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1. Introduction

It is well known that, in many areas of life testing studies such as medical follow-ups and engineering, it is not
always possible to observe the variable of interest called the lifetime.

Formally, let Ty, ..., T;, be a sequence of survival times of n > 1 individuals in a life table. These random variables
(r.v’s) are strictly stationary with common unknown absolutely continuous distribution function (d.f) F. That is,
assuming that {C;; i = 1} is a sequence of independent and identically distributed (i.i.d) censoring r.v’s with
common unknown d.f. G, we only observe the n pairs {(Y;,;), i = 1,2, ...,n}, with ¥; = min (T}, C;) and §; =
Lir,<c,)» where I, denotes the indicator function of a Borel-set A.

Let X,, ..., X,, be a stationary sequence of real-valued r.v’s with probability density function (p.d.f) L and let F(.|.)
be the conditional d.f of T given X = x. We assume that C and (X, T) are independent and we observe
{(YI,J SDXL')! i= 1;2; ey n}

In classical statistical inference, the observed r.v’s of interest are generally assumed to be i.i.d. However, in some
real-life situations, these r.v’s are not independent. For example, in reliability and survival analysis, the lifetimes of
components are not independent but associated. For a list of relevant examples and ample bibliographical references,
we refer the reader to the seminal book of Bulinski and Shashkin (2007).

The concept of association was introduced by Esary et al. (1967), in the context of reliability studies. The reader
may refer to Prakasa Rao (2012) for a long list of examples of associated r.v’s. Recall that a set of r.v’s Z =
(Z1,Z,,...,Z,) is said to be associated if for every pair of non-decreasing (component wise) functions g, (.) and
g,() from RM to R, we have

cov(9,(Z),9,(2)) = 0,

whenever the covariance is defined. An infinite sequence {Zy, N = 1} of r.v’s is said to be associated if every finite
sub-family of r.v’s is associated.
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In this random censorship model, the true survival times {T;, i = 1} are assumed to be positively associated, which
implies that the random sequences {Y;,i > 1} and {J;,i = 1} are positively associated.(see Lemma 2.2 in Cai and
Roussas (1998)). The stationary sequence {X;,i = 1} is also assumed to be positively associated. Positive
association seems to be a natural assumption in certain practical trials like those described in Ying and Wei (1994)
and Cai and Roussas (1998). In this paper, we are concerned with the nonparametric estimation of the unknown
conditional hazard rate function, based on the observations {(Y;, §;,X;), i = 1}. We use the form of the ratio of two
estimators by estimating the density of probability function and the survival function separately as done in many
papers as, for instance, in Lemdani and Ould Said (2007), Ferraty, Rabhi and Vieu (2008) and Dialo and Louani
(2013) in the i.i.d case. Note that many other estimation methods can be used. A local linear estimator of the
conditional hazard rate for censored data has been studied by Spierdijk (2008). Gamis, Martinez-Miranda and
Neilsen (2013) developed indirect cross-validation for the local linear estimator starting from the multivariate local
linear estimator of Nielsen (1998).

In the context of right response data, with associated r.v’s, no much researches are done for this kind of model. Cai
and Roussas (1998) established uniform strong consistency along with the asymptotic normality to Kaplan-Meier
estimator. Ferrani, Ould Said, and Tatachak (2016) established the strong uniform consistency of the kernel
estimator of the underlying p.d.f and the almost sure convergence of a smooth kernel mode estimator under a right
censored model.

The goal of this paper is to establish the asymptotic normality of a kernel estimator of the conditional hazard rate
function when the data are strictly stationary sequence of associated r.v’s under right censoring.

This paper is organized as follows. In section 2, we recall the notations and the definitions of our estimators. The
main results and the assumptions are listed in section 3 while the proofs are relegated to section 4.

2. Notations and definitions

The conditional hazard rate function, also known as the force of mortality or the failure rate, of T given X = x is
defined by h(.|x) = M, for x such that F(.|x) < 1.

1-F(1X)
In medical trials, h(t|x)dt can be interpreted as the instantaneous risk of death at time ¢, conditioned by the fact that
the subject is still alive at time x. In the literature, there exist several methods of estimating the hazard rate function.
In nonparametric estimation, the method using a kernel smoothing has received considerable attention. For a review
of kernel smoothing approaches, we refer the reader to Silverman (1986) and Izenman (1991) for uncensored data,
and to Singpurwalla and Wong (1983), Tanner and Wong (1983), Padgett and McNichols (1984), Lo Mack and
Wang (1989), Lecoute and Ould Said (1995), Gonzalez-Manteiga, Cao and Marron (1996), Nassiri, Delacroix and
Bonneu (2000), and Van Keilegom and Veraverbeke (2001) in the case of right censored data.

