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Abstract  

 

In most cases, loss in general insurance is calculated based on claim severity and frequency and an assumption of 

independence. However, in some cases, claim severity depends upon the claim frequency. This paper presents the 

derivation of aggregate loss calculation by modeling claim severity and frequency as the assumption of 
independence is eliminated. The authors modeled average claim severity using claim frequency as the covariate to 

induce the dependence among them. For that purpose, we use the generalized linear models. The calculated loss is 

obtained after the parameter estimation process.  
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1. Introduction  

To produce a policy of insurance, an insurer needs a comprehensive calculation. The calculation includes the risk that 

highly potentially be imposed by the insurer. In this case, how much the aggregate loss required to cover the risk of 

the policyholders. Aggregate loss is composed of claim frequency and claim severity. Jorgensen and de Souza (1994) 

developed the loss calculation mathematically within an assumption that claim frequency and severity are 

independent. Then the model was reviewed deeply by Quijano-Xacur and Garrido (2015). Nevertheless, in practice, 

we often meet dependency between claim frequency and severity. 

Frees and Wang (2006) introduced dependency between claim frequency and severity. Afterward, Frees et al. (2011) 

modeled average severity used frequency as a predictor for severity claim. Czado et al. (2012) link marginal frequency 

to severity using copula. Shi et al. (2015) modeled regression of average severities by applying frequency claim as the 

covariate and make a comparison against mixed copula approached to construct the joint distribution of frequency and 

severity claims. 

 

Generalized Linear Models (GLM) have commonly been applied to model insurance claims. Montgomery et al. (2012) 
explained GLM as a unique linear regression method that uniting the usual normal-theory linear regression models 

and nonlinear models such as logistic and Poisson regression. A fundamental assumption in the GLM is that the 

response variable distribution is a member of the exponential dispersion family (EDF). Jong and Heller (2008) claimed 

that GLM is a favorite model because in insurance data, more frequently, the data distribution is a member of EDF 
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rather than Normal distribution. Garrido et al. (2016) used GLM to simulate the frequency and severity of non-life 

insurance claims as independent and dependent components. 

 

This paper adopts the model which was developed by Garrido et al. (2016). The model used the assumption that the 

frequency follows the Poisson distribution and the severity follows Gamma distribution. However, the wide variety 
of policyholders' characteristics impact the claim frequency and sometimes potentially inflict an over-dispersion. In 

other words, the variance of data will grow higher than the mean, which leads to an increment of residual. Therefore, 

the claim frequency distribution on Garrido's model needs to develop. This paper used Negative Binomial distribution 

as a counting distribution for claim frequency.  

   
2. Loss Modeling 

A loss event, which an insurance company experiences, is an accumulation of aggregate loss submitted by 

policyholders. Claim frequency 𝑁 of the company is uncertain, and it follows discrete random variable with positive 

integer values. Each claim mostly has a random amount. The amount of j-th claim is denoted by 𝑌𝑗 , which follows a 

continuous random variable. Hence, the aggregate loss is denoted as 𝑆 and given as follows 

S = ∑ 𝑌𝑗

𝑁

𝑗=1

. 
 
 

The successive claims are assumed to be under the same distribution and independent. It is important to note that 𝑁 

and 𝑌 are members of the EDF, which means the probability density function follow 

𝑓X(𝑥, 𝜃, 𝜙) = exp [
𝑥𝜃 − 𝑘(𝜃)

𝑎(𝜙)
+ 𝐶(𝑥, 𝜙)], 

 

 

where 𝑘, 𝑎, and 𝐶 are the specified functions. 𝜃 is the canonical parameter, and 𝜙 is the dispersion parameter.  

 

Garrido et al. (2016) described �̅� =
(𝑌1+𝑌2+⋯+𝑌𝑁)

𝑁
 as the average claim severity. Directly, we can see that �̅� contains 

the claim count component as the covariate. This condition shows the dependency on frequency and severity in this 

model. On the other hand, the latter explanation state the loss model as the product of the average claim severity and 

the claim frequency. 

 

Suppose that individual number of claims are mutually independent and member of the EDF, 𝑌𝑗~EDF(𝜇, 𝜙) for all 

positive integers 𝑗. Based on cumulant-generating function properties, for 𝑁 > 0,  �̅�~EDF (𝜇,
𝜙

𝑁
) (Frees et al., 2016). 

 

As the common regression, we will have a set of covariate as explanatory variables. Let 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑠} represents 

the set of 𝑠 explanatory variables. GLM for 𝑁 and �̅� is used to describe their relations with the explanatory variables, 

which are not linear as the general linear model relation has. In general formulation, 𝑔𝑁 and 𝑔𝑌 are given by Eq. (1) 

and Eq. (2), respectively. 

