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Abstract

In this paper, we propose a new lifetime distribution. We discuss several mathematical properties of the new distribu-
tion. Certain characterizations of the new distribution are provided. We study the maximum likelihood estimation and
asymptotic interval estimation of the unknown parameters. A simulation study, as well as an application of the new
distribution to failure data, are also presented. We end the paper with a number of remarks.
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1. Introduction

Lifetime distributions play important roles in modeling and analysis of many life phenomena. Consequently, many
researchers have tried to introduce new competitive lifetime distributions in order to model real data that arise in many
areas such as medicine, engineering and economics where the old distributions cannot be employed. Generalizing a
lifetime distribution often consists of adding one or more parameters to the baseline distribution. The new parameters
could make the generalized distribution more flexible in the sense that it can model the data sets more suitably. There
exist many methods of generalizing distributions, see for example Lee et al. (2013) for a discussion regarding a variety
of methods of generating statistical distributions developed in recent decades. Among the generalizing methods, an
approach, called the quadratic rank transmutation map, has been proposed by Shaw and Buckley (2007) and Shaw
and Buckley (2009). Let g(x) and G(x) be the probability density function (pdf) and cumulative distribution function
(cdf) of the baseline distribution, respectively, of a random variable X , then the cdf and pdf of the transmuted family
of distributions are given by

F (x) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1, x ∈ R, (1)

and

f(x) = (1 + λ)g(x)− 2λg(x)G(x), x ∈ R, (2)

respectively.
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Many authors use the transmutation procedure to achieve new generalized distributions, see for example the trans-
muted generalized inverse Weibull distribution (Khan and King, 2014, and Merovci et al., 2013), the transmuted
exponentiated exponential distribution (Merovci, 2013a), the transmuted Lindley distribution (Merovci, 2013b), the
transmuted Dagum distribution (Elbatal and Aryal, 2015), the transmuted Burr type III distribution (Abdul-Moniem,
2015) and the transmuted Birnbaum-Saunders distribution (Bourguignon et al., 2017).
Nadarajah and Haghighi (2011) introduced an extension of the exponential distribution, called the Nadarajah-Haghighi
distribution, with the following pdf

fNH(x) = αβ(1 + βx)α−1e1−(1+βx)α , x > 0, α, β > 0.

Here, we emphasize that the Nadarajah-Haghighi distribution is a special case of the distribution introduced by Dimi-
trakopoulou et al. (2007).
Tahir et al. (2018) used the transformation Y = 1/X , where X has a Nadarajah-Haghighi distribution, to propose
a new inverted model called the inverted Nadarajah-Haghighi (INH) distribution. The pdf of the INH distribution is
given by

g(y) =
αβ

y2

(
1 +

β

y

)α−1

exp

[
1−

(
1 +

β

y

)α]
, y > 0, α, β > 0.

The corresponding cdf of the INH is

G(y) = exp

[
1−

(
1 +

β

y

)α]
, y ≥ 0.

In this paper, we use the transmutation map to generalize the INH distribution. To this end, we take g(x) and G(x) in
(2) to be the pdf and cdf of the INH distribution, respectively, to obtain the pdf of the transmuted inverted Nadarajah-
Haghighi (TINH) distribution as follows

f(x) =
αβ

x2

(
1 +

β

x

)α−1

exp

[
1−

(
1 +

β

x

)α]{
1 + λ− 2λ exp

[
1−

(
1 +

β

x

)α]}
,

α > 0, β > 0, |λ| ≤ 1, x > 0. (3)

We write X ∼ TINH(α, β, λ) if the pdf of X is (3). The corresponding cdf of the TINH distribution is given by

F (x) = exp

[
1−

(
1 +

β

x

)α]{
1 + λ− λ exp

[
1−

(
1 +

β

x

)α]}
, x ≥ 0. (4)

The special cases of the TINH distribution are listed below:

• For λ = 0, we obtain the INH distribution (Tahir et al., 2018).

• For α = 1, we obtain the transmuted inverted (inverse) exponential distribution, discussed by Oguntunde and
Adejumo (2015).

• For λ = 0 and α = 1, we obtain the inverted (inverse) exponential distribution.

