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Abstract

In this paper, we introduce maximum likelihood and Bayesian parameter estimation for the exponentiated discrete
Weibull (EDW) distribution in the presence of randomly right-censored data. We also consider the inclusion of a cure
fraction in the model. The performance of the maximum likelihood estimation approach is assessed by conducting an
extensive simulation study with different sample sizes and different values for the parameters of the EDW distribution.
The uselfuness of the proposed model is illustrated with two examples considering real data sets.
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1. Background

Let T be a random variable denoting a survival time, and let t be an observation of T . The exponentiated discrete
Weibull (EDW) distribution, introduced by Nekoukhou and Bidram(2015), has probability accumulated distribution
function given by

F (t) = P (T ≤ t) =
[
1− θ(t+1)α

]β
, t ∈ N0,

where α > 0, β > 0, 0 < θ < 1, and N0 = {0, 1, 2, ...}. The correspondent probability mass function (pmf ) is given
by

f(t) = P (T = t) =
[
1− θ(t+1)α

]β
−
[
1− θt

α
]β
, t ∈ N0, (1)

and the corresponding hazard function is

h(t) = P (T = t |T ≥ t ) = P (T = t)

P (T ≥ t)
=

f(t)

S(t− 1)
=

[
1− θ(t+1)α

]β − [1− θtα]β
1− [1− θtα ]β

, t ∈ N0, (2)
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were S(t) = 1 − F (t) = P (T > t) is the survival function, defined in the context of survival analysis as the
probability that an individual will be surviving at least until time t. The EDW distribution was studied by authors
as Cardial et al.(2020), and a bivariate version was proposed by El-Morshedy et al.(2020). Some existing discrete
distributions can be obtained as special cases of the EDW distribution (El-Morshedy et al.,2020), as listed below:

(a) Discrete Weibull (DW) distribution: when β = 1, the expression (1) is the pmf of the two-parameter discrete
Weibull distribution introduced by Nakagawa and Osaki(1975). The DW distribution has a decreasing failure
rate when 0 < α ≤ 1 and an increasing failure rate when α > 1. When α = 1, the DW distribution becomes
the discrete exponential (DE) distribution with a constant failure rate (Johnson and Kotz,1982).

(b) Discrete Rayleigh (DR) distribution: when β = 1 and α = 2, the expression (1) is reduced to the pmf of a
discrete Rayleigh distribution with an increasing failure rate (Roy,2004).

(c) Discrete generalized exponential (DGE) distribution: this distribution is a special case of the EDW distribution
with α = 1 (Nekoukhou et al.,2013).

(d) Discrete generalized Rayleigh (DGR) distribution: when α = 2, the expression (1) is the pmf of the two-
parameter discrete generalized Rayleigh distribution introduced by Alamatsaz et al.(2016).

Let us consider a reparameterization of the EDW distribution such that θ = e−γ , where γ > 0, which simplifies
obtaining estimators of the distribution parameters. Hereafter, we write EDW(α, β, γ) to denote an EDW distribution
with pmf given in (1), with θ = e−γ . For different values for the parameters (α, β, γ). Figure 1 presents graphs of
the pmf , survival function, and hazard function of the EDW distribution considering different parameter values. The
hazard function h(t) of the EDW distribution presents great flexibility of fit as increasing or decreasing shapes.
The main goal of this paper is to introduce the EDW distribution to model discrete lifetime data in the presence of right-
censored time-to-event data. We also consider the inclusion of a cure fraction in the model. The article is organized as
follows. Section 2 discusses the maximum likelihood and Bayesian estimates of the EDW distribution in the presence
of censored data. Section 2 also presents the steps to obtain simulated samples from an EDW distribution. Section 3
considers a simulation study assuming the proposed model and compares the results from the frequentist and Bayesian
approaches. In Section 3, we also conduct a simulation study to assess the performance of the maximum likelihood
estimators in the presence of cure fraction. The usefulness of the proposed model is also shown considering two real
data set applications. A brief revision of the major results and some concluding remarks are presented in Section 4.

2. Methods

2.1. Maximum likelihood estimation for complete data

Let T1,...,Tn be a random sample of failure times from an EDW survival distribution with pmf given by equation (1).
Considering θ = e−γ , we have

F (t) =
[
1− e−γ(ti+1)α

]β
, t ∈ N0,

and the correspondent pmf is given by

f(t) =
[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β
.

Assuming the EDW model and a random sample of size n, the likelihood function for the parameters α, β and γ is
given by

L (α, β, γ|t) =
n∏
i=1

{[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β}
,

where t = (t1, t2, ..., tn), and the corresponding log-likelihood function is given by

` (α, β, γ|t) =
n∑
i=1

log

{[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β}
.
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(a) f(t), α = 1.5, β = 2, γ = 0.2
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(b) S(t), α = 1.5, β = 2, γ = 0.2
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(e) S(t), α = 1, β = 1.5, γ = 0.6
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(k) S(t), α = 1.1, β = 0.8, γ = 0.2
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Figure 1: The pmf , survival function and hazard function of EDW(α, β, γ) for different values of α, β and γ.