𝑣 = 𝐸(𝑁|𝑥) = 𝑔𝑁
−1(𝒙𝑻𝜶), (1) 

𝜇𝜃 = 𝐸(�̅�|𝑁, 𝑥) = 𝑔𝑌
−1(𝒙𝑻𝜷 + 𝜃𝑁), (2) 

where 𝒙𝑻 is 1 × 𝑠 vector of explanatory variables. 𝜶 and 𝜷 are 𝑠 × 1 vector of regression coefficients which explain 

𝑁 and �̅�, respectively. 𝜃 ∈ ℝ is the parameter that represents the degree of dependence between 𝑁 and �̅�. For some 

𝑘 ∈ (1,2, … , 𝑠), 𝛼𝑘 or 𝛽𝑘  may zero deliberately if the corresponding explanatory variables are known to not affect the 

given expected value. 

 

The parameter of 𝜇𝜃 is the expected value of �̅� given frequency claim and explanatory variables. If 𝜃 = 0, then 𝜇𝜃 =
𝜇0 = 𝑔𝑌

−1(𝒙𝑻𝜷) which is equivalent to expected values of individual severities with the assumption that the frequency 

and the severity claims are independent. If 𝜃 ≠ 0, then 

𝐸(𝑆|𝒙) = 𝐸[𝐸(𝑆|𝑁, 𝒙)|𝒙] = 𝐸[𝐸(𝑁�̅�|𝑁, 𝒙)|𝒙] = 𝐸[𝑁𝐸(�̅�|𝑁, 𝒙)|𝒙] = 𝐸(𝑁𝜇𝜃). (3) 

In this model, a log link is chosen to relate the explanatory variables to the expected frequency and severity claims. 

Hence, for the mean value of average severity claims, we have 

ln(𝜇𝜃) = 𝒙𝑻𝜷 + 𝜃𝑁 ↔ 𝜇𝜃 = exp(𝒙𝑻𝜷 + 𝜃𝑁) = 𝜇𝑒𝜃𝑁 , (4) 

where 𝜇 denotes the expected value of the average severity claims when the degree of dependence is 0 (i.e., frequency 

and severity claims are independent). From Eq. (3) and Eq. (4), we obtain 
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𝐸(𝑆|𝒙) = 𝐸(𝑁𝜇𝑒𝜃𝑁|𝒙) = 𝜇𝐸(𝑁𝑒𝜃𝑁|𝒙) = 𝜇𝑀𝑁′(𝜃|𝒙),  

where 𝑀𝑛 is the moment generating function of 𝑁 based on GLM and 𝑀𝑁′ is the first derivative of 𝑀𝑛 with respect to 

𝜃. 

 

It is relatively simple to derive the variance of aggregate claims when 𝜃 = 0. But for the dependent model, it is more 

complicated and does not lead to a simple form. By the law of total variance, we have 

𝑉𝑎𝑟(𝑆|𝒙) = 𝜙𝜃𝐸[𝑁𝑉𝑌(𝜇𝑒𝜃𝑁)] + 𝜇2 [
1

4
𝑀𝑁

′′(2𝜃) − {𝑀𝑁
′ (𝜃)}2], 

 

 

where 𝜙𝜃 is the dispersion parameter of severity distribution in EDF representation, 𝑉𝑌 is the variance function of 

severity, and 𝑀𝑁
′′ is the second derivative of 𝑀𝑛 with respect to 𝜃. 

 

For 𝑁~𝒩ℬ(𝑟, 𝑝) and �̅�~𝒢 (𝜇𝜃 ,
𝜙𝜃

𝑁
), where 𝒩ℬ denotes a Negative Binomial distribution with number of failures 

given by 𝑟 and success probability given by 𝑝, 0 <  𝑝 <  1, and 𝒢 denotes a Gamma distribution. Hence the expected 

value and the variance of the aggregate claims are given by Eq. (5) and Eq. (6), respectively 

𝐸(𝑆|𝒙) = 𝜇 (
𝑟(1 − 𝑝)

𝑝
) 𝑒𝜃 [

𝑝

(1 − (1 − 𝑝)𝑒𝜃)
]

𝑟+1

, 
 

(5) 

 

𝑉𝑎𝑟(𝑆|𝒙) = 𝜙𝜃𝜇2(𝑝 − 1)𝑟𝑒2𝜃[(𝑝 − 1)𝑒2𝜃 + 𝑝]
𝑟−1

+
1

4
[𝑒2𝜃 − (𝑝 − 1){(𝑝 − 1)𝑒2𝜃 + 𝑝}

𝑟−2
𝑟(𝑝𝑟𝑒2𝜃 − 𝑟𝑒2𝜃 + 𝑝)]

− (𝑝 − 1)2𝑟2𝑒2𝜃 − [(𝑝 − 1)𝑒𝜃 + 𝑝]
2𝑟−2

. 