In addition, the hazard rate function (hrf) of the new distribution turns out to be

h(x) =

αβ
x2

(
1 + β

x

)α−1

exp
[
1−

(
1 + β

x

)α]{
1 + λ− 2λ exp

[
1−

(
1 + β

x

)α]}
1− exp

[
1−

(
1 + β

x

)α]{
1 + λ− λ exp

[
1−

(
1 + β

x

)α]} , x > 0. (5)

Figures 1 and 2 show the shapes of (3) and (5) for selected values of the parameters, respectively. From Figure 1,
we see that the pdf of the new model is unimodal. Figure 2 reveals that the hrf shapes are upside-down bathtub
(increasing-decreasing). Therefore the new distribution shows a somehow flexibility and it may be used to model the
lifetime data sets that cannot be modeled by non-inverted distributions satisfactorily. Here, we emphasize that hrf
might not be absolutely decreasing. Tahir et al. (2018) claimed that the pdf and hrf of the INH distribution can be
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decreasing and they plotted pdf and hrf when the scale and shape parameters of the INH distribution set equal to one
and 0.4, respectively, to show their claim. However, we plotted the pdf and hrf of the INH distribution (recall that INH
is a special case of TINH when λ = 0) and observed that they both are increasing-decreasing, see Figure 3.
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Figure 1: Plots of the pdfs of the TINH distribution for selected parameter values.
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Figure 2: Plots of the hrfs of the TINH distribution for selected parameter values.

The rest of the article is organized as follows: Several mathematical properties of the new model are presented in
Section 2. Certain characterizations of the new distribution are provided in Section 3. Section 4 is devoted to maximum
likelihood estimation of the parameters, a discussion regarding the asymptotic behavior of the maximum likelihood
estimators and a simulation study. An application of the new model is provided in Section 5. Finally, a number of
remarks are given in Section 6.

2. Mathematical Properties

In this section, we focus on some mathematical properties of the new distribution, such as the quantile function,
skewness, kurtosis, moments, reversed hazard rate function, the reliability parameter and order statistics.
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Figure 3: Plots of the pdf (left) and hrf (right) of the TINH distribution when β = 1, α = 0.4 and λ = 0.
2.1. Quantile function

The quantile function is one of the important characteristics of a distribution. One application of the quantile function
arises when one wants to generate samples from the selected distribution. For the TINH distribution, the quantile
function x = Q(p), can be derived via inverting the cdf (4)

Q(p) =


β

[(
1− ln

[
(1+λ)−

√
(1+λ)2−4λp

2λ

]) 1
α

− 1

]−1

, if λ 6= 0,

β
[
(1− ln p)

1
α − 1

]−1

, if λ = 0.

(6)

The median of X ∼ TINH(α, β, λ) is simply obtained by setting p = 0.5 in (6). In order to generate a random
sample of size n from TINH(α, β, λ), first generate a random sample, say U1, · · · , Un from the standard uniform
distribution, then the required random sample of size n,X1, · · · , Xn, can be derived by using the relationXi = Q(Ui)
for i = 1, · · · , n.
We can also obtain the measures of skewness and kurtosis based on the quantile function. The Bowley skewness
(also known as the Galton skewness) is formulated based on quartiles. Let Qi be the i-th quartile of a distribution
(i = 1, 2, 3), then the Bowley skewness is given by

B =
Q3 +Q1 − 2Q2

Q3 −Q1
=
Q( 3

4 ) +Q( 1
4 )− 2Q( 2

4 )

Q( 3
4 )−Q( 1

4 )
.

The plots of the Bowley skewness with respect to (w.r.t.) α for some values of λ and w.r.t. λ for some values of
α, are displayed in Figure 4. Note that the value of β does not affect B as β is a scale parameter. Figure 4 reveals
that the Bowley skewness is decreasing w.r.t. α but it is increasing-decreasing or decreasing-increasing-decreasing
w.r.t. λ (when the other two parameters are kept fixed). The positive values of B confirm that the TINH distribution is
right-skewed for the selected parameter values.
Next, we consider the Moors kurtosis (see Moors, 1988), which is formulated based on the octiles. Let Oi be the i-th
octile of a distribution (i = 1, · · · , 7), then the Moors kurtosis is

M =
(O3 −O1) + (O7 −O5)

O6 −O2
=
Q( 3

8 )−Q( 1
8 ) +Q( 7

8 )−Q( 5
8 )

Q( 6
8 )−Q( 2

8 )
.

Figure 5 contains the plots of the Moors kurtosis w.r.t. α for some values of λ and w.r.t. λ for some values of α. We
note that the value of β does not affectM either. From Figure 5, we see that the Moors kurtosis is decreasing w.r.t.
α and it is increasing-decreasing or decreasing-increasing-decreasing w.r.t. λ (when the other two parameters are kept
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Figure 4: Plots of the Bowley skewness (B) for the TINH distribution w.r.t α for some values of λ (left) and w.r.t. λ
for some values of α (right).
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Figure 5: Plots of the Moors kurtosis (M) for the TINH distribution w.r.t α for some values of λ (left) and w.r.t. λ for
some values of α (right).
fixed).