Our estimator of the conditional hazard function is obtained by estimating the conditional densityf (. |.)and the
conditional survival function 1 — F(.]|.). We consider the following smooth estimator of F(.|.)

Sk (59)H (5) @.1)

_Xl
i=1 K (x h )
where G = 1 — G, K is a p.d.f (called kernel function), h := h,, is a sequence of positive real numbers (called

bandwidth) tending to zero as n goes to infinity and H is a d.f.

ﬁn(tlx) =

Recall that (2.1) can be rewritten as

ﬁl,n (t, X)

E ((tlx) = T (2.2)

where
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Foex) = 12": 5 Kx—XiH(t—Yi)
1n (b X T nh LG (3
i=

and1, () = — 31, K (

x_hxi), the well known kernel estimator of the marginal density of X.

In practice G is usually unknown, hence it impossible to use the estimator (2.1). Then, to construct a practically
feasible estimator, we replace the unknown df G by the Kaplan-Meier estimate G,, (see Kaplan and Meier (1958))
given by

n

H(l 1—6(0 >H{Yi5t} ifr <y
ETAGER] Y (T BEs

0 ift >,

Therefore, the feasible estimator of the conditional d.f F(.|.) is given by

6i x—X; t-Y;
X D) Kk ( 3 )H (T) Fin(t,x) (2.3)
Faltle) = n g (XX L) .
ile( h ) "
where
Pt =3 e (55 (5
1,n , X) = Tlh - G(Yl) h h . (24)

We respectively define the first partial derivative with respect to the second component of F; ,, (¢, x) and T‘Ln (t, x)
by

n
0F, ,,(t,x) , 1 Z 8; (x—Xl-> ,<t—Yi>
o Y= 2 e T ) )
and
617“1,n(t,x)_ﬁr (tx) = 1 Zn: 5; K(x_Xi)H’<t_Yi>
ac YT e £iG(Y) h h )

where H'is the derivative of H.
The conditional density estimator is given by

Fll,n tx)

fotlx) = W

Then the natural estimator of the hazard rate function, k(. |.) is given by

fu(tlx)

hn(tlx) = m
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The infeasible estimator h,, is the same but it involves infeasible estimators £, and 1 — E, of the conditional density
and survival functions.

3. Assumptions and main result

Our assumptions are gathered for easy references. Let, for any d.f L, 7, = sup{y, L(y) < 1}, be its right endpoint.
Throughout this paper, we assume that T, < t; and that C and (X, T) are independent.

We employ an appropriate form of Bernstein big-block and small-block procedure to prove that the estimator

h,, (.].) is asymptotically normal. Our approach consists in splitting the set {1, ..., n} into k large p —blocks and
small g —blocks where p = p,,, ¢ = q,, are positive integers tending to o, asn — oo, and k = k,, := [n|(p + )] f
with [x] standing for the integer part of x (see for example Masry (2005) and Roussas (2000)).

Let Q be a compact set such that Q c Q4 = {x € R/l(x) > 0}, C a compact set included in ]—oo,7z[ and  a
positive real number such that T < .

Al. The kernel K satisfies

(i) K is strictly positive and bounded with compact support. Moreover, there exist constant M* and m*
suchthat 0 < M* < o0, 0< m* < oo, sup K(u) =M*, and infK(u) = m*,

(i) Kis Lipschizian,

(iii) Jg K@du =0, [ [ulK@)du < +oand [ u? K(wdu < +oo,

(iv) Jp K*Wdu = K < +o.

A2. The bandwidthh satisfies /logl% =0(h3).

A3. The joint density F; (.,.) is bounded and differentiable up to order 2 and supx‘t|D(i‘j)F1'(x, t)| <ocofori+j<
. i,
2, where D(i,j)Fl(x, t) = a—Fl(x, t)

xiot]
A4. The d.f H has a first derivative H  which is positive and bounded such that

(i) There exist two constants 0 < M < oo, and 0 < m < oo, supgH (t) = M and infgH'(t) = m,
(i) Jg H(@®)dt = 1and [ [t|H'(t)dt < +o.
(iii) Jo (H'())?ds = 0 < +o0.

Ab. The marginal density I(.) satisfies the Lipshitz condition and there exists y, < 0 such that [(x) <y, forall x €
Q.

