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Abstract

In this article, we develop and study in detail a new family of distributions called exponentiated half-logistic Odd Burr
III-G (EHL-OBIII-G). Some of the mathematical and statistical properties for this new family of distributions such as
the hazard function, quantile function, moments, probability weighted moments, Rényi entropy and stochastic orders
are derived. The model parameters are estimated using the maximum likelihood estimation method. The usefulness of
the proposed family of distributions is demonstrated via extensive simulation studies. Finally the proposed model and
its special case is applied to real data sets to illustrate its best fit and flexibility. The model is compared to some of the
existing non-nested models having equal number of parameters and from these results, the proposed model performed
better than other fitted models.
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1. Introduction

Recently, many researchers have done more work in developing new families by adding extra shape parameters to
achieve better fits and more flexibility in modelling practical data. Various families of distributions have been devel-
oped and used in the past to model data in different fields such as finance, economics, engineering, reliability analysis,
environmental sciences and medical sciences. Some of the well-known families are the Marshall-Olkin-G by (20),
the beta-G by (19), odd log-logistic-G by (3), the transmuted-G by (25), the gamma-G by (28), the Kumaraswamy-G
by (14), the logistic-G by (27), exponentiated generalized-G by (15), T-X family by (4), the Weibull-G by (7), the
exponentiated half-logistic generated family by (12) and the beta odd log-logistic generalized by (13) to mention just
a few. (8) developed a system of cumulative distribution functions which have been widely extended by many re-
searchers to generate more flexible and useful distributions. The Burr-XII models have many applications in different
areas including acceptance sampling plans, reliability and failure time modeling. (1) developed a new flexible family
of distributions called the Odd exponentiated half logistic-G (OEHL-G) family of distributions using the Half-Logistic
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(HL) distribution as the generator. The use of these new generators of continuous distributions have attracted the
attention of various authors in recent times.

In this article, we develop a new family of distributions called exponentiated half-logistic Odd Burr III-G (EHL-
OBIII-G) by extending the exponentiated half-logistic generated family by (12) using the Odd Burr III-G by (2). The
motivation for developing this new family of distributions arises from its ability to model failure time data with in-
creasing, decreasing, unimodal and bathtub shaped hazard rates. The proposed models represents a good alternative
to most of the failure time distributions that lacks flexibility in modeling various forms of real life data problems.

The new family of distributions exhibits reverse-J, J, symmetric, left or right-skewed shapes for the probability density
function. The hazard rate function of these new family of distributions is very flexible and has bathtub, upside bathtub,
reverse-J, J, increasing and decreasing shapes. Furthermore, the proposed distribution has a desirable tractability prop-
erty since the distribution can be expressed as an infinite linear combination of exponentiated-G distribution. Finally,
the development of this new family of distributions is necessitated by the need to model various forms of lifetime data
to include, economics, engineering, survival analysis and finance with models that takes into consideration not only
shape and scale but also skewness, kurtosis and tail variation.

This paper is organized as follows: Section 2, develops the proposed model, present the quantile function, series
expansion of the probability density function and some of the special cases. The mathematical properties for the EHL-
OBIII-G family, namely; moments, probability weighted moments, Rényi entropy, stochastic orders and maximum
likelihood estimates are presented under Section 3. We run and present Simulation results under Section 4. Section
5 gives results on model applications using real life datasets to show the efficacy of the fitted model. We finally give
concluding remarks under Section 6.

2. Developing the EHL-OBIII-G Model

In this section, we develop the new model, derive its quantile function, present the series expansion of the density
function and study some of its special cases.

2.1. The Model

Consider a family of distributions called the exponentiated half-logistic (EHL) family by (12) derived from the gamma-
generator by (28). The cumulative distribution function (CDF) of the EHL-G family of distributions is given by

F (x;α, λ, ξ) =

{
1− [1−G(x; ξ)]λ

1 + [1−G(x; ξ)]λ

}α
(1)

and the corresponding probability distribution function (PDF) is given by

f(x;α, λ, ξ) = 2αλg(x; ξ)[1−G(x; ξ)]λ−1
(1− [1−G(x; ξ)]λ)α−1

(1 + [1−G(x; ξ)]λ)α+1
, (2)

where G(x; ξ) and g(x; ξ) is the CDF and PDF respectively for any baseline distribution, and α, λ > 0 are additional
shape parameters with ξ as the vector of parameters. (2) proposed a new family of distributions called the Odd Burr
III-G (OBIII-G) family having the CDF and PDF given by

F (x; a, b,ψ) =

∫ G(x;ψ)

1−G(x;ψ)

