Månsson, & Shukur, 2015). Numerous remedial methods have 

been proposed to overcome the problem of multicollinearity. The ridge regression method (Hoerl & Kennard, 1970) 

has been consistently demonstrated to be an attractive and alternative to the ML estimation method. 
Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to reduce the large 

variance (Asar & Genç, 2015). This done by adding a positive amount to the diagonal of 𝑿𝑇𝑿. As a result, it is 

guaranteed that for some range of values of 𝑘the ridge estimator has a smaller MSE than the ML, but for sufficiently 

large 𝑘the MSE will typically be larger than that of the ML.  

In linear regression, the ridge estimator is defined as 

�̂�𝑅𝑖𝑑𝑔𝑒 = (𝑿𝑇𝑿+ 𝑘𝑰)−1𝑿𝑇𝒚,                  (1) 

where 𝒚 is an 𝑛 × 1 vector of observations of the response variable, 𝑿 = (𝒙1, . . . , 𝒙𝑝) is an 𝑛 × 𝑝 known design 

matrix of explanatory variables, 𝜷 = (𝛽1 , . . . , 𝛽𝑝) is a 𝑝 × 1 vector of unknown regression coefficients, 𝑰 is the 

identity matrix with dimension 𝑝 × 𝑝, and 𝑘 ≥ 0 represents the ridge parameter (shrinkage parameter). The ridge 

parameter, 𝑘, controls the shrinkage of 𝜷 toward zero. The OLS estimator can be considered as a special estimator 

from Eq. (1) with 𝑘 = 0. For larger value of 𝑘, the �̂�𝑅𝑖𝑑𝑔𝑒 estimator yields greater shrinkage approaching zero 

(Algamal & Lee, 2015; Hoerl & Kennard, 1970). 
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2.  Logistic ridge model 

Logistic regression is a statistical method to model a binary classification problem. The regression function has a 

nonlinear relation with the linear combination of the explanatory variables. In classification, the response variable of 

the logistic regression has two values either 1 for the positive class or 0 for the normal class. Assume that we have 𝑛 

observations and 𝑝 explanatory variables. Let 𝑦𝑖 ∈ {0,1} be the response variable value for observation 𝑖, 𝑖 =
1,2, . . . , 𝑛 and 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)

𝑇  be the 𝑖𝑡ℎ explanatory variable vector of the design matrix 𝑿. Then, the 

response variable is related to explanatory variables by  

𝜋𝑖 = 𝑝(𝑦𝑖 = 1|𝒙𝑖) =
𝑒𝑥𝑝(𝒙𝑖

𝑇𝛽)

1+𝑒𝑥𝑝(𝒙𝑖
𝑇𝛽)

,  𝑖 = 1,2, . . . , 𝑛  (1) 

where 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑝)
𝑇 is a (𝑝 + 1) × 1 vector of unknown explanatory variables coefficients. The log-

likelihood function of the logit transformation of Eq. (1) is defined as 

ℓ(𝛽) = ∑ {𝑦𝑖 𝑙𝑜𝑔(𝜋𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋𝑖)}
𝑛
𝑖=1 .  (2) 

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to zero, as 
𝜕ℓ(𝜷)

𝜕𝜷
= ∑ [𝑦𝑖 − 𝜋𝑖]

𝑛
𝑖=1 𝒙𝑖 = 0.  (3) 

Because Eq. (4) is nonlinear in 𝜷, the iteratively weighted least squares (IWLS) algorithm can be used to obtain the 

ML estimators of the logistic regression parameters (LR) as  

�̂�𝐿𝑅 = (𝑿𝑇�̂�𝑿)−1𝑿𝑇�̂��̂�,  (4) 

where �̂� = diag(�̂�𝑖(1 − �̂�𝑖)) and �̂� is a vector where ith element equals to 𝑣𝑖 = 𝑙𝑛( �̂�𝑖) + ((𝑦𝑖 − �̂�𝑖)/�̂�𝑖(1 − �̂�𝑖)). 
The ML estimator is asymptotically normally distributed with a covariance matrix that corresponds to the inverse of 
the Hessian matrix 

𝑐𝑜𝑣( �̂�𝐿𝑅) = [−𝐸 (
𝜕2ℓ(𝜷)