By deriving the log-likelihood function with respect to α, β and γ, we have the following equations:

∂`

∂α
= βγ

n∑
i=1

u(α, β, γ, ti + 1) log (ti + 1)− u(α, β, γ, ti) log ti(
1− e−γ(ti+1)α

)β − (1− e−γtαi )β
,

∂`

∂β
=

n∑
i=1

(
1− e−γ(ti+1)α

)β
log
(
1− e−γ(ti+1)α

)
−
(
1− e−γtαi

)β
log
(
1− e−γtαi

)(
1− e−γ(ti+1)α

)β − (1− e−γtαi )β

and
∂`

∂γ
= β

n∑
i=1

u(α, β, γ, ti + 1)− u(α, β, γ, ti)(
1− e−γ(ti+1)α

)β − (1− e−γtαi )β
,

where
u(α, β, γ, ti) = tαi e

−γtαi
(
1− e−γt

α
i

)β−1

. (3)

The maximum likelihood (ML) estimators can be obtained numerically solving the equations ∂`
∂α = 0, ∂`

∂β = 0 and
∂`
∂γ = 0 (Millar,2011). Let the ML estimates be (α̂ML, β̂ML, γ̂ML)

T , which can be obtained by a numerical method
such as the Newton-Raphson procedure and its variants (Broyden,1970; Fletcher,1970; Nelder and Mead,1965). In

Classical and Bayesian inference approaches for the exponentiated discrete Weibull model with censored data and a cure fraction 469



Pak.j.stat.oper.res. Vol.17 No.2 2021 pp 467-481 DOI: http://dx.doi.org/10.18187/pjsor.v17i2.3693

this article, we use the maxLik package in the statistical software R, which numerically maximises the likelihood
function (Henningsen and Toomet,2011). Inferences of interest as hypothesis tests or confidence intervals (CI) for the
parameters of the EDW distribution are usually obtained from the asymptotical normality of the ML estimators. The
asymptotic multivariate normal distribution of the ML estimators α̂ML, β̂ML and γ̂ML is denoted by α̂ML

β̂ML

γ̂ML

 ∼ N
 α

β
γ

 ,
 V11 V12 V13
V21 V22 V23
V31 V32 V33

 ,

where V11, V22 and V33 are the variances of α̂ML, β̂ML and γ̂ML, respectively, V12 = V21 is the covariance between
α̂ML and β̂ML, V13 = V31 is the covariance between α̂ML and γ̂ML, and V32 = V23 is the covariance between β̂ML

and γ̂ML. Approximate 100(1− ν)% Wald-type CIs for α, β and γ are, respectively, given by

α̂ML ∓ zν/2
√
V̂11, β̂ML ∓ zν/2

√
V̂22 and γ̂ML ∓ zν/2

√
V̂33, (4)

where zν/2 denotes the upper ν-th percentile of the standard normal distribution. The asymptotic variances of the
ML estimators are given by the elements of the inverse of the Fisher’s information matrix. The expected information
matrix is given by

I(α, β, γ) =


−E

(
∂2`
∂α2

)
−E

(
∂2`
∂α∂β

)
−E

(
∂2`
∂α∂γ

)
−E

(
∂2`
∂β∂α

)
−E

(
∂2`
∂β2

)
−E

(
∂2`
∂β∂γ

)
−E

(
∂2`
∂γ∂α

)
−E

(
∂2`
∂γ∂β

)
−E

(
∂2`
∂γ2

)
 ,

whose elements are the expected values of the second partial derivatives of the log-likelihood function with respect to
the parameters. Since the above confidence intervals given by (4) may lead to negative lower bounds sometimes, the
logarithmic transformation and the delta method can be used to approximate the distribution of log α̂ML, log β̂ML and
log γ̂ML. That is, we have that for a given estimator λ̂ML and a correspondent λ parameter,

√
n
(
log(λ̂ML)− log(λ)

)
D−→ N

(
0,
nV ar(λ̂ML)

λ2

)
,

where λ̂ML ∈ (α̂ML, β̂ML, γ̂ML), λ ∈ (α, β, γ) and D−→ denotes convergence in distribution. Asymptotic 100(1 −
ν)% confidence intervals for log(α), log(β) and log(γ) can then be obtaining by

log(λ̂ML)∓ zν/2

√
V ar(λ̂ML)

λ̂ML

≡ (Lλ, Uλ),

and using the inverse logarithmic transformation, the approximate confidence intervals for α, β and γ are respectively
obtained as (eLα , eUα), (eLβ , eUβ ) and (eLγ , eUγ ).
In this article, the Akaike and Bayesian information criteria (AIC and BIC) are used to compare the models based on
the EDW distribution and its special cases described in the previous section. For a given model fit to the data, the
AIC value is given by AIC = −2 log(L) + 2k, where L is the log-likelihood of the model and k is the number of
model parameters (Akaike,1974). The BIC value is given by BIC = −2 log(L) + k log(n), where n is the sample
size (Schwarz,1978). When the sample size is small, many authors suggested the use of the corrected AIC (AICC) as
an alternative to AIC. The AICC value is given by AICC = AIC +2k(k+1)/(n− k− 1) (Hurvich and Tsai,1989).
The AIC, BIC, and AICC values directly compare models, with lower values indicating a better model.

2.2. Maximum-likelihood estimation including censored data

Considering the presence of right censored observations, the contribution of the ith individual for the likelihood func-
tion based on a random sample (ti, di) of size n is given by

Li = [f(ti)]
di [S(ti)]

1−di ,
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where di is a censoring indicator variable, that is, di = 1 for an observed lifetime and di = 0 for a censored lifetime
(i = 1, ..., n). Assuming the EDW model, the likelihood function for α, β and γ is given by

L (α, β, γ|t,d) =
n∏
i=1

{[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β}di {
1−

[
1− e−γ(ti+1)α

]β}1−di
,

where d = (d1, d2, ..., dn), and the corresponding log-likelihood function is

` (α, β, γ|t,d) =

n∑
i=1

di log

{[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β}

+

n∑
i=1

(1− di) log
{
1−

[
1− e−γ(ti+1)α

]β}
.