AB6. For positively associated r.v’s {X;, 1 < i < n}, we suppose that

n n
u(n) = supnzlz z Glllf_ﬂ < oo,

=1 j=1ji-j]>o0

where 0 <y < 1,and 6;_;| = |cov(Xi,X]-)|.
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AT I fx,v,x,v;) 18 the joint p.d.fof (X, Y, X}, ¥;) and fix, v, the joint p.d.f of (X;, Y,), then supy;_ji»o|gisl| | < oo,
where gi,j = f(Xi,Yi,Xj,Yj) - f(Xi,Yi) X f(Xj,Yj)'
AB8. For the large p —blocks and small g —blocks, we suppose that

. k ..\ qk ...\ p? A
(i) p? - 1, (ii) q? -0, (|||)% ~0,asn — o0, (V) “qlcov(Xy, X;4a| - 0.

Remark. 3.1. Assumptions AL(i)-(ii), A2, A4(i)-(ii), and A5 are common in kernel estimation. A similar assumption
as A6 is also employed in many papers dealing with the association, see Cai and Roussas(1998), Roussas (1991),
Guessoum, Ould-Said, Sadki, and Tatachak.(2012). Assumption A3 is needed to deal with the bias term of the joint
density F; (.,.). Assumption A7 is used when dealing with the covariance term to make it negligible, as done in
many papers, for examples in Adjoudj and Tatachak (2019) and Djelladj and Tatachak (2019).

The Lipshitz conditions on K and | are often present in this case of dependent data in order to use exponential type
inequalities as in Gheliem and Guessoum (2022) .

Assumptions A1(ii) and A4(iii) are added to get the asymptotic variance term. Assumption A8 is inspired from
Roussas (2000) and Masry (2005) and used in the proof following the familiar pattern for dependent situations using
large and small blocks.

Theorem 3.1. Under assumptions A1-A8, and for any x € Q, such that [(x) > 0, and for n large enough we have

(k22 (R (t12) — h(t1)) S N(O, 0% (2, X)),

D
where — denotes the convergence in distribution, and

52(tx) = 1 [KOF{ (t,x)

P -FE0?] 6@®

4. Auxiliary results and proofs

The proof of our main result is split up into several lemmas. The first lemma deals with the convergence of the
conditional probability density estimator £, (t|x) to f(t|x).

Lemma 4.1. Under assumptions A1(iv), A2, A4(i), A6 and A7 and for n large enough

Var (Fl"n(t, x)) - 0.

Proof. Recall that

= 1 8; x—X; t=Y;
Fiatx) =15 ?=16(;i)K( n l)H (TI)

then
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var (Pa(e0) = var%za_gak(;Xf)Hr(t;lYi))

- e (R ()
- el ]

C S S (Y ()
nZht Ly covlf{— n ey "\ h R )
i=1j=1ji—j|>0

= P~ P+ s,
By assumptions A1(iv) and A4(i), we have

A o]

2

_ 1 M ; 1
= g 0( h3>

Thenby A2,¢; - 0asn — .
Using the same arguments as before, we have
1 M? x— X\
Y2 = e |E [K< h )]]
- LMy o)
nh? G2%(1) h?

and v, tends again to zero as n goes to infinity.
For 3, by the association of the variables (X;), we have under A4(i)

x—X; t—Yi) 8; (x—Xj> (t—)?) 5; M?(LipK)?
! _ I _ < - - 7 . .
C‘”’(K< h )H< ey "\ )M\ )Ew)l S Teow jcov(Xu X))l (@)
C
= hzell jl-
On the other hand, under assumption A7, we have
! _ ! _ < 4 2
C‘”’("( ) (5 ey "\ T )M\ )Ey)| S GZ()h”gU” IKIEHANE (4.2
< Ch*<Ch%
By elevating (4.1) to y and (4.2) to (1 — y), where 0 < y < 1, we have
X=X ,t_yi) 8; (x_Xj> ,(t—}?> Ji C v iy p2viey
C‘”’(K( ) (5 coy TR T el S ey Gt )
< COf_h*".

Then we get
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Y >k (S () k() ()l < ey Y
cov = ) =
n2h4i:1j:1,|i—j|>0 h h 76 h h G(Y;) nht =1 j=1ji-j|>
1
< W(,‘u(n).