𝜕𝛽𝑖 𝜕𝛽𝑘
)]

−1

= (𝑿𝑇�̂�𝑿)−1.  (5) 

The mean squared error (MSE) of Eq. (5) can be obtained as 

MSE(�̂�𝐿𝑅) = 𝐸(�̂�𝐿𝑅 −𝜷)𝑇(�̂�𝐿𝑅 −𝜷) 
      = 𝑡𝑟[(𝑿𝑇�̂�𝑿)−1] 

      = ∑
1

𝜆𝑗

𝑝
𝑗=1 ,  (6) 

where 𝜆𝑗 is the eigenvalue of the 𝑿𝑇�̂�𝑿 matrix.  

In the presence of multicollinearity, the matrix 𝑿𝑇�̂�𝑿 becomes ill-conditioned leading to high variance and 

instability of the ML estimator of the logistic regression parameters. As a remedy, logistic ridge estimator (LRE) (Le 

Cessie & Van Houwelingen, 1992; Lee & Silvapulle, 1988; Schaefer, Roi, & Wolfe, 1984) as 

�̂�𝐿𝑅𝐸 = (𝑿𝑇�̂�𝑿 + 𝑘𝑰)−1𝑿𝑇�̂�𝑿�̂�𝐿𝑅  
    = (𝑿𝑇�̂�𝑿 + 𝑘𝑰)−1𝑿𝑇�̂��̂�,  (7) 

where 𝑘 ≥ 0. The ML estimator can be considered as a special estimator from Eq. (8) with 𝑘 = 0. Regardless of 

𝑘value, the MSE of the �̂�𝐿𝑅𝐸is smaller than that of �̂�𝐿𝑅because the MSE of  �̂�𝐿𝑅𝐸is equal to (Kibria et al., 2015; 

Rashad & Algamal, 2019) 

MSE(�̂�𝐿𝑅𝐸) = ∑
𝜆𝑗

(𝜆𝑗+𝑘)
2

𝑝
𝑗=1 + 𝑘2∑

𝛼𝑗

(𝜆𝑗+𝑘)
2

𝑝
𝑗=1 ,  (8) 

 where 𝛼𝑗  is defined as the jth element of 𝛾�̂�𝐿𝑅and 𝛾 is the eigenvector of  the 𝑿𝑇�̂�𝑿 matrix. Comparing with the 

MSE of Eq. (7), MSE(�̂�𝐿𝑅𝐸) is always small for 𝑘 > 0. 
 

3.  The proposed estimator 

In this section, the new estimator is introduced and derived. Let 𝑫 = (𝑑1, 𝑑2, . . . , 𝑑𝑝) and 𝜦 = diag(𝜆1, 𝜆2, . . . , 𝜆𝑝), 

respectively, be the matrices of eigenvectors and eigenvalues of the 𝑿𝑇�̂�𝑿 matrix, such that 𝑴𝑇𝑿𝑇�̂�𝑿𝑫 =

𝑺𝑇�̂�𝑺 = 𝜦, where 𝑺 = 𝑿𝑫. Consequently, the logistic regression estimator of Eq. (5), �̂�𝐿𝑅, can be written as 

�̂�𝐿𝑅 = 𝜦−1𝑺𝑇�̂��̂� 

�̂�𝐿𝑅 = 𝑫�̂�𝐿𝑅 .  (9) 

Accordingly, the logistic ridge estimator, �̂�𝐿𝑅𝐸, is rewritten as 

�̂�𝐿𝑅𝐸 = (𝜦 +𝑲)−1𝑺𝑇�̂�𝒗 
     = (𝑰 − 𝑲𝑩−1)�̂�𝐿𝑅 ,  (10) 
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where 𝑩 = 𝜦+𝑲 and 𝑲 = diag(𝑘1, 𝑘2, . . . , 𝑘𝑝);  𝑘𝑖 ≥ 0,  𝑖 = 1,2, . . . , 𝑝. Equation (11) represents the generalized 

ridge logistic regression estimator (Batah, Ramanathan, & Gore, 2008; Khurana, Chaubey, & Chandra, 2014; 
Özkale, 2008).  