 

 

(6) 

 

Eq. (5) and Eq. (6) are derived based on the moment generating function of 𝑁, that is [
𝑝

(1−(1−𝑝)𝑒𝜃)
]

𝑟+1

. 

 

3. Parameter Estimation 

As mentioned in the previous section, there are 𝑠 explanatory variables. Suppose there are 𝑚 policyholders, 𝑖 ∈

{1,2, … , 𝑚}, let 𝑆𝑖 be the total claim size and �̅� =
𝑆

𝑁
 when 𝑁 > 0. Based on GLM structure for claim frequency and 

severity components of the aggregate claims, 𝐸(�̅�|𝑁𝑖) and 𝐸(𝑁𝑖) can be expressed as 

𝑣𝑖 = 𝑒𝑥𝑖𝛼 ,  

𝜇𝜃𝑖 = 𝑒𝑥𝑖𝛽+𝜃𝑛𝑖 ,  

where 𝑣 and 𝜇𝜃 respectively denote the expected value of claim frequency and severity. Denote 𝑓𝑁 and 𝑓�̅�|𝑁 

respectively as the marginal density function of frequency and conditional density function of severity. The likelihood 

function of 𝑚 joint density functions is given by Eq. (7) 

𝐿(𝜶, 𝜷, 𝜃; 𝒏, 𝒚) = ∏ 𝑓�̅�|𝑁(𝑦𝑖|𝑛𝑖)𝑓𝑁(𝑛𝑖)

𝑚

𝑖=1

. 
 

(7) 

Hence for general EDF distribution, the log likelihood of 𝑚 joint density functions is given by 

𝑙(𝜶, 𝜷, 𝜃; 𝒏, 𝒚) = ∑ (
𝑛𝑖𝛼𝑖 − 𝑘𝑁(𝛼𝑖)

𝑎𝑖𝑁(𝜙𝑁)
)

𝑚

𝑖=1

+ ∑ 𝐶(𝑛𝑖 , 𝜙𝑁 )

𝑚

𝑖=1

+ ∑ (
𝑦𝑖𝛽𝑖 − 𝑘𝑌(𝛽𝑖)

𝑎𝑖𝑌(𝜙𝑌)
)

𝑚

𝑖=1

+ ∑ 𝐶(𝑦𝑖 , 𝜙𝑌)

𝑚

𝑖=1

, 

 

 

The estimated value of �̂� = (�̂�1, �̂�2, … , �̂�𝑠)𝑇, �̂� = (�̂�1, �̂�2, … , �̂�𝑠)
𝑇
, and 𝜃 can be obtained by solving the following 

system: 

𝜕

𝜕𝛼𝑖

= ∑ (
(𝑛𝑖 − 𝑣𝑖)𝑥𝑖𝑘

ln(1 + 𝑣𝑖)
)

𝑚

𝑖=1

= 0, 𝑖 = 1,2, … , 𝑠 

𝜕

𝜕𝛽𝑖

= ∑ (
𝑛𝑖

𝜙𝜃

𝑥𝑖𝑘

𝜇𝜃𝑖

(𝑦𝑖 − 𝜇𝜃𝑖))

𝑚

𝑖=1

= 0, 𝑖 = 1,2, … , 𝑠 
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𝜕

𝜕𝜃
= ∑ (

𝑛𝑖

𝜙𝜃

𝑛𝑖

𝜇𝜃𝑖

(𝑦𝑖 − 𝜇𝜃𝑖))

𝑚

𝑖=1

= 0, 

under the assumption that 𝑁𝑖~𝒩ℬ(𝑟𝑖 , 𝑝𝑖) and �̅�𝑖|𝑁𝑖~𝒢 (𝜇𝜃𝑖 ,
𝜙𝜃

𝑁𝑖
). 

 

4. Results and Discussion 

As an illustration of how this model works to calculate aggregate loss under the assumption that claim frequency and 

average severity are dependent where the claim frequency follows negative binomial distribution and the average 

severity follows gamma distribution, we present a fictive portfolio involving 1000 policyholders. We also generated 

two information (𝑥1 and 𝑥2) as covariates for claim frequency, as 𝑥3 and 𝑥4 for claim severity. They are generated 

following half-normal distribution. 