By deriving the log-likelihood function with respect to α, β and γ, we have the following expressions:

∂`

∂α
= βγ

n∑
i=1

di
u(α, β, γ, ti + 1) log (ti + 1)− u(α, β, γ, ti) log ti[

1− e−γ(ti+1)α
]β − (1− e−γtαi )β

−βγ
n∑
i=1

(1− di) log (ti + 1)u(α, β, γ, ti + 1)

1−
[
1− e−γ(ti+1)α

]β ,

∂`

∂β
=

n∑
i=1

di

[
1− e−γ(ti+1)α

]β
log
[
1− e−γ(ti+1)α

]
−
(
1− e−γtαi

)β
log
(
1− e−γtαi

)[
1− e−γ(ti+1)α

]β − (1− e−γtαi )β

−
n∑
i=1

(1− di)
[
1− e−γ(ti+1)α

]β
log
[
1− e−γ(ti+1)α

]
1−

[
1− e−γ(ti+1)α

]β
and

∂`

∂γ
= β

n∑
i=1

di
u(α, β, γ, ti + 1)− u(α, β, γ, ti)[
1− e−γ(ti+1)α

]β − (1− e−γtαi )β
− β

n∑
i=1

(1− di)u(α, β, γ, ti + 1)

1−
[
1− e−γ(ti+1)α

]β ,

where u(α, β, γ, ti) is given by (3). The ML estimates of the three parameters are again found equating these expres-
sions to zero and solving them simultaneously. Due to the complexity of these expressions, it is appropriate to use the
optimization algorithms such as a Newton-Raphson algorithm for maximizing the likelihood function numerically.

2.3. A cure fraction model based on the EDW distribution

In several medical studies related to survival data analysis, it is observed a fraction of individuals who appear not
to be subject to the occurrence of the event of interest. This can occur, for example, in clinical trials where some
patients who respond to treatment may be free of signs of the disease for an extended period and are possibly cured
(Morbiducci et al.,2003). This situation is usually observed when the graph of the usual non-parametric Kaplan-Meier
estimator of the survival function for the lifetimes in the presence of censored data shows a long and stable plateau
with heavy censoring at the extreme right of the plot, suggesting the presence of immune individuals. However, this
plot is not sufficient to state that a model with a cure fraction is suitable for a given data set, and experts’ arguments
are also important. For example, when analysing data from a clinical trial, it is essential to use medical statements to
justify whether a cure of the disease under study is possible or whether immunity to the event of interest can occur.
Some specific models commonly used to handle data with such characteristics are the mixture and non-mixture models
described by Achcar et al. (2012) and Martinez et al. (2013) and the models based on defective distributions (Rocha
et al.,2017; Scudilio et al.,2019; Hamdeni and Gasmi,2020).
The survival function of the standard mixture model (Farewell,1982) is given by

S(t) = η + (1− η)S0(t),
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where η ∈ (0, 1) is the cure fraction or the proportion of immunes, and S0(t) is a baseline survival function for the
susceptible individuals. We can note that if S0(t) is a function that converges to zero as t tends to infinity, then S(t)
converges to η as t tends to infinity. Considering a random sample (ti, di) of size n, i = 1, ..., n, the contribution of
the ith subject for the likelihood function is given by

Li = [f(ti)]
di [S(ti)]

1−di = [(1− η)f0(t)]di [η + (1− η)S0(t)]
1−di ,

where f0(t) is the baseline probability density function for the susceptible individuals and di is a censoring indicator
variable. Assuming the mixture model based on the EDW distribution, the log-likelihood function for α, β, γ and η is
given by

L (α, β, γ, η|t,d) =

n∏
i=1

{
(1− η)

[(
1− e−γ(ti+1)α

)β
−
(
1− e−γt

α
i

)β]}di
×
{
η + (1− η)

[
1−

(
1− e−γ(ti+1)α

)β]}1−di
,

and the correspondent log-likelihood function for α, β, γ, and η is given by

` (α, β, γ, η|t,d) =

n∑
i=1

di log [(1− η)f0(ti)] +
n∑
i=1

(1− di) log [η + (1− η)S0(ti)]

=

n∑
i=1

di log(1− η) +
n∑
i=1

di log

[[
1− e−γ(ti+1)α

]β
−
(
1− e−γt

α
i

)β]

+

n∑
i=1

(1− di) log
{
η + (1− η)

[[
1− e−γ(ti+1)α

]β]}
.

The ML estimators are obtained by solving the corresponding equations after differentiating the log-likelihood function
` (α, β, γ, η|t,d) with respect to α, β, γ and η and setting the resultant derivative to be equal to zero.

2.4. Bayesian analysis

Under a Bayesian approach, a prior distribution must be assigned to each parameter of the EDW model. We thus
assume gamma prior distributions for the parameters α, β and γ considering that these parameters are real and
positive numbers. Thus, we assume gamma prior distributions α ∼ Gamma(uα, vα), β ∼ Gamma(uβ , vβ) and
γ ∼ Gamma(uγ , vγ), where uα, vα, uβ , vβ , uγ and vγ are known hyperparameters, and Gamma(u, v) denotes a
gamma distribution with mean u/v and variance u/v2. When considering data with a cure fraction, we assume a beta
prior distribution for the proportion η of the long-term survivors denoted by η ∼ Beta(a, b) where a and b are known
hyperparameters. In all cases, we assume prior independence among the parameters included in the model. The joint
posterior distribution for the model’s parameters is thus obtained via Bayes theorem by combining the joint prior dis-
tribution with the correspondent likelihood function (Carlin and Louis,2001). To get information on the joint posterior
distributions for the parameters of the model, we used Markov chain Monte Carlo (MCMC) methods as the Gibbs
and Metropolis-Hastings algorithms (Gelman et al.,2014). The simulation algorithm generated 1,005,000 samples of
the joint posterior distribution of interest with a burn-in phase of 5,000 simulated samples to eliminate the effect of
the initial values in the iterative procedure and considering a thinning interval of size 100 to have approximately inde-
pendent samples. The Bayes Monte Carlo estimates of the parameters based on the simulated 10,000 Gibbs samples
were obtained as the sample means (use of a squared error loss function) of the Gibbs samples drawn from the joint
posterior distribution, and the uncertainty in the estimates was indicated by the 95% highest probability density (HPD)
intervals (Chen and Shao,1999).