In generalized ridge estimator, the Jackknifing approach was used (Khurana et al., 2014; Nyquist, 1988; Singh, 

Chaubey, & Dwivedi, 1986). Batah et al. (2008) proposed a modified Jackknifed ridge regression estimator in linear 

regression model. Related to Poisson regression model, Türkan and Özel (2015) proposed a modified Jackknifed 

Poisson ridge estimator depending on the study of Singh et al. (1986). 

In this paper, the new estimator (JLRE) is derived by following the study of Batah et al. (2008). Let the Jackknife 

estimator (JE), in logistic regression, is defined as  

�̂�𝐽𝐸 = (𝑰 −𝑲2𝑩−2)�̂�𝐿𝑅 ,  (11) 

and the modified Jackknife estimator (MJE) of  Batah et al. (2008), in logistic regression model, is defined as 

�̂�𝑀𝐽𝐸 = (𝑰 − 𝑲𝑩−1)(𝑰 − 𝑲2𝑩−2)�̂�𝐿𝑅 .  (12) 

Consequently, our new estimator is an improvement of Eq. (13) by multiplying it with the amount [(𝑰 − 𝑲3

𝑩−3)/(𝑰 − 𝑲2𝑩−2)]. The idea behind this is to get diagonal matrix with small values of diagonal elements which 

leading to decrease the shrinkage parameter, and, therefore, the resultant estimator can be better with small amount 

of bias. The new estimator is defined as  

�̂�𝑁𝐿𝑅𝐸 = (𝑰 −𝑲𝑩−1)(𝑰 − 𝑲2𝑩−2)
(𝑰−𝑲3𝑩−3)

(𝑰−𝑲2𝑩−2)
�̂�𝐿𝑅 ,  (13) 

and  

�̂�𝑁𝐿𝑅𝐸 = 𝑫𝑇�̂�𝑁𝐿𝑅𝐸 .  (14) 

3.1 Bias, Variance, and MSE of the new estimator 

The MSE of the new estimator can be obtained as 

MSE(�̂�𝑁𝐿𝑅𝐸) = 𝑣𝑎𝑟( �̂�𝑁𝐿𝑅𝐸) + [bias(�̂�𝑁𝐿𝑅𝐸)]
2  (15) 

According to Eq. (16), the bias and variance of �̂�𝑁𝐿𝑅𝐸  can be obtained as, respectively,  

 

bias(�̂�𝑁𝐿𝑅𝐸) = 𝐸[�̂�𝑁𝐿𝑅𝐸] − 𝜸 
       = (𝑰 − 𝑲𝑩−1)(𝑰 − 𝑲3𝑩−3) 𝐸[ �̂�𝐿𝑅] − 𝜸 

     = −𝑲[(𝑲𝑩−1)−1 − (𝑲𝑩−1)−1(𝑰 − 𝑲𝑩−1) + 𝑲2𝑩−2(𝑰 − 𝑲𝑩−1)]𝑩−1𝜸,  (16) 

var(�̂�𝑁𝐿𝑅𝐸) = (𝑰 −𝑲𝑩−1)(𝑰 − 𝑲3𝑩−3)𝑣𝑎𝑟( �̂�𝐿𝑅)(𝑰 − 𝑲3𝑩−3)𝑇(𝑰 − 𝑲𝑩−1)𝑇 
     = (𝑰 − 𝑲𝑩−1)(𝑰 − 𝑲3𝑩−3)𝛬−1(𝑰 − 𝑲3𝑩−3)𝑇(𝑰 − 𝑲𝑩−1)𝑇 .  (17) 

Then,  

MSE(�̂�𝑁𝐿𝑅𝐸) = (𝑰 − 𝑲𝑩−1)(𝑰 − 𝑲3𝑩−3)𝛬−1(𝑰 − 𝑲3𝑩−3)𝑇(𝑰 − 𝑲𝑩−1)𝑇 + 
      [−𝑲[(𝑲𝑩−1)−1 − (𝑲𝑩−1)−1(𝑰 − 𝑲𝑩−1) + 𝑲2𝑩−2(𝑰 − 𝑲𝑩−1)]𝑩−1𝜸] 
      [−𝑲[(𝑲𝑩−1)−1 − (𝑲𝑩−1)−1(𝑰 − 𝑲𝑩−1) + 𝑲2𝑩−2(𝑰 − 𝑲𝑩−1)]𝑩−1𝜸]𝑇 

