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Abstract

Al-Shomranietal.(2016)introducedanewfamilyofdistributions(TL−G)basedontheTopp-Leonedistribution(TL)by
replacing the variable xby any cumulative distribution function G(t).With only one extra parameter which control the
skewness , this family isagood competitor toseveral generalized distributions used instatistical analysis.In thiswork,we
consider the extended exponential as the baseline distribution G toobtain anew model called the Topp-Leone extended
exponential distribution TL−EE .After studying mathematical and statistical properties of this model ,we propose
different estimation methods such as maximum likelihood estimation ,method of ordinary and weighted least squares ,
method of percentile ,method of maximum product of spacing ,method of Cramer Von-Mises ,modi fied least squares
estimators andchi-squareminimum method forestimating theunknown parameters.Inaddition totheclassical criteria for
model selection,wedevelop for thisdistribution agoodness-of-fitstatistic testbasedonamodificationofPearson statistic.
The performances of themethods used aredemonstrated byanextensive simulation study.With applications tocovid-19
dataandwaiting times forbank service,acomparison evaluation shows that theproposed model describes databetter than
severalcompetingdistributions.

Key Words: Maximum likelihood estimation, method of percentile, method of maximum product of spacing, method
of Cramer Von-Mises, modified least squares estimators.
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1. Introduction

As it’s a good competitor to beta distribution, the Topp-Leone distribution (TL) introduced by Topp and Leone (1955)
and revisited by Nadarajah and Kotz (2003) attracts the attention of many authors. Ghitany et al. (2005) studied
its hazard rate, mean residual life, reversed hazard rate, expected inactivity time, and its stochastic orderings, Dorp
and Kotz (2006) showed its applications in financial engineering, Zhou et al. (2006) derived the distribution of some
combinaisons of Topp-Leone variables, Kotz and Seier (2007) studied the behaviour of the kurtosis and Genç (2012)
derived the moment of the order statistics. Despite its advantages, this J-shaped model support is bounded on (0, 1)
which reduces its applications, this is why some authors have proposed to extend its support. Among these genaral-
izations, we are interesting in a new family of distributions so-called the Topp-Leone family distributions (TL − G)
proposed recently by Al-Shomrani et al. (2016). With only one extra parameter which can control the skewness, these
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new distributions are able to model different data because they can have both heavy and light tails which makes their
scope wider than many of the models used in the analyzes. By replacing the Topp-Leone variable x by any cumulative
distribution function G(t), the proposed models will no longer be limited to data bounded between 0 and 1. After
studying its statistical properties, the authors gave an example where G(t) is the famous exponential distribution.
Recently Rezaei et al. (2017) proposed the use of [G(t)]θ instead of G(t) to obtain an other generalization called
TL-generated (TLG) distribution. The authors studied the maximum likelihood estimators and some special cases of
this family, whereas Arshad and Jamal (2019) investigated the estimation of the scale parameter, the shape parameter
and the reliability function based on recorded data. Also bayesian estimation of the unknown parameters is developed.
Till now, researchers propose different forms of generalizations of Topp-Leone G family, such as Toppe-Leone power
series distribution, type II Topp-Leone generated family, type II generalized Topp-Leone family of distributions and
many others which are cited in Bantan et al. (2020). Along the same lines, we consider a new model called the
Topp-Leone-extended exponential (TL-EE) distribution.
The extended exponential distribution introduced by Nadarajah and Haghighi (2010) is a good alternative to Weibull,
exponentiated exponential and gamma distributions which can have serious limitation in the case where the pdf is
monotonically decreasing and the hazard rate function is increasing. Despite its flexibility, this model has closed
forms of the survival and rate functions which can be increasing, decreasing or constant. Thus motiveted us to use
the extended exponential distribution (EE) as the baseline of TL − G family. After the presentation of the TL-EE
model, we develop its mathematical characteristics and statistical properties as the expansions of the cdf and pdf,
the probability weighted moments and the order statistics, we propose different techniques to estimate the unknown
parameters namely maximum likelihood method, method of ordinary and weighted least squares, method of percentile,
method of maximum product of spacing, method of Cramer Von-Mises and modified least squares estimators. In
addition to the classical criteria for model selection, we develop for this distribution a goodness-of-fit statistic test
based on a modification of the chi-square Pearson statistic. An extensive simulation study is conducted to show the
performances of the methods used. With an application to covid-19 data and waiting times for bank service confirm
the usefullness of the proposed model.

2. Topp-Leone Extended Exponential Distribution (TL-EE)

As we can see in the statistical literature, several generalizations of classical distributions were proposed to better
describe the observed data which become numerous and complex. Among these generalizations, the extended ex-
ponential distribution (EE), introduced by Nadarajah and Haghighi (2010), with parameters α and β given by its
cumulative distribution function (cdf)

G(t, α, β) = 1− exp
{

1− (1 + αt)
β
}
, t > 0 α > 0, β > 0 (1)

and its probability density function (pdf)

g(t, α, β) = αβ (1 + αt)
β−1

exp
{

1− (1 + αt)
β
}
, t > 0, α > 0, β > 0 (2)

provides better fits than many classical models.
Also, Al-Shomrani et al. (2016) proposed a very interesting new family of distributions called the Topp-Leone-
G distributions (TL − G) based on the famous Topp-Leone model by replacing the variable t by any cumulative
distribution function G(t), called the baseline distribution. The cdf of the obtained model is given as follow:

F (t, λ) =
{

1− [1−G(t)]
2
}λ

, t ∈ R, λ > 0 (3)

In this case the variable t is no longer limited between 0 and 1, which makes it possible to describe more data than the
Topp-Leone distribution (TL) and the baseline distribution G(t) also. Its corresponding pdf is:

f(t, λ) = 2λg(t) {1− [1−G(t)]}λ−1 , t ∈ R, λ > 0 (4)

where λ is the extra shape parameter. By substituting Equations (1) and (2) into Equation (3), we derive the cdf of the
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Topp-Leone Extended Exponential distribution TL− EE as follows:

F (t, α, β, λ) =
{

1− e2{1−(1+αt)
β}
}λ

, t > 0 α > 0, β > 0, λ > 0 (5)