Therefore by A2 and A6, ¥; — 0, as n — oo. This completes the proof of Lemma 4.1. m

Remark 4.1. Under the assumptions of Lemma 4.1, and making use of Tchebychev’s inequality we have for n large
enough £ ,(¢,x) - F; (¢, x), in probability and we add assumption A5 then

B F,(tx)
fultlx) = Lo - f(tlx)

in probability as n — oo.
The following Lemma deals with the convergence of the conditional probability density estimator f;, (t|x) to f(t|x).

Lemma 4.2. Under assumptions A1(ii), A2, and A4(i), we have
fn(tlx) — f(t]x) -0 in probability, as n — .

Proof. We have

fultl) = £(t12) = (futl0) = Futl0)) + (£ (el0) = £(el)).

. 1 -
ol =t = 5 It x) = Fiat 0]
1 1| I AN AN 1
= Lok ;5”{( h >H< h )(Gn(Yi)_G(Yi))

1 1 MM G, (£) Gt|1§n:5
L0 2 GG o= D GO 2, 0

IA

Since 1,(x) = infx(ln(x)) >y >0 and G(r) > 0, in conjunction with the SLLN in the associated case (see Bagali
and Rao, (1995)) applied to the sequence {6;};>; and the LIL on the independent censoring times {C;}, we have
cMM* 1 loglogn

G2(7) h? n

TAGRESAGEI] =
where c is a positive constant.
Assumption A2 gives us that |f;, (¢]x) — £, (tlx)| > 0 a.s.asn > wo.m

Remark 4.2. Using the same idea as the last one, we can prove that
|F, (t1x) — E,(tlx)| = 0 in probability, as n — .

In order to prove Theorem 3.1, we will use the following decomposition and the lemmas bellow.
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En(tlx)_h(tlx) fn(tlx) IE( fn(t|X) )+E< fn(tlx) ) f(t|x)

1-F,(tl) \1-FE,(tl) 1-FE(tlx)) 1-F(tlx)
100 (| Fin(t0) —E(F,(t0) 1
L 1) “T-F, (e
E (/o) E( Al ) . E( Al ) ich
1—E, (t|x) 1—E, (t]x) 1-E,(tlx)) 1-F(tlx)|
Note that
1 1(x) 1 1
(nh2Yelh (t1) — h(el0] = o= |(h®)za, (8, 0] + (h2)zC, (2, x)
where
1 Aot 0 —E(FLae0)| 10
An(6,%) =7 —F,(tlo x[ 1(x) ]: 1— F,(tho)
E(f0)  f L\ f
Balt,x) = [1 — E (tlx) —E (1 — Fn(tlx)) + [E <1 — Fn(tlx)) T 1—F(tlx)
= v (t,x) +v,(tx)
and

C,(t,x) = [hn(tlx) — fln(tlx)] + B, (t, x)
=: J;(t,x) + B,(t, x).

The next Lemmas show the asymptotic normality of (nhz)%An (t, x) and the convergence in probability of
1
(nh?)2C, (&, x) to zero. We begin by showing the second part.

Lemma 4.3. Under the assumptions of Lemma 4.2, we have
J1(t,x) — 0 in probability, as n — oo.

Proof.
fn(tlx) _ fn(tlx)
1-FE,(tlo)  1-FE(tlx)
Fu[F (1) = By (120] + [f (1) = F (0] [1 = Fy (elx)]
[1 - E,tl0][1 = F, (t1x)]
S @R E) = Rho] | [0 — fulel)]
[1 - E,(tl0)][1 = B (t]x)] [1 - F,(tl0)]
Al EOIFE) = Fuel]] + BlA ) - £l
where B = sup,eqSuprec m, andA =B m
Making use of the Lemma 4.2 we get that J, (¢, x) goes to zero in probability, as n goes to infinity.

jl(t: X)

IA

Lemma 4.4. Under the assumptions of Lemma 4.1, we have
B, (t,x) — 0 in probability, as n — oo.

Proof. For v, (¢, x), it can be written as
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E(fut®) 1-Fh) [ ko
uwltX) = T ISR (1 _ ﬁn(ux))
1 ) . fu(tlx)
= = A [[E (fn(tlx)) - (1 - Fn(tlx)) E (—1 . Fn(tlx))] ~
= E <%> [IE (ﬁn(ux) (1 - Fn(tlx))> - (1 — Fy(th0) E (%)]
< B|E(Ru(tl0) - E (R (tl0)].