The Geweke convergence diagnostic method was employed to assess convergence of the chains (Geweke,1992; Cowles
and Carlin,1996; El Adlouni et al.,2006). This method takes two non-overlapping parts of a simulated Markov chain
and compares the means of both parts. The MCMCpack package of the R software (Martin and Quinn,2006) considers
by default the first 10% and the last 50%. Supposing that φ is a parameter of interest and φ(1), ..., φ(B) are the related
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simulated values, we calculate a Z-score given by

Z =
φ
B − φA

σ̂
φ
B−φA

,

where φ
A

and φ
B

are respectively the means of the initial and the final parts, and σ̂
φ
B−φA is an estimated standard

deviation of the difference φ
B − φA. Considering that Z asymptotically follows a standardized normal distribution,

we obtain convergence for a chain if its correspondent absolute Z value is less than 1.96. The convergence of the
chains was also assessed by visual inspection using traceplots. Plots of the autocorrelation function (ACF) were used
to check for the correlation between successive MCMC samples.
In this article, the Bayesian model selection is based on the Logarithm of the Pseudo-Marginal Likelihood (LPML;
Ibrahim et al.,2014). The LPML can be obtained through the Conditional Predictive Ordinate (CPO) values (Geisser
and Eddy,1979). An estimate of the LPML can be calculated as

L̂PML =

n∑
i=1

log(ĈPOi),

where ĈPOi is the Monte Carlo estimate of the CPO for the ith observation. A larger LPML indicates a better fit of
the proposed model to the data.

2.5. Simulating samples from a EDW distribution

Nekoukhou and Bidram(2015) showed that if X is a random variable that follows a continuous exponentiated Weibull
distribution with cumulative function given by

F (x) =
[
1− e−γx

α
]β
,

where x > 0, α > 0, β > 0 and γ > 0, then [X] has an EDW (α, β, γ) distribution. In this case, g(x) = [x] denotes
the floor function, i.e. the greatest integer less than or equal to x. Based on this remark and considering the Algorithms
6 and 7 presented in the article from Ramos et al.(2020), we can simulate a sample of size n from the EDW distribution
with right-censored data following the steps:

Step 1. Fix values of α, β and γ. If a cure fraction is present, also fix a value for η.

Step 2. Generate n random samples from ui ∼ Uniform(0, 1).

Step 3. Consider t
′

0i = F−1(ui;α, β, γ), where

F−1(ui;α, β, γ) =

− log
(
1− u1/βi

)
γ

1/α

.

Step 4. If a cure fraction is not present, then t
′

i = t
′

0i and skip to Step 7.

Step 5. Generate n random samples from a Bernoulli distribution with parameter η, denoted by bi ∼ Bernoulli(η).

Step 6. If bi = 1, then t
′

i =∞. If bi = 0, then t
′

i = t
′

0i.

Step 7. Generate n random samples from ci ∼ Uniform(0,max(t
′

0i)). This is the distribution that controls the
censorship mechanism.

Step 8. Pairs of values (t1, d1), (t2, d2),..., (tn, dn) are thus obtained. If t
′

i ≤ ci, then ti = [t
′

i] and di = 1, i = 1, ..., n.
Otherwise, ti = [ci] and di = 0, i = 1, ..., n.
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3. Results

3.1. Applications to simulated data

In order to exemplify the application of the EDW model and to compare the results from the frequentist and Bayesian
approaches, we simulate samples of size n = 50, 100, and 300 from the EDW distribution for (α, β, γ) equal to (a)
(1.5, 2, 0.2), (b) (1, 1.5, 0.6), (c) (1, 3, 0.3), (d) (1.1, 0.8, 0.2), (e) (0.8, 0.4, 0.6), and (f) (2, 1, 0.15), according to the
steps described in the subsection 2.5. The seed value of the pseudo random number generator was arbitrarily fixed
to a value of 34. For each sample size, we evaluate the ML estimations of the parameters using the maxLik package
of the R software (Henningsen and Toomet,2011) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
method (Broyden,1970; Fletcher,1970). Confidence intervals were obtained using the delta method and the logarithmic
transformation, as described in the previous section. The MCMCpack package (Martin and Quinn,2006) was used to
obtain the Bayesian estimates, the 95% HPD intervals, and the Geweke’s Z-score. Under the Bayesian estimation
framework, prior distributions of α, β and γ were given by α ∼ Gamma(1, 1), β ∼ Gamma(1, 1) and γ ∼
Gamma(1, 1). Tables 1 and 2 give all simulation results, where we can note that the estimates of the parameters
tend to be closer to the nominal values when n increases. ML and Bayesian point estimates are relatively close to
each other. However, it is observed that under the frequentist framework, we have fairly wide confidence intervals,
especially when considering smaller samples. All absolute values of Geweke’s Z-score in Tables 1 and 2 are less than
1.96, suggesting satisfactory convergence of the chains to a stable distribution.

3.2. Applications to simulated data with a cure fraction

In this subsection, a simulation study is presented in order to exemplify the application of the EDW model under right
censoring mechanism in presence of a cure fraction, and to compare the obtained results from the frequentist and
Bayesian approaches. We simulate samples of size n = 50, 100, 300, 1000 and 5000 from the EDW distribution with
a cure fraction, according to the steps described in the subsection 2.5. The chosen values to perform this study were
(α, β, γ) = (1.1, 0.8, 0.2) and the η parameter was set at 0.2 and 0.5. Confidence intervals for α, β and γ were obtained
using the delta method and the logarithmic transformation, as described in the subsection 2.1. However, confidence
intervals for η were obtained using the traditional Wald method, since all their bounds were in the interval (0, 1).
Under the Bayesian estimation framework, prior distributions of α, β, γ and η were assumed as α ∼ Gamma(1, 1),
β ∼ Gamma(1, 1), γ ∼ Gamma(1, 1) and η ∼ Beta(0.5, 0.5). Table 3 shows the obtained results, from where it is
noted that the ML and Bayesian point estimates tend to be closer as the sample size increases. The frequentist standard
errors tend to decrease as the sample sizes increase, as it is expected. However, we have fairly wide confidence intervals
when considering smaller samples. The Bayesian 95% HPD intervals are relatively narrow. Geweke’s Z-scores
together with visual inspection of the simulated chains suggest that convergence was achieved for each parameter.