So, Its corresponding pdf is:

f(t, α, β, λ) = 2αβλ (1 + αt)
β−1

e2{1−(1+αt)
β}
{

1− e2{1−(1+αt)
β}
}λ−1

(6)

The expressions for the survival function and the failure rate of the TL− EE distribution become respectively:

S(t, α, β, λ) = 1−
{

1− e2{1−(1+αt)
β}
}λ

, t > 0 α > 0, β > 0, λ > 0 (7)

h(t, α, β, λ) =
2αβλ (1 + αt)

β−1
e2{1−(1+αt)

β}
{

1− e2{1−(1+αt)
β}
}λ−1

1−
{

1− e2{1−(1+αt)
β}
}λ (8)

2.1. Quantile Function

The quantile function for this new model is obtained from the inverse of the cdf

Q(t, θ) = q = F−1(t, θ)

as follows:

t =
1

α
− 1

α

[
1− ln(1− q1/λ)

2

]1/β
(9)

As shown in Fig(1− 2) , the proposed model pdf can be decreasing, unimodal and skewed while the hazard function
is increasing, decreasing, bathtub and J shapes.

Fig 1. Probability density function of TL-EE distribution
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Fig 2. Hazard function of TL-EE distribution

3. Mathematical and Statistical Properties

In this section, we obtain useful mathematical representation for TL − EE cdf and pdf forms, which will be used to
obtain probability weighted moments, moments, moment generating function and order statistics of this distribution.

3.1. Expansions of the cdf and pdf of TL-EED

From the forms of the cdf and pdf of TL− EE distribution in (5) and (6), we can find F sf , as follows

F s(t)f(t) = 2αβλ (1 + αt)
β−1

e2{1−(1+αt)
β}
{

1− e2{1−(1+αt)
β}
}(s+1)λ−1

, (10)

by using the generalized binomial expansion, (10) can be written in the form

F s(t)f(t) = 2αβλ(1 + αt)β−1
∞∑
j=0

(−1)jA(j)

(
(s+ 1)λ− 1

j

)
e−2(j+1)(1+αt)β , (11)

where A(j) = e2(j+1). So, the pdf (6), can be written in another form, by putting s = 0 in (11), as follows

f(t) = 2αβλ(1 + αt)β−1
∞∑
j=0

(−1)jA(j)

(
λ− 1

j

)
e−2(j+1)(1+αt)β . (12)

3.2. Probability weighted moments

Making use of the definition of probability weighted moments (PWMs) for a random variable X , denoted by Mr,s,m,
see Greenwood et al.(1979), we have

Mr,s,m = E
[
XrF s(X)F̄m(X)

]
=

∫ ∞
0

xrf(x)F s(x)F̄m(x)dx. (13)

We consider the PWM quantity Mr,s,0 ≡ µr,s, and Mr,0,0 ≡ µr that represents rth non-central moments. So, putting
m = 0 in (13), and use (11) we obtain

µr,s = 2αβλ

∞∑
j=0

(−1)jA(j)

(
(s+ 1)λ− 1

j

)∫ ∞
0

xr(1 + αx)β−1e−2(j+1)(1+αt)βdx.
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Making use of the transformation (1 + αt)β = z, then after algebraic calculations we obtain

µr,s =
2λ

αr

∞∑
j=0

r∑
i=0

(−1)i+j+rA(j)

(
(s+ 1)λ− 1

j

)(
r

i

)∫ ∞
1

zi/βe−2(j+1)zdz,

considering the use of the formula
∫∞
x
zk−1e−Bzdz = (k−1)!

Bk

∑k−1
`=0

(Bx)`

`! e−Bx, with the use of [i/β] (integer part of
the value i/β) instead of i/β, we can obtain

µr,s =
λ

αr

∞∑
j=0

r∑
i=0

[i/β]∑
`=0

(−1)i+j+r
(
r
i

)(
(s+1)λ−1

j

)
[i/β]!

2
i
β−`(j + 1)

i
β−`+1`!

. (14)

The rth non-central moments, µ′r, of the TL− EE distribution can be obtained from (14), setting s = 0, by

µ′r =
λ

αr

∞∑
j=0

r∑
i=0

[i/β]∑
`=0

(−1)i+j+r
(
r
i

)(
λ−1
j

)
[i/β]!

2
i
β−`(j + 1)

i
β−`+1`!

. (15)

Also, M1,s,0 ≡ µ1,s = E [XF s(X)], L-moment, can be given from (14), setting r = 1, by

µ1,s
λ

α

∞∑
j=0

1∑
i=0

[i/β]∑
`=0

(−1)i+j+1
(
(s+1)λ−1

j

)
[i/β]!

2
i
β−`(j + 1)

i
β−`+1`!

.

The moment generating function, MX(t), using the Maclaurin series expansion of the function exp(−tx) in terms of
µ′r, can be given by the form

MX(t) =

∞∑
r=0

tr

r!
µ′r,

which, using (15), gives

MX(t) =

∞∑
r,j=0

r∑
i=0

[i/β]∑
`=0

tr

r!

(−1)i+j+rλ
(
r
i

)(
λ−1
j

)
[i/β]!

2
i
β
−`
αr(j + 1)

i
β
−`+1

`!

3.3. Order statistics

The order statistics has a fundamental role in non-parametric statistics and statistical inference. So, we derive dis-
tributions of order statistics for the proposed distribution and establish their moments. If X1, X2, . . . , Xn is a ran-
dom sample from a population with cdf F (x) and pdf f(x), then the corresponding order statistics are given by
X1:n, X2:n, . . . , Xn:n. The pdf of the dth order statistic Xd:n, is given by

fd:n(x) =
n!

(d− 1)!(n− d)!
[F (x)]

d−1 [
F̄ (x)

]n−d
f(x),

which can be written as

fd:n(x) =
n!

(d− 1)!

n−d∑
w=0

(−1)w

w!(n− d− w)!
f(x) [F (x)]

d+w−1
. (16)

Substituting from (13), replacing s by d+ w − 1, into (16), we obtain

fd:n(x) = 2αβλ
n!

(d− 1)!

∞∑
j=0

n−d∑
w=0

(−1)j+wA(j)
(
(w+d)λ−1

j

)
w!(n− d− w)!

(1 + αx)β−1e−2(j+1)(1+αx)β (17)
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The rth moment of the dth order statistic can be given, from (17) and the same as deriving µr,s, by

µ
(r)
d:n =

λn!