Both measures of Bowley skewness and Moors kurtosis are not very sensitive to outliers. Another advantage of these
measures is that they can be obtained regardless of the existence of the moments. Moreover, they are simply formulated
and therefore they can easily be derived especially when the quantile function possesses an explicit form.

2.2. Moments

The r-th moment of the TINH distribution can be expressed as follows

E(Xr) =

∫ ∞
0

xr−2αβ

(
1 +

β

x

)α−1

exp

[
1−

(
1 +

β

x

)α]{
1 + λ− 2λ exp

[
1−

(
1 +

β

x

)α]}
dx.

Oguntunde and Adejumo (2015) emphasized that the first moment, second moment and the other higher-order mo-
ments do not exist for the transmuted inverse exponential distribution (a special case of the TINH distribution when
α = 1). Therefore we can state that the ordinary moments (i.e. E(Xr) for r = 1, 2, 3, · · · ) of the TINH distribution do
not exist for all combinations of the parameters. Actually, the existence of the r-th moment (r = 1, 2, 3, · · · ) depends
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on the parameter values. Tahir et al. (2018) reported a general expression for the r-th ordinary moment of the INH
distribution and then stated that the measures of skewness and kurtosis can be obtained using these ordinary moments
without noting the fact that the ordinary moments of the INH distribution might not exist for all the parameter com-
binations. Tahir et al. (2018) did not discuss the famous method of moment estimation of the parameters among the
various estimation methods developed in their paper. Perhaps they could not apply the method of moment estimation
because the ordinary moments of the INH distribution might not exist for all the parameter combinations.
We have implemented the computational softwares like R (R Core Team, 2018) to check if the ordinary moments of
the TINH distribution and its special cases exist. We set α = 0.3, 0.5, 0.8, 1, 2, 3, 4, β = 1, λ = −1,−0.5, 0, 0.5, 1
and r = 1, 2. Here, we recall that if E(X2) does not exist, then E(X2+s) for s > 0 does not exist either. The software
could not compute the moments except for the case λ = 1 and r = 1.

2.3. Reversed hazard rate function

The reversed hazard rate function (rhrf) of a continuous random variable X is defined as

r(t) = lim
∆t→0

P (X > t−∆t|X ≤ t)
∆t

=
f(t)

F (t)
.

One property of the rhrf is that it cannot be increasing for non-negative distributions. In addition, the rhrf seems
suitable for studying parallel systems, see Block et al. (1998). For the TINH distribution, we have

r(t) =

αβ
t2

(
1 + β

t

)α−1 {
1 + λ− 2λ exp

[
1−

(
1 + β

t

)α]}
1 + λ− λ exp

[
1−

(
1 + β

t

)α] , t > 0. (7)

We have plotted r(t) for selected parameter values, see Figure 6. It can be seen that r(t) is decreasing w.r.t. t for all
the considered cases in Figure 6.
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Figure 6: Plots of the rhrfs of the TINH distribution for some selected parameter values.

2.4. Reliability parameter

Let X and Y be two independent random variables. Then, the reliability parameter, also known as the stress-strength
parameter, is simply defined as P (X > Y ). The stress-strength parameter may be interpreted as follows: Suppose
X denotes the strength of a component that is subjected to a stress Y . Then the component survives as long as X
remains greater than Y . The reliability parameter has other interpretations, as well. For example, it can be considered
as a measure for the comparison of two populations. Discussion regarding the stress-strength parameter has absorbed
many researchers and many statisticians studied the problems pertaining to the stress-strength parameter for various
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life distributions.

Now, suppose that X ∼ TINH(α, β, λ1) and Y ∼ TINH(α, β, λ2) are two independent random variables, then the
stress-strength parameter is

R =

∫ ∞
0

P (Y < X|X = x)fX(x)dx =

∫ ∞
0

fX(x)FY (x)dx

=

∫ ∞
0

αβ

x2

(
1 +

β

x

)α−1

exp

[
1−

(
1 +

β

x

)α]{
1 + λ1 − 2λ1 exp

[
1−

(
1 +

β

x

)α]}
× exp

[
1−

(
1 +

β

x

)α]{
1 + λ2 − λ2 exp

[
1−

(
1 +

β

x

)α]}
dx

=

∫ 1

0

u (1 + λ1 − 2λ1u)(1 + λ2 − λ2u)du

=
3− λ1 + λ2

6
.