       = 𝛷𝛬−1𝛷𝑇 +𝑲𝛹𝑩−1𝜸𝜸𝑇𝑩−1𝛹𝑇𝑲, (18) 

where 𝛷 = (𝑰 −𝑲3𝑩−3)𝑇(𝑰 − 𝑲𝑩−1) and 𝛹 = [𝑰 + 𝑲𝑩−1 −𝑲𝑩−3𝑲]. 
 

3.2 Selection of parameter 𝒌  

The efficiency of ridge estimator strongly depends on appropriately choosing the 𝑘 parameter. To estimate the 

values of 𝑘for our new estimator, the most well-known used estimation methods are employed and are given below 

(Kibria et al., 2015)  

Hoerl and Kennard (1970) (HK), which is defined as  

𝑘𝑗(𝐻𝐾) =
1

�̂�𝑚𝑎𝑥
2   (19) 

Kibria et al. (2015) (KMS1), which is defined as 

 𝑘𝑗(KMS1) = Median{[√
1

�̂�𝑗
2]

2

} ,  𝑗 = 1,2, . . . , 𝑝,  (20) 

Kibria et al. (2015) (KMS2), which is defined as  (21) 

In literature, there are many estimators available to estimate the ridge parameter 𝑘 for various models. We have 

considered only three estimators to show the benefits of the proposed estimator. However, for more on the 
estimation of k for various models, we refer our readers to Hoerl and Kennard (1970), Le Cessie and Van 

Houwelingen (1992), Kibria (2003), Saleh and Kibria (2012), Firinguettia, Kibria, and Araya (2017), Arashi, Kibria, 

and Valizade (2017) and very recently Williams, Kibria, and Mansson (2019) and Saleh, Arashi, and Kibria (2019) 

among others”. 
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4.  Simulation study  

In this section, a Monte Carlo simulation experiment is used to examine the performance of the new estimator with 

different degrees of multicollinearity.  

 

4.1 Simulation design 

The response variable of 𝑛 observations is generated from logistic regression model by Eq. (1) with ∑ 𝛽𝑗
2 = 1

𝑝
𝑗=1  

and 𝛽1 = 𝛽2 =. . . = 𝛽𝑝   (Kibria, 2003; Månsson & Shukur, 2011). In addition, the explanatory variables 𝒙𝑖
𝑇 =

(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛) have been generated from the following formula  

𝑥𝑖𝑗 = (1 − 𝜌2)1𝑙2𝑤𝑖𝑗 + 𝜌𝑤𝑖,𝑝+1,   𝑖 = 1,2, . . . , 𝑛,  𝑗 = 1,2, . . . , 𝑝,  (22) 

where 𝜌 represents the correlation between the explanatory variables and 𝑤𝑖𝑗’s are independent standard normal 

pseudo-random numbers. “Because the sample size has direct impact on the prediction accuracy, three 

representative values of the sample size are considered: 30, 100 and 150. In addition, the number of the explanatory 

variables is considered as 𝑝 = 4 and 𝑝 = 8 because increasing the number of explanatory variables can lead to 

increase the MSE. Further, because we are interested in the effect of multicollinearity, in which the degrees of 

correlation considered more important, three values of the pairwise correlation are considered with 𝜌 =
{0.90,0.95,0.99}. For a combination of these different values of 𝑛, 𝑝, and 𝜌 the generated data is repeated 1000 

times and the averaged mean squared errors (MSE) is calculated as  

MSE(�̂�) =
1

1000
∑ (1000
𝑖=1 �̂� − 𝜷)𝑇(�̂� − 𝜷),  (23) 

where �̂� is the estimated coefficients for the used estimator.  

  
4.2 Simulation results 

The estimated MSE of Eq. (24) for MLE, LRE, and JLRE, for all the different selection methods of 𝑘 and the 

combination of 𝑛, 𝑝, and 𝜌, are respectively summarized in Tables 1 and 2. Several observations can be made.   