αr(d− 1)!

∞∑
j=0

n−d∑
w=0

r∑
i=0

[i/β]∑
`=0

(−1)i+j+w+r2`−
i
β
(
r
i

)(
(w+d)λ−1

j

)
[i/β]!

w!`!(n− d− w)!(j + 1)
i
β−`+1

.

4. Estimation methods

As it’s well known, the properties of the maximum likelihood estimators are not always verified for small samples,
this is why in the recent years, classical and new estimation methods have been developed. One purpose of this work
is to investigate different methods to estimate the unknown parameters of this new model such as maximum likelihood
estimation, ordinary least square, weighted least square methods and some methods based on the empirical function
distribution.

4.1. Maximum Likelihood Estimation

Because of their properties the maximum likelihood estimators are preferred in providing the values of the unknown
parameters. Consider t1, t2, ...tn a random sample distributed according to the TL−EE distribution with parameters
(α, β, λ), the likelihood function is

L =

n∏
i=1

f(ti, α, β, λ)

The log-likelihood function becomes

logL = n ln(2) + n ln(αλβ) + (β − 1)

n∑
i=1

ln (1 + αti) + 2n− 2

n∑
i=1

(1 + αti)
β

+ (λ− 1)

n∑
i=1

ln
(

1− e2{1−(1+αti)
β}
)

the maximum likelihood estimators α̂, β̂ and λ̂ of the unknown parameters α, β and λ are derived from the nonlinear
following score equations:

∂L

∂α
=
n

α
−2β

n∑
i=1

tiu
β−1
i + (β − 1)

n∑
i=1

ti
1 + αti

+2(λ− 1)β

n∑
i=1

tiu
β−1
i e2(1−u

β
i )

1− e2(1−uβi )

∂L

∂β
=
n

β
+

n∑
i=1

lnui−2

n∑
i=1

uβi lnui+2(λ− 1)

n∑
i=1

uβi ln (ui) e
2(1−uβi )

1− e2(1−uβi )

∂L

∂λ
=
n

λ
+

n∑
i=1

ln
(

1− e2{1−(1+αti)
β}
)

where ui(α, ti) ≡ ui = 1 + αti.

4.2. Method of least squares and weighted least squares

As the explicit forms of the maximum likelihood estimators cannot be obtained every time, so other methods are
developed to overcome this problem. The least square (LS) and the weighted least square (WLS) are well known
methods used for estimating the unknown parameters (Swain et al.,1988). Here, we consider the two methods to
estimate the unknown parameters of the TL− EE distribution. Let t1,t2....., tn be the ordered observations obtained
from a sample of size n from the TL− EE distribution. By calculating the minimum of the function
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S(θ) =

n∑
i=1

ηi

{{
1− e2{1−u

β
i }
}λ
− i

n+ 1

}2

with respect to α, λ and β respectively, the LS estimates α̂LSE , λ̂LSE and β̂LSE can be obtained by setting ηi = 1,
while we can obtain the WLS estimates α̂WLS ; λ̂WLS and β̂WLS by setting ηi = (n+1)2(n+2)

i(n−i+1) . These estimates can
also be obtained by solving the following equations:

∂S(θ)

∂α
=

n∑
i=1

ηi

{{
1− e2{1−u

β
i }
}λ
− i

n+ 1

}
ϕ1(ti, θ) = 0

∂S(θ)

∂β
=

n∑
i=1

ηi

{{
1− e2{1−u

β
i }
}λ
− i

n+ 1

}
ϕ2(ti, θ) = 0

∂S(θ)

∂λ
=

n∑
i=1

ηi

{{
1− e2{1−u

β
i }
}λ
− i

n+ 1

}
ϕ3(ti, θ) = 0

where

ϕ1(ti, θ) = 2βλtiu
β−1
i e2{1−u

β
i }
{

1− e2{1−u
β
i }
}λ−1

ϕ2(ti, θ) = 2λuβi lnuie
2{1−uβi }

{
1− e2{1−u

β
i }
}λ−1

ϕ3(ti, θ) =
{

1− e2{1−u
β
i }
}λ

ln
{

1− e2{1−u
β
i }
}

where ui, i = 1, 2, ....n are the order observations of ui as defined earlier.

4.3. Method of percentile

In this subsection, we estimate the unknown parameters of the TL − EE distribution by the percentile method. This
method was first introduced by Kao (1958) for estimating Weibull parameters. Let pi = i

n+1 be the estimate of
F (ti, θ), then the percentile estimators α̂PE , λ̂PE and β̂PE of the TL−EE distribution parameters are the minimum
with respect to α, λ and β of the function:

P (θ) =

n∑
i=1

ti −
 1

α
− 1

α

[
1− ln(1− p1/λi )

2

]1/β
2

They are obtained as the solution of the system of equations of the first derivatives of the function above:

∂P (θ)

∂α
=

n∑
i=1

xi −
 1

α
− 1

α

[
1− ln(1− p1/λi )

2

]1/β$1(ti, θ) = 0

∂P (θ)

∂β
=

n∑
i=1

xi −
 1

α
− 1

α

[
1− ln(1− p1/λi )

2

]1/β$2(ti, θ) = 0

∂P (θ)

∂λ
=

n∑
i=1

xi −
 1

α
− 1

α

[
1− ln(1− p1/λi )

2

]1/β$3(ti, θ) = 0

where vi(pi, λ) ≡ vi = 1− ln(1−p1/λi )

2
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$1(vi, θ) = − 1

α2
+

1

α2
v
1/β
i

$2(vi, θ) =
1

αβ2
v
1/β
i ln vi

$3(vi, θ) =
1

2αβλ2
p
1/λ
i ln(pi)v

1
β−1
i

1− p1/λi

4.4. Method of maximum product of spacing

According to Cheng and Amin (1983) and based on the idea of the differences between the values of the cdf at
consecutive data points, the maximum product of spacing (MPS) is an estimation method as interesting as that of
MLE. Moreover, Al-Mofleh and Afify (2019) concluded that the MPS estimator method outperforms all the other
estimator methods.
Based on a random sample of size n from a distribution with cdf F (ti, θ), the uniform spacings can be defined as
follows