Setting λ1 = λ2, we arrive at R = 0.5 as expected.

2.5. Order statistics

Order statistics play a key role in many life experiments, especially when censoring schemes are applied. An applica-
tion of order statistics arises when we deal with k-out-of-n systems. Suppose that a system contains n items and the
lifetimes of the items, denoted by X1, · · · , Xn, are independent identically distributed with a common cdf F . Sup-
pose further, the system works as long as at least k items work. Let Xi:n denote the i-th order statistic of the sample
X1, · · · , Xn. Then the lifetime of the system coincides with Xn−k+1:n. Two special cases of k-out-of-n systems are
the parallel (k = 1) and series (k = n) systems.

Here, we assume that the underlying cdf F , is the cdf of TINH distribution with parameters α, β and λ. In general,
the cdf and pdf of the i-th order statistic are given by

Fi:n(x) =

n∑
k=i

(
n

k

)
[F (x)]k[1− [F (x)]n−k

=

∫ F (x)

0

n!

(i− 1)!(n− i)!
ti−1(1− t)n−idt, x ∈ R,

and

fi:n(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1[1− F (x)]n−if(x), x ∈ R,

respectively.

Using the binomial expansion, we have

[1− F (x)]n−i =

n−i∑
k=0

(−1)k
(
n− i
k

)
[F (x)]k.

The Transmuted Inverted Nadarajah-Haghighi Distribution With an Application to Lifetime Data 457



Pak.j.stat.oper.res. Vol.17 No.2 2021 pp 451-466 DOI: http://dx.doi.org/10.18187/pjsor.v17i2.3734

Therefore, for the TINH distribution, we have

fi:n(x) =

n−i∑
k=0

(−1)k n!

k!(i− 1)!(n− i− k)!
[F (x)]k+i−1f(x)

=

n−i∑
k=0

(−1)k n!

k!(i− 1)!(n− i− k)!

[
exp

[
1−

(
1 +

β

x

)α]{
1 + λ− λ exp

[
1−

(
1 +

β

x

)α]}]k+i−1

× αβ

x2

(
1 +

β

x

)α−1

exp

[
1−

(
1 +

β

x

)α]{
1 + λ− 2λ exp

[
1−

(
1 +

β

x

)α]}
=

n−i∑
k=0

k+i−1∑
j=0

(−1)k+j n!
(
k+i−1
j

)
(1 + λ)k+i−1−jλj

k!(i− 1)!(n− i− k)!
exp

[
(k + i+ j)

(
1−

(
1 +

β

x

)α)]

× αβ

x2

(
1 +

β

x

)α−1{
1 + λ− 2λ exp

[
1−

(
1 +

β

x

)α]}
.

The pdf of the largest order statistic, corresponding to the lifetime of a parallel system, is then simplified as

fn:n(x) = n[F (x)]n−1f(x)

=
nαβ

x2

(
1 +

β

x

)α−1

exp

[
n

(
1−

(
1 +

β

x

)α)]{
1 + λ− 2λ exp

[
1−

(
1 +

β

x

)α]}
×
{

1 + λ− λ exp

[
1−

(
1 +

β

x

)α]}n−1

.

3. Characterizations

This section deals with various characterizations of the TINH distribution. These characterizations are based on: (i) a
simple relationship between two truncated moments and (ii) the reversed hazard rate function.

3.1. Characterizations based on two truncated moments

In this subsection, we present characterizations of TINH distribution in terms of the ratio of two truncated moments.
The first characterization result employs a theorem due to Glänzel (1987). Here, we restate the theorem.

Theorem 1: Let (Ω,F ,P) be a given probability space and let H = [a, e] be an interval for some a < e (a =
−∞, e = ∞ might as well be allowed). Let X : Ω → H be a continuous random variable with the distribution
function F and let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] ξ (x) , x ∈ H,

is defined with some real function ξ. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H . Finally, assume that the equation ξq1 = q2 has no real
solution in the interior of H . Then F is uniquely determined by the functions q1, q2 and ξ, particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξ q1 − q2 and C is the normalization constant, such

that
∫
H

dF = 1.
Note that the result holds also when the interval H is not closed. As shown in Glänzel (1990), this characterization is
stable in the sense of weak convergence.

Proposition 1: LetX : Ω→ (0,∞) be a continuous random variable and let q1 (x) =
{

1 + λ− 2λ exp
[
1−

(
1 + β

x

)α]}−1
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and q2 (x) = q1 (x) exp
[
1−

(
1 + β

x

)α]
for x > 0. The random variable X has pdf (3) if and only if the function ξ

defined in Theorem 1 has the form

ξ (x) =
1

2

{
1 + exp

[
1−

(
1 +

β

x

)α]}
, x > 0.