3.3. A simulation study

In this subsection, we perform a simulation study to examine the performance of the maximum likelihood estimation
method. The simulation study was conducted from random samples of sizes 25, 30, 40, 45, ..., 400 of the EDW
distribution for different values of the parameters. All simulation results were based onB = 1, 000 replications for the
different sample sizes considered for each parameter setting. We computed the coverage probability of the confidence
intervals, bias, and MSE of parameter estimates based on these B values, and the obtained results are presented in
Figure 2. The coverage probability is the proportion of the time that the interval contains the nominal value of the
respective parameter. In this study, the nominal confidence level is taken as 95%. The bias in the estimation of a
parameter λ and the MSE are respectively estimated by

B̂ias(λ̂ML) =
1

B

B∑
b=1

(
λ̂
(b)
ML − λN

)
and M̂SE(λ̂ML) =

1

B

B∑
b=1

(
λ̂
(b)
ML − λN

)2
,

where λ̂ML ∈ (α̂ML, β̂ML, γ̂ML) is the ML estimate for a given parameter, λ̂(b)ML is the ML estimate obtained for
λ considering the b-th simulated sample, λN is the corresponding nominal value for λ, λ ∈ (α, β, γ), and B is the
number of simulated samples. This simulation study was carried out using the software R.
We can note in Figure 2 that in all simulations, the biases and the MSE reduces as the sample sizes increase for
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Table 1: Maximum likelihood and Bayesian estimates for the parameters of the model based on EDW distribu-
tion.

Nominal Maximum likelihood estimates Bayesian estimates

values Std. Std. 95% HPD Geweke
(α, β, γ) n Parameter Estimate error 95% CI Mean dev. interval Z-score

(1.5,2,0.2) 50 α 1.7202 1.4276 (0.3382, 8.7497) 1.5565 0.4354 (0.7910, 2.3817) -1.77
β 1.7024 2.4696 (0.0991, 29.234) 2.2147 1.0833 (0.5723, 4.3979) 0.70
γ 0.1036 0.3211 (0.0002, 45.107) 0.1985 0.1527 (0.0025, 0.5169) 0.82

100 α 1.4928 0.6480 (0.6375, 3.4955) 1.4368 0.3443 (0.8356, 2.1384) -0.39
β 1.7545 1.3825 (0.3745, 8.2198) 2.1134 0.9515 (0.7139, 4.0161) -0.34
γ 0.1675 0.2406 (0.0100, 2.7989) 0.2384 0.1578 (0.0063, 0.5397) -0.19

300 α 1.3502 0.3733 (0.7853, 2.3214) 1.3597 0.2672 (0.8798, 1.8795) -0.99
β 2.0280 1.0535 (0.7326, 5.6139) 2.2047 0.8226 (0.8973, 3.8911) 0.28
γ 0.2120 0.1825 (0.0391, 1.1463) 0.2441 0.1342 (0.0146, 0.5040) 0.38

(1,1.5,0.6) 50 α 0.9873 0.8699 (0.1755, 5.5521) 1.0892 0.3354 (0.5395, 1.7679) 0.01
β 1.5273 2.6830 (0.0488, 47.775) 1.5351 0.9059 (0.3531, 3.3144) -0.64
γ 0.5332 1.0633 (0.0106, 26.570) 0.5126 0.3085 (0.0420, 1.1159) -0.02

100 α 0.8824 0.5417 (0.2649, 2.9391) 1.0503 0.2935 (0.5560, 1.6301) -0.28
β 1.8358 2.4335 (0.1366, 24.669) 1.5505 0.8160 (0.3592, 3.1978) -0.92
γ 0.6965 0.8995 (0.0554, 8.7534) 0.5576 0.3030 (0.0565, 1.1436) -0.62

300 α 1.1397 0.3454 (0.6293, 2.0641) 1.1000 0.2500 (0.6227, 1.5625) -1.24
β 1.0844 0.6100 (0.3600, 3.2662) 1.3452 0.6073 (0.4757, 2.6272) 0.93
γ 0.3538 0.2788 (0.0755, 1.6581) 0.4509 0.2316 (0.0741, 0.9167) 1.02

(1,3,0.3) 50 α 1.2353 0.8137 (0.3397, 4.4922) 1.2420 0.3291 (0.6576, 1.8785) 0.94
β 2.0059 2.4786 (0.1780, 22.599) 2.1710 1.0704 (0.6236, 4.2785) -0.99
γ 0.1363 0.3197 (0.0014, 13.523) 0.1810 0.1408 (0.0014, 0.4673) -0.83

100 α 1.1067 0.4314 (0.5154, 2.3760) 1.1320 0.2524 (0.6901, 1.6137) -1.15
β 2.1190 1.5987 (0.4830, 9.2966) 2.2444 0.9486 (0.8190, 4.1923) 0.60
γ 0.1918 0.2438 (0.0159, 2.3160) 0.2193 0.1385 (0.0073, 0.4958) 0.66

300 α 0.9382 0.2503 (0.5562, 1.5828) 1.0097 0.1719 (0.6917, 1.3490) -0.14
β 2.8260 1.5776 (0.9462, 8.4401) 2.6338 0.9259 (1.1688, 4.5379) -0.83
γ 0.2965 0.2308 (0.0645, 1.3638) 0.2685 0.1311 (0.0536, 0.5237) -0.57