Di(θ) = F (ti, θ)− F (ti−1, θ), i = 1, 2, ..., n

where F (t0, θ) = 0 and F (tn+1, θ) = 1. The MPS estimates denoted by α̂MPS , λ̂MPS and β̂MPS maximizes the
function M(θ) with respect to the unknown parameters α, λ and β :

M(θ) =
1

n+ 1

n+1∑
i=1

logDi(θ)

=
1

n+ 1

n+1∑
i=1

log

{{
1− e2{1−u

β
i }
}λ
−
{

1− e2{1−u
β
i−1}

}λ}
or by solving the following equations

∂M(θ)

∂α
=

1

n+ 1

n+1∑
i=1

ϕ1(ti, θ)− ϕ1(ti−1, θ)

Di
= 0

∂M(θ)

∂β
=

1

n+ 1

n+1∑
i=1

ϕ2(ti, θ)− ϕ2(ti−1, θ)

Di
= 0

∂M(θ)

∂λ
=

1

n+ 1

n+1∑
i=1

ϕ3(ti, θ)− ϕ3(ti−1, θ)

Di
= 0

where ϕ1(ti, θ), ϕ2(ti, θ) and ϕ3(ti, θ) are given earlier. For more details on this method, one can see Cheng and
Stephens (1989).

5. Estimation method based on Goodness-of-fit statistics

The last years, some authors used the classical goodness-of-fit statistics such as Cramer-Von- Mises and Anderson-
Darling statistics to derive the estimators of the unknown parameters. Bakouch et al. (2017) used these methods
for the binomial exponential 2 distribution while Dey et al. (2020) evaluate the process capability index for normal
distribution. Besides these methods and using this approach, we propose the use of the Pearson chi-square statistic
X2 where the estimators noted CSMM are obtained by calculating the minimum of X2 with respect to the unknown
parameters.
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5.1. Method of Cramer-Von-Mises

Mac-Donald (1971) and later Boos (1981) showed that the Cramer-von-Mises estimates (CMEs) based on the dis-
tance of Cramer-von-Mises goodness-of-fit statistics is the least biased compared to the other estimators. For calcu-
lation purposes, Boos (1981) gives the formula C(θ) for this statistic, where the estimators ensure its minimum with
respect to the unknown paremeters

C(θ) =
1

12n
+

n∑
i=1

{{
1− e2{1−u

β
i }
}λ
− 2i− 1

2n

}2

They also can be obtained as the solution of the following equations:

∂C(θ)

∂α
=

n∑
i=1

{{
1− e2{1−u

β
i }
}λ
− 2i− 1

2n

}
ϕ1(ti, θ) = 0

∂C(θ)

∂β
=

n∑
i=1

{{
1− e2{1−u

β
i }
}λ
− 2i− 1

2n

}
ϕ2(ti, θ) = 0

∂C(θ)

∂λ
=

n∑
i=1

{{
1− e2{1−u

β
i }
}λ
− 2i− 1

2n

}
ϕ3(ti, θ) = 0

5.2. Anderson-Darling Estimation method

The Anderson-Darling estimation method (ADE) is based on the classical goodness-of-fit statistic test (AD) pro-
posed by Anderson and Darling (1952). Basically, this statistic is used to fit data to a theoretical hypothezised model
F0.When the parameters are unknown, they can be estimated by α̂ADE , β̂ADE , λ̂ADE which minimize the (AD)
statistic given in the form:

ADE(θ) = −n− n−1
n∑
i=1

(2i− 1) {logF (ti) + log (1− F (t−i+n+1))}

which is equivalent to cancel the first derivatives of this function with respect to α, β and λ. For more details on
this method, one can consult Boos (1981). In their paper, Rodriguez et al. (2016) showed that the ADE estimation
method gives the most efficient estimators. As known the Anderson-Darling statistic gives more weight for the tails
of the distribution, so for right or left tailed distributions, right tail (ADER−T ) and left tail (ADEL−T ) Anderson-
Darling estimators are used in recent papers (Rodriguez et al.(2016), Dey et al. (2017), Ramadan et al. (2020). On an
other hand, AKGÜL (2018) demonstrated that the minimum distance method estimation ADE is highly competitive
method compared to ML estimation. Also, Al-Mofleh and Afify (2019) confirmed the superiority of this method.

5.3. The Right Tail and Left-Tail Anderson-Darling Estimation methods

As It ’s known the Anderson-Darling statistic gives more weight for the tails of the distribution, so for right or left tailed
distributions, right tail (ADER−T ) and left tail (ADEL−T ) Anderson-Darling estimators are proposed to estimate the
unknown parameters like in Rodriguez et al.(2016), Dey et al. (2017) and Ramadan et al. (2020).
The (ADER−T ) α̂ADE(R−T )

, β̂ADE(R−T )
, λ̂ADE(R−T )

are obtained by minimizing

ADE(R−T )(θ) =
n

2
− 2

n∑
i=1

logF (ti)−
1

n

n∑
i=1

(2i− 1) log {1− F (t−i+n+1)}

And the (ADEL−T ) α̂ADE(L−T )
, β̂ADE(L−T )

, λ̂ADE(L−T )
are obtained by minimizing

ADE(L−T )(θ) = −3

2
n+ 2

n∑
i=1

F (ti)−
1

n

n∑
i=1

(2i− 1) log {F (ti)}
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with respect to the unknown parameters.

5.4. Chi-square minimum method

Based on the famous Pearson chi-square goodness-of-fit statistic X2, the minimum chi-square estimation method
(CSMM) consist in minimizing this statistic with respect to the unknown parameters. Data are grouped into r classes
Ij with υj numbers of observations and n is the sample size. The CSMM estimators are obtained as θ̃ = minθX

2
n(θ)

where X2
n(θ) is the Pearson statistic

X2
n(θ) =

r∑
j=1

(υj − nFj(θ))2

nFj(θ)

and F (θ) is the hypothezised theoretical distribution. For the TL − EE distribution, the CSMM estimators are
obtained by canceling the first derivatives of the statistic X2

n(θ) with respect to the unknown parameters and where

∂X2
n(θ)

∂α
=

(
−2rβλtiu

β−1
i e2{1−u

β
i }(υj − nFj(θ))

1− e2{1−u
β
i }

)(
2
{

1− e2{1−u
β
i }
}λ−1

+
υj − nFj(θ)
nFj(θ)