Proof. If X has pdf (3), then

(1− F (x))E [q1 (X) | X ≥ x] = 1− exp

[
1−

(
1 +

β

x

)α]
, x > 0,

and

(1− F (x))E [q2 (X) | X ≥ x] =
1

2

{
1− exp

{
2

[
1−

(
1 +

β

x

)α]}}
, x > 0.

Finally

ξ (x) q1 (x)− q2 (x) =
1

2
q1 (x)

{
1− exp

[
1−

(
1 +

β

x

)α]}
,

for x > 0 and hence the result.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=
αβx−2

(
1 + β

x

)α−1

exp
[
1−

(
1 + β

x

)α]
1− exp

[
1−

(
1 + β

x

)α] , x > 0,

and hence

s (x) = − log

{{
1− exp

[
1−

(
1 +

β

x

)α]}}
, x > 0.

Now, in view of Theorem 1, X has density (3).

Corollary 1: Let X : Ω → (0,∞) be a continuous random variable and let q1(x) be as in Proposition 1. Then, X
has pdf (3) if and only if there exist functions q2 and ξ defined in Theorem 1 satisfying the differential equation

ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=
αβx−2

(
1 + β

x

)α−1

exp
[
1−

(
1 + β

x

)α]
1− exp

[
1−

(
1 + β

x

)α] , x > 0.

Corollary 2: The general solution of the differential equation in Corollary 1 is

ξ (x) =

{
1− exp

[
1−

(
1 +

β

x

)α]}−1
 −

∫
αβx−2

(
1 + β

x

)α−1

×

exp
[
1−

(
1 + β

x

)α]
(q1 (x))

−1
q2 (x) +D

 ,
where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition
1 with D = 1

2 . However, it should be also noted that there are other triplets (q1, q2, ξ) satisfying the conditions of
Theorem 1.
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3.2. Characterization in terms of the reversed hazard rate function

Proposition 2: Let X : Ω → (0,∞) be a continuous random variable. The pdf of X is (3) if and only if its reversed
hazard rate function rF (x) satisfies the following differential equation

r′F (x) +
2

x
rF (x) = αβ x−2 d

dx


(

1 + β
x

)α−1 {
1 + λ− 2λ exp

[
1−

(
1 + β

x

)α]}
1 + λ− λ exp

[
1−

(
1 + β

x

)α]
 , x > 0,

with the boundary condition limx→∞ rF (x) = 0.

Proof. If X has pdf (3), then clearly the above differential equation holds.
Now, if this differential equation holds, then

d

dx

{
x2rF (x)

}
= αβ

d

dx


(

1 + β
x

)α−1 {
1 + λ− 2λ exp

[
1−

(
1 + β

x

)α]}
1 + λ− λ exp

[
1−

(
1 + β

x

)α]
 ,

or

rF (x) =
αβ x−2

(
1 + β

x

)α−1 {
1 + λ− 2λ exp

[
1−

(
1 + β

x

)α]}
1 + λ− λ exp

[
1−

(
1 + β

x

)α] ,

which is the reversed hazard rate function of the TINH distribution.

Remark 1: For the special case of λ = 0, namely the INH distribution, the formulas in the above subsections will be
quite simplified and the differential equation in Proposition 2 will have the following simple form:

r′F (x) +
2

x
rF (x) = −α (α− 1)β2 x−4

(
1 +

β

x

)α−2

, x > 0.

4. Maximum Likelihood Estimation

One of the common methods of estimation is the maximum likelihood (ML) estimation. The maximum likelihood
estimators (MLEs) have the advantage of being asymptotically distributed as a k-variate normal distribution under
some regularity conditions, where k is the number of parameters, see Lehmann and Casella (1998). Suppose that
θ = (α, β, λ) is the vector of the unknown parameters of the TINH distribution which are to be estimated based on
a random sample of size n, X1, X2, · · · , Xn. Let x = (x1, x2, · · · , xn) denote the observed values of the random
sampleX = (X1, X2, · · · , Xn). Then the log-likelihood function of θ for the given x is

`(θ;x) ≡ `(θ) = n logα+ n log β − 2

n∑
i=1

log xi + (α− 1)

n∑
i=1

log

(
1 +

β

xi

)
+ n−

n∑
i=1

(
1 +

β

xi

)α
+

n∑
i=1

log (1 + λ− 2λ ti) ,

where

ti = exp

[
1−

(
1 +

β

xi

)α]
.