The latter quantity goes to zero, which implies that v, (t,x) - 0 asn - .
Let us now examine the term v, (¢, x). We have

_ Fu(tlx) f(tlx)
w(tx) = E (1 — ﬁn(tlx)> T1—F(th)
< AE[supceasupieclfu (e — F(t10)] + suprensupeec | Fu(elo) (e = Fulelo)|

+ AE [supxegsuptee |fn(t|x) (Fn (tlx) — F(tlx))” .
Then we can conclude, by Lemma 4.3, that the v, (¢, x) — 0 in robability as n goes to infinity. m

Lemma 4.5. Under assumptions Al, A3, and A4, and for n large enough we have

nh?Var(A,(t x)) = nh*Var (M) - (o(t, x))2

1—E,(tlx)
Proof.
Fla(t,x) — B (Fl,(t,)
Ltx) = 1)
= ,;2 w2 (50
ek ) () 50
= nhz—l(x);Ni(t’x)’
where
- X\, (t=Y &
Nitx) = [K<xh >H< h )G_(Yl-)]
e[ () () g
Then
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nh*Var],(t,x) = hzlz()Var(Nl(t X))+ hzlz(x)z Z cov(N;, N;) 4.3

i=1 j= 1|1 jI>0 )

1 2
= 2R (N1 (¢, x) hzlz(x)z Z cov(N;,N;) ;

i=1j= Lji-j|>0

- e (55 (55 705) |
- g Pl 2 (5 20|
1

+ nh?12(x) *

5 50 (e (55 5 (S5

= Bl,n - :82,11 + .83,11

b = e Bt

(e () oy (S )E[H{Tlscl}lxl,n]] -

1
e E[

Using a change of variables, we can write

1 e KZ H/ 2
Pin = 12(x) ﬂ Er)( () F/(x — rh, t — sh)drds.

G(t — sh)
Then, since G(.) is continuous, we have under Al, A3, and A4
+ 00
Fl’ (X, t) jf 2 "2
Bin EmG0 K2(r)(H")? (s)drds + o(1)
ko F{(xt)
= 0 0 + 0(1).

Now let us turn to the second term of (4.3),
2
_ 1 [EK(X_X1>]E HI(t—Y1> 6y X
ﬂz,n - hzlz (x) h h G—(yl) 1
2
1 - x—X t—T
= hzlz(x) [E [G_l(Tl)K< . 1)1—['( - 1) [E[]I{Tlscl}le,Tl]]

A Taylor expansion, and assumptions Al(iii), A3, and A4(ii) permit us to write

2

h2 +o0o
B2n m _ff K(s)H'(r)F{(x —rh,t — sh) drds
= o(h®).

By the association of the variables (X;) and under assumption A4 (i)and A7, we have
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n n
1 Y
) E § col_;

=1 J=1ji-j>0
This implies that 85 ,, — 0 asn — . Then
1

}Ii_rgjnthaT(An(t, x)) = 12(x)[1 — F(t]x)]? [

(o(t, )"

KkoF{(x,t)
G(t)

The asymptotic normality will be established by splitting the sum m+m ™~ N;(t, x), into large p —blocks and small

q —blocks. To this end, for m = 1, ..., k, split the set {1, ...,n} into k large p —blocks and small g —blocks, to be
denoted by I,,, and J,,,, respectively as follows

I, = {Hi=m-De++1...(m-Dp+q +p}
Jm = U j=m-D@+p+p+1.. mp+q)} (4.4)
where p, g, and k are given by assumption A8. Set
X _Xl' Ni(t;x)
Kpi(x) = K<T> Ty =——"—

ni — X
(nh?1?(x))?
and

S = (R (60) = ) (60,
i=1

Form =1, ..., k, Set Vo, Vo Voo &S follows

(m-1)(p+q)+p m(p+q) n
Ynm = Z Znir Yam = Z an, y1’1’k = Z Zny (4.5)
i=(m-1)(p+q@)+1 j=m-1)(+@)+p+1 I=k(p+q)+1
Also set
k k (4.6)
T, = Z Ynmr Ty = Z Yomr Ty = yrl{k
m=1 m=1
Remark thatS, =T, + T, + T,
1
To prove the asymptotic normality of (nh?)z],, (¢, x), it suffices to establish that
T, > N(0,02(t,x))asn - oo, 4.7)
and
E(T;)? + E(T))? > 0asn — . (4.8)