)
∂X2

n(θ)

∂β
=

(
−2rλuβi lnuie

2{1−uβi }(υj − nFj(θ))
1− e2{1−u

β
i }

)(
2
{

1− e2{1−u
β
i }
}λ−1

+
υj − nFj(θ)
nFj(θ)

)
∂X2

n(θ)

∂λ
=
(
−r(υj − nFj(θ)) ln

{
1− e2{1−u

β
i }
})(

2
{

1− e2{1−u
β
i }
}λ−1

+
υj − nFj(θ)
nFj(θ)

)

6. Nikulin-Rao-Robson test statistic

The probability distribution used to describe any phenomenon is very important in the analysis. Since the twentieth
century, researchers have not stopped developing techniques to validate the different models. In addition to the classical
procedures, we propose in this work a criteria test statistic based on the Nikulin-Rao-Robson statistic (NRR) to fit data
to the TL − EE distribution. The great interest of the NRR statistic is that it recovers all the information lost while
grouping data. Based on maximum likelihood estimation on initial data, this statistic Y 2 introduced by Nikulin (1975)
and Rao and Robson (1974) is a modification of the wellknown chi-square Pearson statistic X2 which cannot be
applied when the parameters of the distribution to be tested are unknown. The NRR statistic Y 2 follows a chi-
square distribution with r − 1 degrees of freedom where r is the number of the classes chosen (for more details
one can see Voinov et al. (2013)).
For testing the null hypothesis H0 :

H0 = P (Ti ≤ t) = F (t, θ), t ≥ 0.

according to which a sample T1, T2, .....Tn belongs to a parametric family F (t, θ) with unknown parameters, Y 2

consist in grouping data into r equiprobable intervals I1, I2,..., Ir, where

Ij = ]aj−1, aj ] ; Ii ∩ Ij = φ i 6= j;
r
∪
j=1

Ij = R1,

such as

pj =

∫ aj

aj−1

f(t, θ)dt =
1

r
, j = 1, 2, .., r.

If υ = (υ1, υ2, ..., υr)
T represents the number of observed Ti grouping into these intervals Ij , and the vector Xn (θ)

is

Xn (θ) =

(
υ1 − np1 (θ)√

np1 (θ)
,
υ2 − np2 (θ)√

np2 (θ)
, ...,

υr − npr (θ)√
npr (θ)

)T
.
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The NRR statistic Y 2 is defined by

Y 2
n

(
θ̂
)

= X2
n

(
θ̂
)

+
1

n
lT
(
θ̂
)(

I
(
θ̂
)
− J

(
θ̂
))−1

l
(
θ̂
)
,

where I
(
θ̂
)

and J
(
θ̂
)

are the estimated information matrices on non-grouped and grouped data respectively, and θ̂ is

the vector of the maximum likelihood estimators on initial data. The components of the vector l
(
θ̂
)

=
(
ls

(
θ̂
))T

1×s

and the matrix J
(
θ̂
)

are

ls

(
θ̂
)

=

r∑
i=1

νj
pj

∂pj

(
θ̂
)

∂θ̂s
, J
(
θ̂
)

=

 1
√
pj

∂pj

(
θ̂
)

∂θk

T

r×s

 1
√
pj

∂pj

(
θ̂
)

∂θk


r×s

, j = 1, 2, .., r and k = 1, .., s.

s represents the parameters number. The distribution of Y 2
(
θ̂
)

is a chi-square with r − 1 degrees of freedom.

To construct the test statistic Y 2 corresponding to the TL−EE(θ), we calculate the maximum likelihood estimators

θ̂ = (α̂, β̂, λ̂)T , the limit intervals aj and the derivatives
∂pj(θ̂)
∂θ̂k

for our model:

∂pj (θ)

∂α̂
= ϕ1(tj , θ)− ϕ1(tj−1, θ)

∂pj(θ)

∂β̂
= ϕ2(tj , θ)− ϕ2(tj−1, θ)

∂pj(θ)

∂λ̂
= ϕ3(tj , θ)− ϕ3(tj−1, θ)

Then, after computing the estimated information matrices I
(
θ̂
)

and J
(
θ̂
)

, we obtain the statistic Y 2
(
θ̂
)

for the
TL−EE distribution. This method was used to construct goodness-of-fit test statistics for some generalized models,
see Chouia and Seddik-Ameur (2014), Aidi and Seddik-Ameur (2016), Treidi and Seddik-Ameur (2016), Tilbi and
Seddik-Ameur (2017).

7. Simulations

7.1. Estimation methods

In this section, we study the performance of the estimation methods used in this paper. At that end, we generated
10, 000 samples with different sizes (n = 10, n = 20, n = 30, n = 80, n = 200 and n = 350) from the TL − EE
model, and we compute the different estimators, their mean square errors (values in brakets), and the estimated
average widths (AW) of the unknown parameters by using R statistical software. The results are given by sample size
in Tables 1a, 1b, 1c, 1d, 1e and 1f.
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n = 10 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5798(0.0259) 0.0507 2.9416(0.0181) 0.0354 2.0523(0.0193) 0.0378
WLS 1.4626(0.0194) 0.0380 3.0385(0.0149) 0.0292 2.0493(0.0171) 0.0335
PEs 1.5346(0.0178) 0.0349 2.9548(0.0140) 0.0274 2.0453(0.0164) 0.0321
MPS 1.4637(0.0209) 0.0409 3.0392(0.0167) 0.0327 2.0507(0.0190) 0.0372
CMEs 1.5382(0.0197) 0.0386 2.9524(0.0160) 0.0313 2.0473(0.0182) 0.0356
OLSE 1.5339(0.0171) 0.0335 2.9529(0.0128) 0.0251 2.0462(0.0153) 0.0299
CSMM 1.5496(0.0218) 0.0427 3.0409(0.0187) 0.0366 2.0451(0.0204) 0.0399
ADE 1.5399(0.0236) 0.0462 2.9648(0.0201) 0.0394 2.0483(0.0216) 0.0423
ADEL−R 1.5454(0.0254) 0.0497 2.9631(0.0211) 0.0414 2.0495(0.0232) 0.0454
ADEL−T 1.5477(0.0267) 0.0523 2.9615(0.0226) 0.0443 2.0514(0.0263) 0.0515