The ML estimates of the parameters are obtained by maximizing the log-likelihood function with respect to the pa-
rameters. To this end, we take the partial derivatives of `(θ) with respect to the unknown parameters and then set
them equal to zero. Therefore, the solutions of the following nonlinear equations can help us find the required ML
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estimates.

∂`(θ)

∂α
=

n

α
+

n∑
i=1

log

(
1 +

β

xi

)
−

n∑
i=1

(
1 +

β

xi

)α
log

(
1 +

β

xi

)
− 2λ

n∑
i=1

t
(α)
i

1 + λ− 2λ ti
= 0,

∂`(θ)

∂β
=

n

β
+ (α− 1)

n∑
i=1

1

xi + β
− α

n∑
i=1

1

xi

(
1 +

β

xi

)α−1

− 2λ

n∑
i=1

t
(β)
i

1 + λ− 2λ ti
= 0,

∂`(θ)

∂λ
=

n∑
i=1

1− 2 ti
1 + λ− 2λ ti

= 0,

where

t
(α)
i =

∂ti
∂α

= −
(

1 +
β

xi

)α
exp

[
1−

(
1 +

β

xi

)α]
log

(
1 +

β

xi

)
,

and

t
(β)
i =

∂ti
∂β

= − α
xi

(
1 +

β

xi

)α−1

exp

[
1−

(
1 +

β

xi

)α]
.

Computational softwares may help us to find the solutions of the above equations. Next, we consider the asymptotic
behavior of the MLEs for the purpose of the interval estimation. As stated earlier, MLEs are asymptotically normally
distributed under some regularity conditions. Let α̂, β̂ and λ̂ denote the MLEs of α, β and λ, respectively, then as
n −→∞, we have

(α̂− α, β̂ − β, λ̂− λ)T
D−→ N3(0,J−1

n (θ)),

where D−→means convergence in distribution, 0 is a vector whose elements are all equal to zero, Jn(θ) is the expected
Fisher information matrix contained in the random sampleX1, X2, · · · , Xn and J−1

n (θ) is the inverse matrix of Jn(θ).
We may use an estimator of J−1

n (θ) to find the asymptotic confidence intervals. Consider the following matrix

In(θ) = −

 Iαα Iαβ Iαλ
Iβα Iββ Iβλ
Iλα Iλβ Iλλ

 = −



∂2`(θ;X)

∂α2

∂2`(θ;X)

∂α∂β

∂2`(θ;X)

∂α∂λ

∂2`(θ;X)

∂β∂α

∂2`(θ;X)

∂β2

∂2`(θ;X)

∂β∂λ

∂2`(θ;X)

∂λ∂α

∂2`(θ;X)

∂λ∂β

∂2`(θ;X)

∂λ2


.

The observed elements of −In(θ) are

Iαα =
∂2`(θ)

∂α2
=
−n
α2
−

n∑
i=1

(
1 +

β

xi

)α [
log

(
1 +

β

xi

)]2

− 2λ

n∑
i=1

t
(αα)
i

1 + λ− 2λ ti
− 4λ2

n∑
i=1

[
t
(α)
i

]2
(1 + λ− 2λ ti)

2 ,

Iαβ = Iβα =
∂2`(θ)

∂α∂β
=

n∑
i=1

1

xi + β
−

n∑
i=1

1

xi

(
1 +

β

xi

)α−1 [
1 + α log

(
1 +

β

xi

)]
− 2λ

n∑
i=1

t
(αβ)
i

1 + λ− 2λ ti

−4λ2
n∑
i=1

t
(α)
i t

(β)
i

(1 + λ− 2λ ti)
2 ,

Iαλ = Iλα =
∂2`(θ)

∂α∂λ
= −2

n∑
i=1

t
(α)
i

(1 + λ− 2λ ti)
2 ,

Iββ =
∂2`(θ)

∂β2
=
−n
β2
− (α− 1)

n∑
i=1

1

(xi + β)2
− α(α− 1)

n∑
i=1

1

x2
i

(
1 +

β

xi

)α−2

− 2λ

n∑
i=1

t
(ββ)
i

1 + λ− 2λ ti

−4λ2
n∑
i=1

[
t
(β)
i

]2
(1 + λ− 2λ ti)

2 ,
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Iβλ = Iλβ =
∂2`(θ)

∂β∂λ
= −2

n∑
i=1

t
(β)
i

(1 + λ− 2λ ti)
2 , Iλλ =

∂2`(θ)