Now we have to establish (4.7), this is done in two steps. First, it will be shown that the characteristic function of T,
minus the product of the characteristic function of Z, ;, j = 1, ..., k converges to 0. Therefore, its suffices to prove that

k
E (eitZ;(rmlJ/nm) — 1_[ [E(eitJ’nm)
m=1

This proves that the rv’s Z,,; are asymptotical independent.
Secondly,it is proved that the distribution determined by the product of the characteristic function of
{Z,; .j =1,..,k} is asymptotically, the distribution N (0,52 (t, x)).
Therefore we have to verify the standard Lindeberg-Feller condition
kVar(yn1) > ot x), kE(yrzllﬂ{lynlbsa(t,x)}) -0 (4.10)

- 0. (4.9)

Firstly, in the two next Lemmas we establish that kVar(y,;;) = ¢2(t, x), and Var(T,) » o2(t, x).
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Lemma 4.6. Under assumptions of Lemma 4.5 and A8, the following hold
i) kvar(yp,) = 0,
o P B'2qm? Up+@)+(q-1)
i) |COU(yn1:yn,l+1)| nlz(x)cz(r)h4Zrpl(z+q)‘1_(q_1)|cov(X1,XT+1)|,

iii) Z15i<jsk|covgl1’1i,yn1)| - 0.

Proof .i) We have

kVar(y,,) = kVar pzﬂ:l Zni(t, %)
i=p+1
= quar(an(t,x))+2k Z |cov (Zni(t,x),an(t,x))|
1<i<j=q
o[ FEEI
= qVar - X\, (t=Y
(k% (x))z ]E[K< )H ( n )G(Yl)]J

+2k Z cov Zm(t x), Zy;(t, x))|
1<i<j=<q
_ kq —Xl) (t—Y1> 61]
= aRre’ Y [K<
4 2k
nh?12(x)

* Z cov(l((x_hxi)H'(t_hn>g(6;/i)'l(<x_hxj>H’ <t_h}§>58))’

1<i<js<q
The result follows from Lemma 4.5 and assumption A8(ii).

i) We have
p+q (D (p+q) (4.11)

|C0V(J’1’11:y7’1,z+1)| = Z Z CO”(Zni»an)
i=p+1 j=l(p+q)+p+1

Z(q -r+ 1)C0V(Zn1'zn,l(p+q)+r) + Z(q - r)(Zn.T+1'Zn.l(p+Q)+1)
lp+a)+(g-1)

q Z |COU(Zn1'Zn,r+1)|
r=l(p+q)-(q-1)
llp+q)+(q-1)
qM?

_— cov(K, ., K .
nhzlz(x)G2(T)r=l(p+q)_(q_1)| (nl n,r+1)|

IA

Lemma 1 in Bulinski (1996) gives

2

B
|COU(Kn1'Knr+1)| |COU(X1' r+1)|

Therefore, (4.11) provides the desired result.

iii) By stationarity and A8(iv), we have
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k-1
Z lcov (i yn )l Z(k = D|covypy yhie1)|
=1

1<i<j<k
k-1
< kZlCOV(J’r’n,J’r’l,l+1)|
1=1
k-1 lp+@)+(q-1)
- - cov
< > 7 12 2r+1
G?(7) nh*l?(x) 1=1 r=l(p+q)—(q—-1)
B!ZMZ qk 1 d
< Fewm n ikl 20
T=p

Lemma 4.7. Under the assumptions of the previous Lemma, we have
i) kVar(y,.) = o2(t, x)
ii) lei<jsklcov(yni:ynj)| -0
iii) Var(T,) - o%(t, x)

Proof.
p X=X\ ,(t—" 8,
kVar(y,.) = kaar(K< h >H< h )G(Yl))
2k
TR
o5 Jeor (6 () () s () () )|
2 n )6y \h h /6(Y;)

Thus we get i) by lemma 4.5 and assumption A8(i).
For ii) working as In Lemma 4.6(ii), we have

p lpt+t+p
covOuuym)l = [ D 0w (260, 2y 6 0)
i=1 j=l(p+a)-p
M2 lp+@)+p
p
nhzlz(x) Z |COU(Kn1'Kn,r+1)|
r=l(p+q)-p
lp+@)+p
ks cov Xy Xy
—— =5, < cov .
h4l2 GZ 14Ar+1
" ) (T)r=l(p+q)—p
Thus, by assumptions A8 (i) and (iv), one has
B?M? pk 1<
D, 1eov0mmml < sz g D leor Xl = 0
1<i<js<k r=q
k
Var(Tn)ZZYnmzkvar(ynl)'i'z Z |Cov(yniynj)|
m=1 1<i<jsk

and this converges to o2 (t, x) by parts (i) and (ii).
Now, we prove (4.8). We have

Var(ry) = KarG) +2 ) leova i)l

1<i<jsk
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Var(T,)

n—k(+q)VarZ,,(t,x) + 2 Z |cov (Zm-(t, x), Zy;(t, x))|

k(p+q)+1<i<jsn

IA

pVarZ,,(t,x) + 2 Z |cov(Zni(t,x),an(t,x))|.