Table 1a. Estimator values of α, β and λ with different estimation methods

n = 20 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5546(0.0216) 0.0423 2.9574(0.0156) 0.0305 2.0646(0.0174) 0.0341
WLS 1.4673(0.0179) 0.0345 3.0297(0.0124) 0.0243 2.0413(0.0152) 0.0297
PEs 1.5316(0.0163) 0.0319 2.9636(0.0119) 0.0233 2.0377(0.0145) 0.0284
MPS 1.4679(0.0195) 0.0382 3.0310(0.0142) 0.0278 2.0428(0.0171) 0.0335
CMEs 1.5347(0.0182) 0.0356 2.9603(0.0136) 0.0266 2.0397(0.0163) 0.0319
OLSE 1.5328(0.0156) 0.0305 2.9612(0.0103) 0.0201 2.0386(0.0134) 0.0262
CSMM 1.4613(0.0203) 0.0397 3.0327(0.0163) 0.0319 2.0382(0.0185) 0.0362
ADE 1.5374(0.0223) 0.0437 2.9732(0.0176) 0.0344 2.0407(0.0197) 0.0386
ADEL−R 1.5423(0.0241) 0.0472 2.9713(0.0183) 0.0358 2.0413(0.0213) 0.0417
ADEL−T 1.5456(0.0252) 0.0493 2.9697(0.0192) 0.0376 2.0436(0.0244) 0.0478

Table 1b. Estimator values of α, β and λ with different estimation methods

n = 30 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5218(0.0118) 0.0231 2.9808(0.0094) 0.0184 2.0229(0.0112) 0.0219
WLS 1.4696(0.0141) 0.0276 3.0256(0.0123) 0.0241 2.0279(0.0148) 0.0290
PEs 1.5286(0.0148) 0.0290 2.9793(0.0106) 0.0207 2.0242(0.0129) 0.0252
MPS 1.4691(0.0168) 0.0329 3.0269(0.0130) 0.0254 2.0317(0.0153) 0.0299
CMEs 1.5288(0.0158) 0.0309 2.9776(0.0116) 0.0227 2.0272(0.0139) 0.0272
OLSE 1.5271(0.0137) 0.0268 2.9783(0.0109) 0.0213 2.0265(0.0134) 0.0262
CSMM 1.4637(0.0171) 0.0335 3.0318(0.0152) 0.0297 2.0361(0.0175) 0.0343
ADE 1.5352(0.0183) 0.0358 2.9751(0.0157) 0.0307 2.0368(0.0184) 0.0360
ADEL−R 1.5363(0.0188) 0.0368 2.9743(0.0168) 0.0329 2.0379(0.0192) 0.0376
ADEL−T 1.5417(0.0197) 0.0386 2.9709(0.0173) 0.0339 2.0435(0.0198) 0.0388

Table 1c. Estimator values of α, β and λ with different estimation methods
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n = 80 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5133(0.0089) 0.0174 2.9873(0.0069) 0.0135 2.0141(0.0077) 0.0151
WLS 1.4784(0.0112) 0.0219 3.0194(0.0098) 0.0192 2.0193(0.0112) 0.0219
PEs 1.5195(0.0101) 0.0197 2.9864(0.0081) 0.0158 2.0152(0.0093) 0.0182
MPS 1.4779(0.0125) 0.0245 3.0207(0.0105) 0.0205 2.0219(0.0114) 0.0223
CMEs 1.5203(0.0109) 0.0213 2.9837(0.0091) 0.0178 2.0182(0.0106) 0.0207
OLSE 1.5186(0.0104) 0.0203 2.9848(0.0084) 0.0164 2.0172(0.0095) 0.0186
CSMM 1.4725(0.0143) 0.0280 3.0253(0.0125) 0.0245 2.0275(0.0134) 0.0262
ADE 1.5267(0.0151) 0.0295 2.9816(0.0133) 0.0260 2.0282(0.0143) 0.0280
ADEL−R 1.5278(0.0159) 0.0311 2.9805(0.0138) 0.0270 2.0293(0.0159) 0.0311
ADEL−T 1.5332(0.0167) 0.0307 2.9773(0.0148) 0.0290 2.0349(0.0168) 0.0329

Table 1d. Estimator values of α, β and λ with different estimation methods

n = 200 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5084(0.0062) 0.0121 2.9922(0.0047) 0.0092 2.0089(0.0051) 0.0099
WLS 1.4832(0.0085) 0.0166 3.0149(0.0074) 0.0145 2.0147(0.0080) 0.0156
PEs 1.5146(0.0073) 0.0143 2.9913(0.0056) 0.0109 2.0096(0.0064) 0.0125
MPS 1.4827(0.0098) 0.0192 3.0162(0.0081) 0.0158 2.0163(0.0085) 0.0166
CMEs 1.5152(0.0082) 0.0160 2.9886(0.0069) 0.0135 2.0123(0.0075) 0.0147
OLSE 1.5146(0.0076) 0.0148 2.9889(0.0065) 0.0127 2.0114(0.0069) 0.0135
CSMM 1.4773(0.0113) 0.0221 3.0208(0.0103) 0.0201 2.0217(0.0108) 0.0211
ADE 1.5218(0.0124) 0.0243 2.9865(0.0108) 0.0211 2.0226(0.0117) 0.0229
ADEL−R 1.5238(0.0132) 0.0258 2.9854(0.0114) 0.0223 2.0237(0.0122) 0.0239
ADEL−T 1.5283(0.0139) 0.0272 2.9819(0.0122) 0.0239 2.0293(0.0132) 0.0258