∂α2
= −

n∑
i=1

(
1− 2 ti

1 + λ− 2λ ti

)2

,

where

t
(αα)
i =

∂2ti
∂α2

=

(
1 +

β

xi

)α{(
1 +

β

xi

)α
− 1

}[
log

(
1 +

β

xi

)]2

exp

[
1−

(
1 +

β

xi

)α]
,

t
(αβ)
i =

∂2ti
∂α∂β

= − 1

xi

(
1 +

β

xi

)α−1{
1 + α log

(
1 +

β

xi

)[
1−

(
1 +

β

xi

)α]}
exp

[
1−

(
1 +

β

xi

)α]
,

and

t
(ββ)
i =

∂2ti
∂β2

=
α

x2
i

(
1 +

β

xi

)α−2{
α

(
1 +

β

xi

)α
− (α− 1)

}
exp

[
1−

(
1 +

β

xi

)α]
.

Let I−1
n (θ) be the inverse matrix of In(θ). One may replace the parameters that appear in the elements of I−1

n (θ)

with their corresponding MLEs, to obtain an estimator of J−1
n (θ), denoted by Ĵ−1

n (θ). Now, let zδ denote the δ-th
upper quantile of the standard normal distribution, then the 100(1−γ)% two-sided equi-tailed approximate confidence
intervals for α, β and λ are given by

α̂± z γ
2

√
V̂ ar(α̂), β̂ ± z γ

2

√
V̂ ar(β̂) and λ̂± z γ

2

√
V̂ ar(λ̂),

respectively, where V̂ ar(·) is the diagonal element of Ĵ−1
n (θ) corresponding to each parameter.

4.1. A simulation study

Here, we present a small simulation study in order to evaluate the method of ML estimation of the unknown parameters
of the TINH distribution. To this end, we generate N = 1000 random samples of sizes n = 100, 200 and 500 from
the TINH distribution for selected parameter values. Then, we obtain the ML estimates in each replication. The
evaluation is performed based on two criteria: the empirical bias (bias for short) and the estimated root mean squared
error (ERMSE). The computations are done using R (R Core Team, 2018). We excluded a number of replications, for
which the convergence was not met and/or the ML estimate of λ did not belong to [−1, 1]. Moreover, we encountered
a few number of errors so the related replications were omitted. The numerical results are given in Table 1. From
Table 1, we observe that the ML method performs rather well in the most cases.

5. Application

In this section, we intend to provide an application of the new model to a real data set. To this end, we consider the
time interval failure data (in thousands of hours) for three secondary pumps, reported by Suprawhardana and Sangadji
(1999). The data are as follows:

2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 3.474, 0.150, 0.358, 0.101, 1.359, 3.465,

1.060, 0.614, 1.921, 4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320.

We compare the fit of the TINH distribution with those of the other models, listed below

• The INH distribution, introduced by Tahir et al. (2018), which is a special case of the TINH distribution with
λ = 0.

• The TIE distribution, discussed by Oguntunde and Adejumo (2015), which is a special case of the TINH distri-
bution with α = 1.

• The IE distribution, which is a special case of the TINH distribution with λ = 0 and α = 1.

• The transmuted inverse Weibull (TIW) distribution, discussed also by Mahmoud and Mandouh (2013), with the
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Table 1: The biases and ERMSEs of the MLEs (β = 1).

n = 100

Bias ERMSE

α λ α̂ β̂ λ̂ α̂ β̂ λ̂

0.5 -0.5 -0.0521 1.8014 0.7554 0.0944 2.3452 0.8436
0.5 0.0324 0.3044 -0.0141 0.1617 0.9170 0.3870

1 -0.5 0.3077 1.0045 0.4398 1.2656 1.8406 0.6105
0.5 0.2485 0.4137 0.0283 1.0708 1.0873 0.3535

3 -0.5 9.3051 -0.7734 -0.1177 9.4159 0.8152 0.2452
0.5 10.7955 -0.8259 -0.2537 10.8059 0.8261 0.3779

n = 200

Bias ERMSE

α λ α̂ β̂ λ̂ α̂ β̂ λ̂

0.5 -0.5 -0.0654 2.0660 0.8272 0.0866 2.5643 0.8959
0.5 0.0088 0.3174 -0.0051 0.1156 0.8828 0.3678

1 -0.5 -0.0440 1.3362 0.5482 0.7680 1.9966 0.6628
0.5 0.0549 0.4487 0.0543 0.5198 1.0168 0.3104