(1.1,0.8,0.2) 50 α 0.8733 2.0361 (0.0091, 84.264) 0.8841 0.3061 (0.4011, 1.5184) 1.70
β 1.1065 4.5555 (0.0003, 3535.4) 1.3908 0.9101 (0.2301, 3.0955) -1.92
γ 0.3090 1.9087 (0.0001, 56050.8) 0.4095 0.2997 (0.0030, 0.9910) -1.89

100 α 0.8614 1.1402 (0.0643, 11.531) 0.9355 0.2893 (0.4594, 1.5027) 0.96
β 1.1449 2.7800 (0.0098, 133.55) 1.2381 0.7192 (0.2585, 2.7107) -1.31
γ 0.3427 1.1826 (0.0004, 296.55) 0.3676 0.2567 (0.0063, 0.8884) -0.99

300 α 0.9177 0.4312 (0.3654, 2.3048) 1.0321 0.2469 (0.5959, 1.5424) -0.20
β 1.0417 0.8752 (0.2007, 5.4060) 0.9839 0.4582 (0.3228, 1.8787) -0.75
γ 0.2824 0.3683 (0.0219, 3.6383) 0.2556 0.1745 (0.0105, 0.6089) -0.58

(0.8,0.4,0.6) 50 α 0.5640 1.0525 (0.0145, 21.871) 0.6393 0.2731 (0.2332, 1.1999) -0.43
β 0.6678 2.6145 (0.0003, 1435.6) 0.7810 0.6224 (0.0798, 2.0711) 0.21
γ 0.8177 2.8632 (0.0001, 782.13) 0.8180 0.5077 (0.0163, 1.7767) 0.17

100 α 0.6051 0.6336 (0.0777, 4.7110) 0.7045 0.3047 (0.2833, 1.2595) 0.14
β 0.7541 1.7710 (0.0076, 75.252) 0.8645 0.7311 (0.0575, 2.2341) -1.55
γ 0.9164 1.7867 (0.0201, 41.846) 0.8857 0.5286 (0.0049, 1.8716) -1.25

300 α 0.6252 0.2538 (0.2822, 1.3852) 0.6312 0.1759 (0.3377, 0.9874) -0.46
β 0.8545 0.7831 (0.1418, 5.1501) 1.1498 0.8357 (0.2049, 2.6883) 0.14
γ 0.9018 0.6922 (0.2003, 4.0598) 1.0138 0.4764 (0.1891, 1.8991) 0.21
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Table 2: Maximum likelihood and Bayesian estimates for the parameters of the model based on EDW distribu-
tion.

Nominal Maximum likelihood estimates Bayesian estimates

values Std. Std. 95% HPD Geweke
(α, β, γ) n Parameter Estimate error 95% CI Mean dev. inteval Z-score

(2,1,0.15) 50 α 1.6231 2.3455 (0.0956, 27.565) 1.7005 0.5616 (0.7877, 2.8636) 1.56
β 1.5783 3.9419 (0.0118, 210.94) 1.7157 0.9562 (0.4185, 3.5768) -1.94
γ 0.2458 1.0112 (0.0001, 780.01) 0.2921 0.2214 (0.0012, 0.7237) -1.75

100 α 1.4716 1.6024 (0.1742, 12.435) 1.6032 0.4628 (0.8354, 2.5040) 0.39
β 1.4762 2.8402 (0.0340, 64.099) 1.5109 0.7769 (0.4260, 3.0059) -1.31
γ 0.2886 0.8556 (0.0001, 96.267) 0.2983 0.2063 (0.0113, 0.7144) -1.17

300 α 1.5224 1.0345 (0.4019, 5.7669) 1.7087 0.4148 (1.0041, 2.5029) 1.32
β 1.3427 1.5675 (0.1362, 13.234) 1.2496 0.5034 (0.4868, 2.3626) -1.16
γ 0.2395 0.4664 (0.0053, 10.885) 0.2157 0.1408 (0.0131, 0.5178) -1.15

each parameter, as expected under asymptotic theory. However, we observe that when considering the nominal values
(α, β, γ) = (0.8, 0.4, 0.6), the curves for the bias and MSE approach zero more slowly, and the estimates of the
coverage probabilities do not reach the 95% nominal value even for larger sample sizes. Panel (m) of Figure 1 suggests
that the pmf of the EDW distribution given these parameter values has a flat shape after t = 0.

3.4. Applications to real data sets

This section presents applications of the methods discussed in this article to real data sets from the literature.

3.4.1. Survival of HIV-infected patients with high-grade non-Hodgkin’s lymphomas

Let us consider as a first example the statistical analysis of a data set where a cure fraction is not assumed. Manyau
et al.(2020) published a retrospective review of medical records of adult HIV-infected patients treated in Zimbabwe
for high-grade large cell non-Hodgkin’s lymphoma between 2015-–2017. We consider a sub-sample of n = 92
patients who received three or more cycles of treatment. The variable of interest is the overall survival (OS), defined
as the time in months since the diagnosis of lymphoma until the date of death. According to the study planning,
26 patients were right-censored at 20 months after the diagnosis. Table 4 shows the ML and Bayesian estimates
considering the EDW distribution and their special cases previously described in section 1: discrete Weibull (DW),
discrete exponential (DE), discrete Rayleigh (DR), discrete generalized exponential (DGE) and discrete generalized
Rayleigh (DGR). Considering the Bayesian approach introduced in the subsection 2.4, prior distributions of α, β and
γ were assumed as α ∼ Gamma(1, 1), β ∼ Gamma(1, 1) and γ ∼ Gamma(1, 1). MCMC methods were used
to get the posterior summaries of interest. Convergence of the simulation algorithm was achieved for all parameters
based on the Geweke’s statistics.
We can note that the Bayesian and maximum likelihood estimates showed in Table 4 are very similar. Figure 3
compares the survival function estimated by the Kaplan-Meier method and fitted by parametric models using the ML
estimation method (left panel) and the Bayesian approach (right panel). Figure 3 also provides the AIC, BIC, and
AICC values for the frequentist models and LPML values for the Bayesian models. The models based on the EDW
and DGE distributions have the lowest AIC and AICC values, and under the Bayesian approach, these models have
the highest LPML values, suggesting that they have the best fit to data among the candidate models.