First, in terms of 𝜌 values, there is increasing in the MSE values when the correlation degree increases regardless the 

value of 𝑛, 𝑝. However, JLRE performs better than LRE and MLE for all the different selection methods of 𝑘For 

instance, in Table 1, when 𝑝 = 4, 𝑛 = 100, and 𝜌 = 0.95, the MSE of NRLR was about 51.64%, 35.81%, and 

20.81% lower than that of LRE for KH, KMS1 and KMS2, respectively. In addition, the MSE of JLRE was about 
94.73% lower than that of MLE. 

Second, regarding the number of explanatory variables, it is easily seen that there is increasing in the MSE values 

when the 𝑝 increasing from four variables to eight variables. Although this increasing can affected the quality of an 

estimator, JLRE is achieved the lowest MSE comparing with MLE and LRE, for different 𝑛, 𝜌 and different 

selection methods of 𝑘.  

Third, with respect to the value of 𝑛, The MSE values decreases when 𝑛 increases, regardless the value of 𝜌, 𝑝, and 

the value of 𝑘. However, JLRE still consistently outperforms LRE and MLE by providing the lowest MSE.   

Finally, for the different selection methods of 𝑘, the performance of all methods suggesting that the JLRE estimator 

is better than the other used two estimators. The KMS1 efficiently provides less MSE comparing with the KMS1 

and KH for both JLRE and LRE estimators. Besides, KH is more efficient for providing less MSE than KMS2 or 

both NRLE and RLE estimators.  

To summary, all the considered values of 𝑛, 𝜌, 𝑝, and the value of 𝑘, JLRE is superior to LRE, clearly indicating that 

the new proposed estimator is more efficient”. 

 

Table 1: MSE values when 𝑝 = 4 

   KH  KMS1  KMS2  

  MLE LRE JLRE LRE JLRE LRE JLRE 

 𝜌         

𝑛 = 30 0.90 5.728 1.767 1.614 1.407 1.306 2.152 2.052 

 0.95 6.356 1.998 1.847 1.856 1.755 2.313 2.21 

 0.99 6.754 2.648 2.496 2.388 2.287 2.657 2.556 

𝑛 = 100 0.90 4.099 1.4 1.247 1.318 1.217 1.693 1.592 

 0.95 5.174 1.672 1.519 1.427 1.326 1.789 1.688 

 0.99 5.366 1.989 1.836 2.317 2.216 2.002 1.902 

𝑛 = 150 0.90 3.942 1.202 1.049 1.289 1.188 1.55 1.449 

 0.95 4.152 1.326 1.173 1.316 1.215 1.566 1.465 
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 0.99 4.907 2.352 2.199 2.092 1.992 1.684 1.583 

 

Table 2: MSE values when 𝑝 = 8 

   KH  KMS1  KMS2  

  MLE LRE JLRE LRE JLRE LRE JLRE 

 𝜌         

𝑛 = 30 0.90 6.232 2.27 2.117 1.91 1.809 2.655 2.554 

 0.95 6.859 2.502 2.35 2.359 2.258 2.814 2.713 

 0.99 7.257 3.153 2.999 2.892 2.79 3.16 3.059 

𝑛 = 100 0.90 4.602 1.903 1.75 1.822 1.72 2.196 2.095 

 0.95 5.677 2.175 2.022 1.93 1.829 2.292 2.193 

 0.99 5.869 2.492 2.339 2.82 2.719 2.505 2.404 

𝑛 = 150 0.90 4.445 1.705 1.552 1.792 1.692 2.053 1.952 

 0.95 4.655 1.829 1.676 1.819 1.718 2.069 1.968 

 0.99 5.41 2.855 2.702 2.595 2.494 2.187 2.086 

 

 

5.  Real data application 

A dataset of 121 molecules of anti-hepatitis C virus activity of thiourea derivatives was used for constructing 

quantitative structure-activity relationship (QSAR) model. “The molecular structures and their experimental EC50 

(the concentration of a drug that gives a half-maximal response) were obtained from the literature (Kang, Wang, 
Hsu, et al., 2009; Kang, Wang, Lee, et al., 2009; Kang et al., 2010; Khatri, Lather, & Madan, 2015). The molecules 

were divided into two categories by the threshold value of 0.1μM: actives (EC50 < 0.1μM) and inactive (EC50 ≥
0.1μM). For the classification purpose, the two categories were labeled as 1 for the active and 0 for the inactive. 