3 -0.5 9.4833 -0.8036 -0.1882 9.5271 0.8048 0.2376
0.5 10.8783 -0.8279 -0.2742 10.8871 0.8281 0.3385

n = 500

Bias ERMSE

α λ α̂ β̂ λ̂ α̂ β̂ λ̂

0.5 -0.5 -0.0732 2.1405 0.8679 0.0830 2.5033 0.9052
0.5 0.0105 0.0934 -0.0316 0.0766 0.5389 0.2749

1 -0.5 -0.2050 1.3522 0.5893 0.2917 1.7064 0.6458
0.5 -0.0541 0.5527 0.1052 0.3453 1.0433 0.2641

3 -0.5 9.6939 -0.8145 -0.2419 9.7098 0.8152 0.2573
0.5 10.9633 -0.8293 -0.2566 10.9635 0.8294 0.2850

following pdf

fTIW (x) =
αβ

xα+1
exp

(
− β

xα

){
1 + λ− 2λ exp

(
− β

xα

)}
, α > 0, β > 0, |λ| ≤ 1, x > 0.

• The inverse Weibull (IW) distributionwhich is a special case of the TIW distribution with λ = 0.

We obtain the ML estimates of the parameters of the above models. We shall use some goodness-of-fit criteria such
as the minimum value of the minus log-likelihood (− log(L)), Anderson-Darling statistic (A∗), Cramér-von Mises
statistic (W ∗), Kolmogorov-Smirnov (K-S) test statistic and its corresponding p-value in order to compare the fitted
models. Generally, a model with smaller values of K-S test statistic, − log(L), A∗ and W ∗ possesses a better fit. For
details pertaining to A∗ and W ∗, one may refer to Chen and Balakrishnan (1995). The numerical computations were
performed using R (R Core Team, 2018) and the package AdequacyModel, see Marinho et al. (2013). The results
are summarized in Table 2. For visual comparison, the empirical histogram of the data, as well as the fitted pdfs of
the considered models, are displayed in Figure 7. Moreover, the probability-probability (P-P) plots of the considered
models are illustrated in Figure 8.
From Table 2, it can be observed that the smallest values of K-S test statistic,− log(L),A∗ andW ∗ belong to the TINH
distribution, therefore the TINH distribution provides the best fit among all the considered models. From Figures 7
and 8, we can conclude that the TINH distribution seems quite suitable for the time interval failure data, as well. To
sum up, the fit of the TINH model is superior to those of the considered distributions.
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Table 2: Parameter ML estimates (standard errors in the parentheses) and the goodness-of-fit test statistics.

Model α β λ − log(L) W ∗ A∗ K-S p-value
TINH 0.4689 1.2843 −0.2025 35.2647 0.0380 0.3291 0.0993 0.9604

(0.1565) (1.6183) (0.9637)

INH 0.4510 1.6402 35.2812 0.0387 0.3334 0.1005 0.9563
(0.1260) (1.1122)

TIE 0.2498 −0.5420 36.9721 0.0702 0.5282 0.1679 0.4845
(0.0725) (0.3279)

IE 0.3165 38.1047 0.0869 0.6279 0.2014 0.2703
(0.0660)

TIW 0.8035 0.3531 −0.4603 35.8823 0.0580 0.4550 0.10685 0.9305
(0.1269) (0.1636) (0.5431)

IW 0.7489 0.4897 36.1377 0.0661 0.5044 0.1128 0.8999
(0.1175) (0.1368)
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Figure 7: Empirical histogram of the data as well as the fitted pdfs of the TINH, INH, TIE, IE, TIW and IW distribu-
tions.
6. Concluding Remarks

In this paper, we have introduced a new three-parameter distribution called the transmuted inverted Nadarajah-Haghighi
distribution. The new distribution includes the inverted Nadarajah-Haghighi distribution, the transmuted inverted ex-
ponential distribution and the inverted exponential distribution as its special cases. Several mathematical properties of
the proposed distribution such as the quantile function, skewness, kurtosis, moments, reversed hazard rate function,
the reliability parameter and order statistics, have been discussed. Certain characterizations of the new distribution are
presented. The maximum likelihood procedure has been utilized to estimate the parameters and a small simulation
study is provided to assess the procedure. The usefulness of the new distribution has been demonstrated via a real data
application. All the computations are performed using Maple 17 and R (R Core Team, 2018).

From the results of the paper, we may conclude that the new distribution provides more flexibility than the other
considered models. Therefore, we hope that the proposed model can be applied to lifetime (and other types of) data
analysis plans.
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Figure 8: The P-P plots of the considered models.
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