3.4.2. Survival of patients with non-Hodgkin’s lymphoma and low ADMA concentration

In this second example, we consider a medical data set with the presence of a cure fraction. Let us consider a sub-
sample of n = 14 patients with non-Hodgkin’s lymphoma and low asymmetric dimethylarginines (ADMA) plasma
concentrations of the Hematology Clinic of Wroclaw Medical University in Poland. This data set was introduced by
Chachaj et al.(2018) and referred to the time-to-death of the patients. These times are: 1, 1, 1, 1, 5, 7, 13, 16, 40+,
40+, 40+, 40+, 40+ and 40+ months, where + denotes a censored observation. We have six censored observations at
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Table 3: Maximum likelihood and Bayesian estimates for the parameters of the model based on EDW distribu-
tion including a cure fraction given by η. Nominal values for the parameters α, β and γ are 1.1, 0.8 and 0.2,
respectively.

Maximum likelihood estimates Bayesian estimates

Std. Std. 95% HPD Geweke
η n Parameter Estimate error 95% CI Mean dev. interval Z-score

0.2 50 α 1.4319 1.1571 (0.2938, 6.9780) 0.8772 0.3776 (0.2966, 1.6375) 1.59
β 0.9368 1.2822 (0.0641, 13.6976) 1.4885 0.9285 (0.2367, 3.3811) -0.85
γ 0.1603 0.4262 (0.0001, 29.3792) 0.4210 0.3097 (0.0013, 1.0356) -1.11
η 0.2751 0.0759 (0.1264, 0.4238) 0.1763 0.1149 (0.0001, 0.3731) 1.40

100 α 2.9363 1.9790 (0.7834, 11.0058) 1.0407 0.3944 (0.4048, 1.8305) 0.02
β 0.2064 0.1729 (0.0400, 1.0657) 1.0276 0.5533 (0.2097, 2.1292) -0.13
γ 0.0018 0.0091 (0.0001, 32.2225) 0.2967 0.2168 (0.0017, 0.7306) -0.15
η 0.2870 0.0514 (0.1862, 0.3878) 0.2638 0.0667 (0.1307, 0.3929) 0.22

300 α 2.6031 1.3381 (0.9505, 7.1291) 1.3115 0.3786 (0.7367, 2.1097) -0.07
β 0.2451 0.1527 (0.0723, 0.8309) 0.6580 0.2333 (0.2445, 1.0951) -0.18
γ 0.0027 0.0096 (0.0001, 2.6496) 0.1129 0.0805 (0.0007, 0.2643) -0.22
η 0.2123 0.0302 (0.1531, 0.2715) 0.1954 0.0388 (0.1230, 0.2696) 0.68

1000 α 0.8260 0.2044 (0.5086, 1.3416) 0.8139 0.1599 (0.5328, 1.1445) -0.95
β 1.3483 0.6018 (0.5622, 3.2337) 1.5359 0.5996 (0.6224, 2.6806) 1.14
γ 0.4132 0.2378 (0.1338, 1.2765) 0.4698 0.2026 (0.1127, 0.8498) 0.95
η 0.1855 0.0180 (0.1503, 0.2207) 0.1828 0.0181 (0.1471, 0.2183) -0.29

5000 α 1.0817 0.1007 (0.9013, 1.2983) 1.0577 0.0969 (0.8649, 1.2437) 1.49
β 0.8314 0.1289 (0.6134, 1.1267) 0.8813 0.1412 (0.6167, 1.1489) -1.60
γ 0.2166 0.0585 (0.1275, 0.3678) 0.2390 0.0628 (0.1177, 0.3553) -1.61
η 0.2089 0.0071 (0.1951, 0.2227) 0.2084 0.0071 (0.1943, 0.2219) 1.32

0.5 50 α 1.1762 1.4896 (0.0983, 14.0750) 0.9987 0.3746 (0.3732, 1.7860) 0.04
β 1.0596 2.3561 (0.0136, 82.7680) 1.5492 0.9102 (0.2981, 3.3883) 0.42
γ 0.2541 0.9192 (0.0002, 305.189) 0.4379 0.2918 (0.0094, 1.0094) 0.30
η 0.4923 0.0806 (0.3344, 0.6502) 0.4670 0.1033 (0.2687, 0.6569) 0.54

100 α 3.7726 3.5717 (0.5899, 24.1272) 0.9180 0.3904 (0.2642, 1.6764) 0.03
β 0.1594 0.1791 (0.0176, 1.441) 1.2199 0.7285 (0.2214, 2.7116) 0.44
γ 0.0003 0.0023 (0.0001, 32.2225) 0.3518 0.2600 (0.0002, 0.8824) 0.36
η 0.5773 0.0544 (0.4707, 0.6830) 0.5243 0.1192 (0.2479, 0.7065) 1.17

300 α 1.8915 1.1633 (0.5667, 6.3138) 0.8904 0.3354 (0.3500, 1.5599) 0.77
β 0.3667 0.2918 (0.0771, 1.7442) 1.3036 0.7165 (0.2980, 2.7406) -0.90
γ 0.0174 0.0538 (0.0001, 7.3739) 0.3340 0.2304 (0.0016, 0.7918) -0.85
η 0.4747 0.0353 (0.4054, 0.5440) 0.4373 0.0608 (0.3219, 0.5377) 0.18

1000 α 0.9901 0.2750 (0.5744, 1.7065) 0.9084 0.2011 (0.5348, 1.2932) -0.47
β 0.9799 0.4627 (0.3884, 2.4723) 1.2971 0.5744 (0.4857, 2.4198) 0.83
γ 0.2727 0.2030 (0.0634, 1.1730) 0.3923 0.2089 (0.0807, 0.8165) 0.58
η 0.5071 0.0185 (0.4707, 0.5434) 0.5043 0.0191 (0.4672, 0.5423) -0.13