1<i<j<p

Hence (4.8) holds by Lemma 4.6.

]
On the other hand, let us show (4.9). We have
k
E (eit2$n=13’nm) — 1_[ [E(eitJ’nm) < |Cov(eitzl1§1—=113/nm, eitYnk)|
m=1
k-1
+ E (el‘tzlr(n_=11Ynm) — 1_[ IE(eitYnm) .
m=1
Therefore, by Lemma 1 in Bulinski (1996), we have
k
2
it TR 1Ynm ) — 1_[ itynm oy ZZ e 4.13
E (eitZhesym) B(e™m)| < cBPMP sl ) |cov(X,, X)) (4.13)
m=1 i€ly jEI
£ ) Jeov(Xo X+
ie(I1Uly) jEI3
+ Z Z|cov(Xi,Xj)| .
i€(I4V...Ulk_1) jEI}
By stationarity, the right-hand side of (4.13) is equal to
(k=1 Jeov (X, X + e =2) D Y Jeov (X, X))+ -+ > > [eov(x, X)),
i€, jel i€l jel3 i€l jely
So inequality (4.13) becomes
k
2
itzlfn= Ynm | — 1—[ itYnm 2 Zt— — ZZ . X. 4.14
IE(e 1 ) E(e )] £ c¢B”M () (k 1)‘ ’ |cov(Xl,XJ)| (4.14)
m=1 i€ly jEI
+U=2) ) Y Jeov(x, )|
i€l; jEI3
+--+ Z Z |cov(Xl-,X]-)| .
i€Ely JEIy

Once again, by stationarity, and by taking the means of these expressions, inequality (4.14) becomes

k ) (k-1 (p+a)+p
E (eitzlrcn=1Ynm) — 1_[ ]E(eitJ/nm)
m=1

t
w2 (0 P

|cov(x,, X;)]
=p

< c¢B?M? |cov (X4, X;)|

j=p+a)+1

B2M?t2 pk 1

< e
= "Rk n hts
J

which goes to zero by assumptions A8(i) and (iv).
Last, let establish (4.10). We have
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|yn1|

Then

P
1 X=X\, (t—=Y\ 6 X=X\, (t—=Y\ 6

s — > [ (D gt - (Y (D)
MM*

< —FF.

(nh212(x))2G (1)
k(MM*p)?

k[E(yrzll]I{lynlbsa(t,x)}) thzl)z(x)lj(lynll > EO’(t, X))

MZ(M*)? kVar(y,,) p*
G2(1)I2(x) €202(t,x) nh?’

This concludes the proof of Theorem 3.1.

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

17.

18.

Adjoudj L. and Tatachak A. (2019) Conditional Quantile Estimation for Truncated and Associated Data,
Communications in Statistics - Theory and Methods, 48:18, 4598-4641.

Bulinski, A. (1996). On the Convergence Rates in the Central Limit Theorem for Positively and Negatively
Dependent Random Fields. In Probability Theory and Mathematical Statistics, eds. I.A. Ibragimov and A.
Yu. Zaitsev, Netherlands: Gordan and Breach, pp. 3-14.

Bulinski, A. and Shashkin, A. (2007). Limit Theorems for Associated Random Fields and Related Systems.
Advanced Series on Statistical Science& Applied Probability(Vol. 10),Hackensack, NJ: WorldScientific
Publishing.

Cai, Z. and Roussas, GG. (1998). Kaplan-Meier Estimator under Association. Journal of Multivariate
Analysis, 67, 318-348.

Diallo, A. and Louani, D. (2013). Moderate and Large Deviation Principles of the Hazard Rate Function
Kernel Estimator Under Censoring. Statistics and Probability Letters, 83, 735-743.

Djelladj W.and Tatachak A.(2019). Strong uniform consistency of a kernel conditional quantile estimator
for

censored and associated data. Hacettepe Journal of Mathematics and Statistics 48, 290-311.

Esary, J. Proschan, F. and Walkup, D. (1967). Association of Random Variables with Applications. Annals
of Mathematical Statistics, 38, 1466-1476.