First, the deviance test (Montgomery, Peck, & Vining, 2015) is used to check whether the logistic regression model 

is fit well to this data or not. The result of the residual deviance test is equal to 8.027 with 120 degrees of freedom 

and the p-value is 0.837. It is indicated form this result that the logistic regression model fits very well to this data.  

Second, to check whether there are relationships between the explanatory variables or not, Table 3 displays the 

correlation matrix among the five explanatory variables. It is obviously seen that there are correlations greater than 

0.90 among several variables. 

Third, to test the existence of multicollinearity, the eigenvalues of the matrix 𝑿𝑇�̂�𝑿 are obtained as 941.295, 

201.332, 71.385, 36.588, 20.602, and 1.324. The determined condition number max minCN / =
 of the data is 

29.9026.663 indicating that the multicollinearity issue is existing. 

The estimated logistic regression coefficients, standard errors which are computed by using bootstrap with 1000 

replications, and MSE values for the MLE, LRE, and JLRE estimators are listed in Table 4. According to Table 4, it 

is clearly seen that the JLRE estimator shrinkages the value of the estimated coefficients efficiently. Additionally, in 

terms of the calculated standard errors, the LRE and JLRE show substantial decreasing comparing with MLE, 

regardless of the selection method of 𝑘. Furthermore, in terms of the selection method of 𝑘, JLRE shows the 

superiority results of both coefficient estimation and standard error using KMS1. In terms of MSE, the JLRE using 

KMS1 achieves the lowest MSE”.  

     

Table 3: The correlation matrix among the five explanatory variables. 

 Mor02u RDF015u Mor25v PJI3 

CIC3 0.912 0.102 0.889 0.957 
Mor02u  0.875 0.947 0.624 

RDF015u   0.913 0.806 

Mor25v    0.962 
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Table 4: The estimated coefficients and MSE values for the MLE, LRE, and JLRE estimators. The number in 

parenthesis is the standard error. 

  KH  KMS1  KMS2  

 MLE LRE JLRE LRE JLRE LRE JLRE 

�̂�1  -3.041 

(0.111) 

-2.105 

(0.103) 

-1.516 

(0.097) 

-1.604 

(0.088) 

-1.415 

(0.078) 

-1.213 

(0.077) 

-0.284 

(0.073) 

�̂�2 2.329 
(0.123) 

2.035 
(0.113) 

2.004 
(0.101) 

2.032 
(0.111) 

1.924 
(0.102) 

1.440 
(0.089) 

1.603 
(0.086) 

�̂�3 1.561 

(0.124) 

1.107 

(0.124) 

1.016 

(0.118) 

0.986 

(0.114) 

0.911 

(0.098) 

0.546 

(0.108) 

0.329 

(0.085) 

�̂�4 -3.168 

(0.214) 

-2.046 

(0.204) 

-1.934 

(0.188) 

-1.863 

(0.124) 

-1.521 

(0.117) 

1.604 

(0.102) 

1.121 

(0.080) 

�̂�5 2.0431 

(0.127) 

1.017 

(0.110) 

1.008 

(0.104) 

1.014 

(0.111) 

0.984 

(0.103) 

0.919 

(0.103) 

0.508 

(0.092) 

        

MSE 4.102 3.557 2.397 1.981 1.761 1.242 0.961 

 

 

6.  Conclusion 

To solve the multicollinearity issue in the logistic regression model, a new estimator of logistic ridge regression is 

suggested in this study. Studies using Monte Carlo simulation show that the novel estimator performs better in terms 

of MSE than both the maximum likelihood estimator and the conventional logistic ridge estimator. To further 

demonstrate the advantages of employing the novel estimator in the context of the logistic regression model, a real 
data application is also taken into consideration. The effectiveness of the new estimator based on the resulting MSE 

was noted, and it was demonstrated that the findings are in line with those of Monte Carlo simulations. Finally, it is 

advised to employ the new estimator when the logistic regression model has multicollinearity. 
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