5000 α 1.0612 0.1260 (0.8408, 1.3393) 1.0226 0.1210 (0.7853, 1.2588) 0.51
β 0.8374 0.1665 (0.5671, 1.2365) 0.9245 0.2034 (0.6066, 1.3423) -0.65
γ 0.2291 0.0776 (0.1179, 0.4451) 0.2685 0.0905 (0.1149, 0.4463) -0.69
η 0.5168 0.0080 (0.5012, 0.5325) 0.5162 0.0080 (0.5005, 0.5315) -0.41

t = 40 months. Table 5 shows the ML and Bayesian estimates for the model based on the EDW distribution. For a
Bayesian analysis of the model, we assumed the same priors for α, β and γ considered in the example of subsection
3.4.1 and a beta Beta(0.5, 0.5) prior for the parameter η. MCMC methods were used to get the posterior summaries
of interest. We note that ML and Bayesian point estimates are relatively close to each other. The large frequentist
confidence intervals for the parameters can be attributed to the small sample size.

Figure 4 compares the estimated values of the survival function obtained by the Kaplan-Meier method and by the
parametric models using the ML and Bayesian approaches (left and right panels, respectively). The graphs visually
suggest that the EDW distribution and its special cases fit the data well, except the model based on the DR distribution,
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Figure 2: Results from the simulation study. The graphs show the estimates of the coverage probabilities of the 95%
confidence intervals for the parameters α, β and γ based on the delta method, the average bias, and the mean squared
error (MSE).

Table 4: Maximum likelihood and Bayesian estimates for the models based on the EDW distribution and its
special cases, applied to the HIV-infected patients data introduced by Manyau et al.(2020).

Maximum likelihood estimates Bayesian estimates

Std. Std. 95% HPD Geweke
Model Parameter Estimate error 95% CI Mean dev. interval Z-score

EDW α 0.8058 0.2955 (0.3927, 1.6535) 0.7812 0.1915 (0.4944, 1.2088) 0.41
β 3.1594 2.2408 (0.7868, 12.6857) 3.1371 1.5006 (1.0989, 6.3456) -0.58
γ 0.1794 0.2145 (0.0172, 1.8682) 0.1904 0.1390 (0.0106, 0.4831) -0.51

DW α 1.5558 0.1879 (1.2278, 1.9714) 1.4490 0.1757 (1.1081, 1.7955) -0.32
γ 0.0094 0.0051 (0.0032, 0.0272) 0.0144 0.0074 (0.0029, 0.0287) 0.33

DE γ 0.0430 0.0061 (0.0326, 0.0567) 0.0435 0.0061 (0.0320, 0.0555) -0.12

DR γ 0.0027 0.0004 (0.0020, 0.0036) 0.0027 0.0004 (0.0020, 0.0035) 0.21

DGE β 2.2303 0.4531 (1.4978, 3.3212) 2.1597 0.4241 (1.3935, 3.0114) 0.06
γ 0.0854 0.0147 (0.0609, 0.1198) 0.0833 0.0140 (0.0566, 0.1112) 0.02

DGR β 0.7537 0.1225 (0.5481, 1.0365) 0.7721 0.1214 (0.5423, 1.0102) 1.22
γ 0.0019 0.0005 (0.0012, 0.0033) 0.0021 0.0005 (0.0011, 0.0030) 1.50
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Figure 3: Survival function for the HIV-infected patients data estimated by the Kaplan- Meier method and by using
the models based on the EDW distribution and its special cases. ML and Bayesian estimates are shown in panels (a)
and (b), respectively.

which seems to be further away from the Kaplan-Meier curve. However, the model based on the DE distribution is the
one with the lowest AICC value under the frequentist approach and with the highest LPML value under the Bayesian
framework, which suggests that a model based on a baseline distribution with only one parameter may be adequate for
these data.

Table 5: Maximum likelihood and Bayesian estimates for the model based on the EDW distribution with a cure
fraction, applied to the non-Hodgkin’s lymphoma patients data introduced by Chachaj et al.(2018).

Maximum likelihood estimates Bayesian estimates

Std. Std. 95% HPD Geweke
Model Parameter Estimate error 95% CI Mean dev. interval Z-score

EDW α 0.8158 0.8676 (0.1014, 6.5601) 0.7000 0.3006 (0.2484, 1.3548) 0.55
β 1.6529 3.3579 (0.0308, 88.620) 1.4819 1.0146 (0.2914, 3.7454) -0.54
γ 0.3252 0.9493 (0.0011, 99.319) 0.3397 0.2789 (0.0010, 0.9336) -0.90
η 0.4281 0.1327 (0.1680, 0.6882) 0.3943 0.1579 (0.0001, 0.6269) 0.66

4. Concluding Remarks

In this article, the three-parameter EDW distribution introduced by Nekoukhou and Bidram(2015) was studied, con-
sidering the inclusion of right-censored data and a cure fraction. The maximum likelihood and the Bayesian estimation
methods were employed to estimate the unknown model parameters. Applications to simulated data showed that both
the ML and Bayesian approaches are computationally feasible to estimate the parameters of EDW distribution. In a
simulation study, we observed that both bias and MSE tend to zero when there is an increase in the sample size n,
suggesting that the ML estimators are asymptotically unbiased for the parameters. Applications with real data have
shown that the EDW probability distribution and its special cases can fit the data very well, under both the ML and
Bayesian frameworks. The model can be easily implemented in existing free computational programs like R, and the
EDW distribution can attract more comprehensive applications in diverse fields.
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Figure 4: Survival function for the non-Hodgkin’s lymphoma patients data estimated by the Kaplan- Meier method
and by using the models based on the EDW distribution and its special cases. ML and Bayesian estimates are shown
in panels (a) and (b), respectively.
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