Table 1e. Estimator values of α, β and λ with different estimation methods

n = 350 α = 1.5 AWα β = 3 AWβ λ = 2 AWλ

MLE 1.5052(0.0043) 0.0084 2.9965(0.0030) 0.0058 2.0054(0.0032) 0.0062
WLS 1.4866(0.0069) 0.0135 3.0106(0.0057) 0.0111 2.0113(0.0061) 0.0119
PEs 1.5084(0.0054) 0.0105 2.9954(0.0039) 0.0076 2.0062(0.0045) 0.0088
MPS 1.4841(0.0082) 0.0160 3.0117(0.0063) 0.0123 2.0126(0.0065) 0.0127
CMEs 1.5106(0.0065) 0.0127 2.9928(0.0052) 0.0101 2.0086(0.0054) 0.0105
OLSE 1.5095(0.0057) 0.0111 2.9931(0.0050) 0.0098 2.0077(0.0050) 0.0098
CSMM 1.4809(0.0097) 0.0190 3.0159(0.0086) 0.0168 2.0183(0.0089) 0.0174
ADE 1.5172(0.0108) 0.0211 2.9908(0.0091) 0.0178 2.0192(0.0098) 0.0192
ADEL−R 1.5190(0.0115) 0.0225 2.9897(0.0097) 0.0190 2.0203(0.0104) 0.0203
ADEL−T 1.5246(0.0126) 0.0246 2.9862(0.0105) 0.0205 2.0259(0.0111) 0.0217

Table 1f. Estimator values of α, β and λ with different estimation methods

Considering the obtained values of the different estimators, we can draw the following conclusions:

1. For little sample sizes (n ≺ 30), the percentile PEs , the maximum product of spacing MPS, the least squares
OLSE and the CMS estimation methods for α; and the MPS and the weighted least squares WLS and the
Anderson-Darling estimation (ADE) estimation methods are the most efficient for estimating β, but for λ the re-
sults are the same for all the methods used.

2. When n ≥ 30, and as It was expected the maximum likelihood estimation method gives the best results. It can also
be noted that the PEs and the CMS methods give very good results for both large and small samples.
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7.2. The Y2 statistic

To verify the null hypothesisH0 for the TL−EE distribution, samples of respective sizes n = 30, 80, 200, 350, 500
and 1000, are generated N = 10, 000 times from this model. The Y 2 values of the proposed NRR test criterion are
computed for all samples and the different empirical levels of rejection of the null hypothesis H0, for Y 2 > χ2

ε(r− 1)
are compared to their levels of theoretical significance ε (ε = 0, 01 , 0, 05 , 0, 10). The results are given in Table 2.

N = 10.000 n1 = 30 n2 = 80 n3 = 200 n4 = 350 n5 = 500 n6 = 1000
ε = 0.01 0.0058 0.0063 0.0078 0.0086 0.0092 0.0099
ε = 0.05 0.0456 0.0466 0.0472 0.0482 0.0490 0.0498
ε = 0.10 0.0949 0.0954 0.0968 0.0977 0.0982 0.0995

Table2.Comparison of theoretical risks and corresponding empirical risks
ε = 0.01; 0.05; 0.10

The simulation shows, taking into account the simulation errors, that the levels simulated for the statistic Y 2 and those
corresponding to the theoretical levels of the chi-square distribution with (r− 1) degrees of freedom, are close to each
other. Consequently, we can say that the statistic test proposed in this work, can suitably fit data to the TL − EE
model.

8. Applications

The analysis of three real data sets is proposed to show the usefullness of the proposed distribution in modeling
different phenomenon and the performances of the methods used to determine the unknown parameters. In addition to
the classical methods of model selection, we calculate Y 2 statistic to prove that the proposed model fits data better than
the commun used alternative distributions such us Beta extended exponential (Be−EE), Weibll extented exponential
(W − EE), extented exponential (EE), Lomax and Burr XII distributions.
Covid-19 data
As the covid-19 pandemic occupies all the news, we propose to study the contamination phenomenon in one of the
countries most affected, India. Data (102) consist in number of contaminations in this countrie relating to the period
from 1 may to 14 june 2020 and taken from the siteweb (Coronavirus Update (Live): 7,114,524 Cases and 406,552
Deaths from COVID-19 Virus Pandemic - Worldometer). For calculation purpose, we consider data (×10−2):
2394, 2442, 2806, 3932, 2963, 3587, 3364, 3344, 3113, 4353, 3607, 3524, 3764, 3942, 3787, 4864, 5050, 4630, 6147,
5553, 6198, 6568, 6629, 7113, 6414, 5843, 7293, 7300, 8105, 8336, 8782, 7761, 8821, 9633, 9889, 9471, 10438,
10864, 8442, 8852, 12375, 11128, 11320, 12023, 11157.
Table 3 represents the values of the parameter estimators for the hypothezised distribution TL− EE obtained by the
different methods and the corresponding p-values. Since n = 45 � 30 and as It was established by the simulation
study the MLE and PEs methods give the best results.

Method α λ β −NLL KS p− value
MLE 6.18025 0.01583 1.11818 214.0236 0.12303 0.46673
WLS 6.16346 0.01267 1.13076 214.9967 0.12764 0.45983
PEs 6.23146 0.01476 1.12463 214.3497 0.12412 0.46467
MPS 6.25317 0.01736 1.14138 215.1746 0.12889 0.45768
CMEs 6.17067 0.01376 1.11013 214.8787 0.12633 0.46156
CSMM 6.13469 0.01794 1.11356 215.2334 0.12983 0.45618
LSE 6.24767 0.01602 1.10346 214.6184 0.12567 0.46213
ADE 6.27413 0.01316 1.14796 215.3412 0.13146 0.45562
ADEL−R 6.15934 0.01896 1.12103 215.5613 0.13213 0.45434
ADEL−T 6.29794 0.01403 1.09946 215.7364 0.13264 0.45219
Table3.Different parameter estimators for covid-19 data

As the maximum likelihood parameter estimators for the competing distributions are needed to compute their corre-
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sponding NRR test statistic Y 2, the MLE values are calculated and given in Table 4.

Distributions Estimates
TLEE α = 6.1802, λ = 0.0158, β = 1.1181
Bet− EE α = 4.6433, β = 1.4169, λ = 0.0162, s = 1.3723
W − EE α = 6.1434, β = 0.5619, λ = 0.2661, s = 0.1474
EE α = 0.01745, β = 0.89775
Lomax α = 0.01596, β = 1.05082
BurrXII α = 0.09777, β = 2.50348

Table 4. ML parameter estimates for the alternative distributions

To distinguish between the proposed model and its alternatives, we use classical criteria for model selection and the
NRR statistic with the corresponding values summarized in Table 5.