Ferraty, F. Rabhi, A. and Vieu, P. (2008). Estimation non Paramétrique de la Fonction de Hasard avec
Variable Explicative Fonctionnelle. Rev. Roumaine Math. Pures Appl., 53, 118.

Ferrani, Y. Ould Said, E. and Tatachak, A. (2016). On Kernel Density and Mode Estimates for Associated
and Censored Data. Communication in Statistics. Theory and Methods,45, 1853-1862.

Gamiz, M. Janys, L. Martinez-Miranda, M. and Nielsen J.P. (2013). Bandwidth Selection in Marker
Dependent Kernel Hazard Estimation. Computational Statistics and Data Analysis,68, 155-169.

Gheliem A. and Guessoum Z. (2022) .Simulating the behavior of a kernel M-estimator for left-truncated
and associated model, Communications in Statistics - Simulation and Computation, DOI:
10.1080/03610918.2022.2075897

Gonzalez-Manteiga, W. Cao, R. and Marron, J.S. (1996). Bootstrap Selection of The Smoothing Parameter
in non Parametric Hazard Rate Estimation. Journal of the American Statistical Association, 91, 1130-1140.
Guessoum, Z. Ould-Said, E. Sadki, O. and Tatachak, A. (2012). A Note on the Lynden-Bell Estimator
under Association. Statistics and Probability Letters, 82, 1994-2000.

Izenman, A. (1991). Developments in Nonparametric Density Estimation. Journal of the American
Statistical Association,86, 205-224.

Kaplan, P. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the
American Statistical Association, 53, 457-481.

Lecoutre, J.P. and Ould-Said, E. (1995). Hazard Rate Estimation for Strong-Mixing and Censored
Processes. Journal of Nonparametric Statistics, 5(1), 83-89.

Asymptotic Normality of the Conditional Hazard Rate Function Estimator for Right Censored Data under Association

129



Pak.j.stat.oper.res. VVol.19 No. 1 2023 pp 115-130 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.3740

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.
29.

30.

31.

32.

Lemdani, M. and Ould Said, E. (2007). Asymptotic Behavior of the Hazard Rate Kernel Estimator
UnderTruncated and Censored Data.Communications in Statistics-Theory and Methods, 36, Issue 1, 155-
173.

Lo, S.H. Mack, Y.P. and Wang, J.L. (1989). Density and Hazard Rate Estimation for Censored Data via
Strong Representation of Kaplan-Meier Estimator. Probability Theory and Related Fields,80, 461-472.
Masry, E. (2005). Nonparametric Regression Estimation for Dependent Functional Data: Asymptotic
Normality. Stochastic Processes and Application,115,155-177.

Nassiri, A. Delcroix, M. and Bonneu, M. (2000). Estimation non Parametrique du Taux de Hasard:
Application a des Durées de Chdmage Censurées a Droite. Annales d’économie et de Statistique,
58,215232.

Nielsen, J.P. (1998). Marker Dependent Kernel Estimation from Local Linear Estimation. Scandinavian
Actuarial Journal, 2, 113-224.

Padgett, W.J. and Mc Nichols, D.T.(1984). Nonparametric Density Estimation from Censored Data.
Communications in Statistics, Theory, and Methods, 13, 1581-1611.

Prakasa Rao B.L.S. (2012). Associated Sequences, Demi Martingales and Nonparametric Inferences.
Probability and its Applications, Springer Basel AG.

Roussas, GG. (1991). Kernel Estimates Under Association: Strong Uniform Consistency. Statistics and
Probability Letters, 12, 393-403.

Roussas, GG. (2000). Asymptotic Normality of the Kernel Estimate of a Probability Density Function
under Association. Statistics and Probability Letters, 50,1-12.

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman&Hall.
Spierdijk, L. (2008). Nonparametric Conditional Hazard Rate Estimation: a Local Linear Approach.
Computational Statistics and Data Analysis, 52, 2419-2434.

Tanner, M.A. and Wong, W.H. (1983). The Estimation of the Hazard Function from Randomly Censored
Data by Kernel Methods. Annals of Statistics, 11, 989-993.

Van Keilegom, I. and Veraverbeke, N. (2001). Hazard Rate Estimation in Nonparametric Regression with
Censored Data. Annals of the Institute of Statistical Mathematics, 53, 730-745.

Ying, Z. and Wei, L.J. (1994). The Kaplan-Meier Estimate for Dependent Failure Time Observations.
Journal Multivariate Analysis, 50,17-29.

Asymptotic Normality of the Conditional Hazard Rate Function Estimator for Right Censored Data under Association

130