 

𝑥𝑖1 and 𝑥𝑖2 denote the first and second explanatory for claim frequency variables for policyholder 𝑖 as 𝑥𝑖3 and 𝑥𝑖4 

explain claim severity variables, with 𝑖 = 1,2, … ,1000. Therefore, based on the policyholders, the expected claim 

frequency and claim severity constructed by 

𝑣 = 𝐸(𝑁|𝑥) = 𝑔𝑁
−1(𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2),  

 

𝜇𝜃 = 𝐸(�̅�|𝑁, 𝑥) = 𝑔𝑌
−1(𝛽0 + 𝛽1𝑥3 + 𝛽2𝑥4 + 𝜃𝑁).  

 

 

After doing calculation in R used glm function with log-links, we find 

𝑣𝑖 = exp(2.6949 − 0.1489𝑥𝑖1 + 0.0742𝑥𝑖2),  

 

�̂�𝜃𝑖 = exp(2.4464 − 0.1751𝑥𝑖3 − 0.063𝑥𝑖4 + 0.0812𝑁𝑖).  

 

 

Standard error and 𝑝-value test for �̂� and �̂� respectively are shown in Table 1 and Table 2. From the table, by looking 

at the t-test, the null hypothesis 𝐻0 the predictor well explains the response variable is rejected for 𝛼2. So, we are 

unable to say 𝛼2 well significant to describe 𝑁. For the same reason, we can say that 𝛽2 is not substantial to explain 

�̅�. It may happen because this model simulation just used a generated observation or the using of the unappropriated 

link function. On the other hand, we have a good estimation for 𝛼1, 𝛽1, and 𝜃. It means we have 𝑁 well explain the 

value of �̅�. By inspection, 𝜃 > 0 implies average severity positively correlated to claim frequency. 

 

Table 1: Standard error and 𝑝-value for �̂�. 

 Estimated 

Value 

Standard 

Error 
𝑝-value 

𝛼0 2.6949 0.1256 < 2 × 10−16 

𝛼1 -0.1489 0.0577 0.01 

𝛼2 0.0742 0.0548 0.176 

 

Table 2: Standard error and 𝑝-value for �̂� and 𝜃. 

 Estimated 

Value 

Standard 

Error 
𝑝-value 

𝛽0 2.4464 0.1383 < 2 × 10−16 

𝛽1 -0.1751 0.073 0.0168 

𝛽2 -0.063 0.0689 0.3603 

𝜃 0.0812 0.0288 0.0049 
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Figure 1: Deviance residuals plot versus fitted values for claim frequency 

 

 

Figure 2: Deviance residuals plot versus fitted values for average severity 

 

Fig. 1 and Fig. 2 given above show the plots of the fitted values versus the deviance residuals. The plot in Fig. 1 shows 

deviance residuals on fitted values for claim frequency while Fig. 2 for average severity. The plot in Fig. 1 looked 

more tenuous than the plot in Fig. 2. It indicates claim frequency’s residual more vary than the average severity 

residual. For average severity, we see an adequate model because the residual points are centered near zero. 

From the parameter estimation, we have all required components to estimate loss for the i-th policyholder, make use 

of 𝑣𝑖  and �̂�𝜃𝑖 . From Eq. (4), we obtain 

𝐸(𝑆𝑙 )̂ = 𝐸(𝑆𝑙𝜇𝜃𝑙)̂ = �̂�𝜃𝑖𝐸(𝑁𝑙 )̂ = 𝑒5.1413+0.1489𝑥𝑖1+0.742𝑥𝑖2−0.1751𝑥𝑖3−0.063𝑥𝑖4+0.0812𝑁𝑖 .  

Furthermore, using an individual estimated loss, we can calculate the pure premium of a policy insurance. 

 

5. Conclusion 

This paper has described an aggregate claim model. The model is standing with an assumption that claim severity and 

claim frequency is dependent by modeling average claim severity conditioning to the claim frequency. This 

assumption makes the model more flexible to use on real data rather than the independent one. Even though the model 
is not a new one, this paper presents a new condition on this model, that is, the distribution of claim frequency follows 

the Negative Binomial distribution. Based on their characteristic, the Negative Binomial distribution would be better 

to overcome data with a heavier tail than the Poisson distribution model. Poisson regression frequently impacts an 

overdispersion. Negative Binomial distribution will help overcome this matter, especially when the data do not fit the 

Poisson distribution well.  
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On the contrary, it fitted the Negative Binomial better. In the simulation section, we have seen that not all estimated 

parameters are significant to explain claim severity and claim frequency. However, this model can estimate the degree 

of dependency very well because it is not rejected by the statistical test even though �̅� and 𝑁's observation are 

generated separately. Theoretically, it is quite clear that the model under the Negative Binomial distribution is more 
complicated than the Poisson one. Nevertheless, it is essential to develop this model by applying another distribution, 

either the discrete or the continuous type distribution. It is also interesting to consider another way to see dependency 

between claim frequency and the average severity, not only on the linear form described in this paper. 
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