Distributions Y 2 W A K − S p− value
TLEE 7.8296 0.08895 0.62356 0.12303 0.4667372
Bet− EE 7.9345 0.10527 0.69173 0.12303 0.4667372
W − EE 8.2637 0.09445 0.64255 0.12777 0.4195012
EE 8.9134 0.10532 0.68837 0.30802 0.00027397
Lomax 9.8462 0.12711 0.79317 0.31798 0.00015165
BurrXII 10.4936 0.13976 0.84959 0.54036 7.91589e− 13

Distributions −NLL AIC CAIC BIC HQIC
TLEE 214.0236 434.0472 434.6326 439.4672 436.0677
Bet− EE 213.8315 435.6629 436.6629 442.8896 438.3569
W − EE 213.4943 434.9886 435.9886 442.2152 437.6826
EE 234.8657 473.7444 474.0302 477.3578 475.0914
Lomax 248.1394 500.2863 500.572 503.9896 501.6333
BurrXII 292.2254 588.4508 588.7366 592.0642 589.7979

Table5. values of criteria statistics for model selection

The p-values indicates that the null hypothesis H0 cannot be rejected for TL − EE, Bet − EE and W − EE
distributions, however the newly developed TL − EE displays a very good potential in Table 5 as it has the lowest
values for th Y 2,W,A,AIC,CAIC,BIC,HQIC,and K − S statistics. We conclude that the phenomenon of the
contamination by covid-19 virus can be described by the TL − EE distribution in a satisfactory manner and better
than all the alternatives. The pdf graphs given in Figure 3 and 4 show that the histogram of these data are very close
to the TL− EE pdf curve.

Fig3.Histogram plot of the dataset with the compared distribution
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Fig4. Empirical cdf of the datasetwith the compared distributions

Waiting times
This application relates to the waiting times (in minutes) before service of 100 bank customers:
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7,
4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6,
8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1,
13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0,
31.6, 33.1, 38.5.
Since n is large, we calculate only the ML estimators of the unknown parameters and the values of the different
statistics for model selection in order to choose whether the proposed model suited to these data better than the
alternative distributions.

Distributions Y 2 NLL AIC CAIC BIC HQIC KS p− value
TL− EE 7.8235 317.0435 640.0869 640.3369 647.9024 643.25 0.0369 0.9991
BeEE 7.9462 317.0439 642.0877 642.5088 652.5084 646.3051 0.0366 0.9993
GaEE 8.2264 322.1976 650.3952 650.6452 658.2107 653.5583 0.1138 0.1493
MOEE 8.1292 319.1373 644.2745 644.5245 652.09 647.4376 0.0471 0.9794
EE 8.3178 327.2185 658.4584 658.5821 663.6687 660.5671 0.1626 0.0100

Table 6.Model selection criteria values for competing distribution for waiting times in service bank

Considering the obtained results in Table 6, this new distribution models these data as well as possible and this is
confirmed by the pdf plots of Figures 5 and 6.

Fig5.Histogram plot of the dataset with the compared distribution
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Fig6.Empirical cdf of the dataset with the compared distributions

Remission times
The third example concerned the remission times (in months) of a random sample of 128 bladder cancer patients
reported in Lee and Wang (2003):
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,
0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34,
7.59, 10.66, 15.96, 36.66, 12.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12,
1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93,
11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

To show that this model can also describe this type of data, we use all classical criteria for model selection and the
modified chi-square NRR. All the corresponding values are computed and given in Table 7.

Distributions Y 2 NLL AIC CAIC BIC HQIC KS p− value
TL− EE 8.9462 410.397 826.795 826.989 835.351 830.272 0.0429 0.9721
BeEE 9.2341 410.195 828.390 828.715 839.798 833.025 0.0418 0.9781
GaEE 9.6945 411.926 829.852 830.046 838.408 833.329 0.0631 0.6875
MOEE 9.4569 410.825 827.651 827.845 836.208 831.128 0.0511 0.8907
EE 9.3351 414.228 832.456 832.552 838.161 834.774 0.0930 0.2179

Table7.values of different criteria for model selection for remission times
of bladder cancer patients

From Table 7, we see that the smallest values of the different model criteria selection are obtained for the TL−
EE distribution which confirm that the proposed model describes these data better than all the alternatives.

Distributions Estimates
TL− EE λ = 1.6530, α = 0.1864, β = 0.5523
BeEE α = 1.6130, β = 8.6106, λ = 0.0911, s = 0.2997
GaEE β = 0.2624, γ = 0.5665, c = 0.9020
MOEE α = 29.7347, β = 7.9998, θ = 0.3745
EE α = 0.1240, λ = 0.9116

Table 8. maximum likelihood estimates
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Method α λ β NLL KS p− value
MLE 0.1864 1.6530 0.5523 410.3979 0.00429 0.9721
WLS 0.1963 1.3641 0.6166 410.4966 0.00492 0.9786
PEs 0.1533 1.6177 0.5414 410.4126 0.00441 0.9737
MPS 0.1724 1.6022 0.5289 410.4393 0.00456 0.9742
CMEs 0.1632 1.7266 0.5677 410.4675 0.00472 0.9759
CSMM 0.1912 1.7521 0.5723 410.4914 0.00489 0.9773
MLSE 0.1384 1.4161 0.6272 410.5133 0.00499 0.9792
OLSE 0.1589 1.6933 0.5518 410.4515 0.0466 0.9754
ADE 0.1833 1.7689 0.6319 410.5243 0.0501 0.9815
ADEL−R 0.1767 1.7702 0.6334 410.5413 0.0523 0.9836
ADEL−T 0.1798 1.7836 0.6462 410.5533 0.0554 0.9898

Table 9.Different parameter estimators for remission times bladder cancer patients

Fig7. Histogram plot of the dataset with the compared distribution

Fig8.Empirical cdf of the dataset with the compared distributions

As seen in Fig8 and Fig9, remission times of bladder cancer patients are well fitted by the TL − EE model
compared to the other distributions.
Conclusion:
In this work, we have proposed a new distribution named the Topp-Leone extended exponential (TL−EE) distribu-
tion. Different methods of estimation were used to calculate the unkown parameters. The simulation study showed that
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the PSE and MPSE estimator methods outperform all the other estimator methods in the case of small samples. How-
ever, the MLE and PSE methods are the best ones for large samples. The usefullness of this model is demonstrated
by mean of three applications from different fields. The data on covid-19 virus contaminations have been relatively
well described by this model.
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