0

abt−b−1(1 + t−a)−b−1dt =

{
1 +

(1−G(x;ψ)

G(x;ψ)

)a}−b
(3)

and

f(x; a, b,ψ) = ab
[1−G(x;ψ)]a−1

G(x;ψ)a+1

[
1 +

(1−G(x;ψ)

G(x;ψ)

)a]−b−1
g(x;ψ), (4)

respectively, for a, b > 0 and the parameter vector ψ.
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If we let equation (3) to be the baseline CDF in equation (1), then the CDF of the EHL-OBIII-G family of distributions
can be written as

F (x; a, b, α,ψ) =



(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b

1 +

1−

(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b



α

, (5)

and the corresponding PDF is given by

f(x; a, b, α,ψ) = 2αab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α+1)

×

(
G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2 , (6)

for a, b, α, x > 0 and parameter vector ψ. The hazard rate function (HRF) is given by

h(x; a, b, α,ψ) = 2αab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α+1)(

G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2

×

1−



(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b

1 +

1−

(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b



α

−1

. (7)

2.2. Quantile Function

The quantile function for the EHL-OBIII-G family of distributions is derived by inverting the following function



(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b

1 +

1−

(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b



α

= u,
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for 0 < u < 1. Note that 1 +

(
G(x;ψ)

G(x;ψ)

)−a−b =
2u

1
α

1 + u
1
α

,

that is,

G(x;ψ)

G(x;ψ)
=

( 2u
1
α

1 + u
1
α

)− 1
b

− 1

−
1
a

. (8)

The expression further simplifies to

G(x;ψ) =


( 2u

1
α

1 + u
1
α

)− 1
b

− 1

−
1
a

+ 1


−1

,

and therefore, the quantile function is given by

QX(n)
(u) = G−1



( 2u

1
α

1 + u
1
α

)− 1
b

− 1

−
1
a

+ 1


−1 , (9)

which can be solved using iterative methods.

2.3. Series Expansion of the Density Function

In this section, series expansion of the PDF is presented. The linear representation of the PDF allows for useful
mathematical and statistical properties to be derived. Recall that the PDF of EHL-OBIII-G family of distributions is
given by

f(x; a, b, α,ψ) = 2αab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1(G(x;ψ)

G(x;ψ)

)−a−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α+1)

g(x;ψ)(
G(x;ψ)

)2 ,
The Exponentiated Half-logistic Odd Burr III-G: Model, Properties and Applications 36



Pak.j.stat.oper.res. Vol.18 No.1 2022 pp 33-57 DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3668

and using the expansion1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α+1)

=

∞∑
p=0

(−1)p
Γ(α+ 1 + p)

Γ(α+ 1)p!

×

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

p

=

∞∑
p,q=0

(−1)p+q
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−bq ,

we can write the EHL-OBIII-G PDF as

f(x; a, b, α,ψ) = 2αab

∞∑
p,q=0

(−1)p+q
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+α)−1(G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2 .

Furthermore, by applying the expansion

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+α)−1 =

∞∑
l=0

(
−b(q + α)− 1

l

)(
G(x;ψ)

G(x;ψ)

)−al
,

we get

f(x; a, b, α,ψ) = 2αab

∞∑
p,q,l=0

(−1)p+q
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)(
−b(q + α)− 1

l

)

×
(
G(x;ψ)

)−a(l+1)−1 g(x;ψ)(
G(x;ψ)

)−a(l+1)+1
.

Using the expansion

(
G(x;ψ)

)−a(l+1)−1
=
(
1−G(x;ψ)

)−a(l+1)−1
=

∞∑
j=0

(
−a(l + 1)− 1

j

)
(−1)jG

j
(x;ψ),
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we have

f(x; a, b, α,ψ) = 2αab

∞∑
p,q,l,j=0

(−1)p+q+j
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)(
−b(q + α)− 1

l

)

×
(
−a(l + 1)− 1

j

)
g(x;ψ)

(
G(x;ψ)

)a(l+1)−1+j

= 2αab

∞∑
p,q,l,j,k=0

(−1)p+q+j+k
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)(
−b(q + α)− 1

l

)

×
(
−a(l + 1)− 1

j

)(
a(l + 1)− 1 + j

k

)
g(x;ψ)

(
G(x;ψ)

)k
= 2αab

∞∑
p,q,l,j,k=0

(−1)p+q+j+k
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)(
−b(q + α)− 1

l

)

×
(
−a(l + 1)− 1

j

)(
a(l + 1)− 1 + j

k

)
k + 1

k + 1
g(x;ψ)

(
G(x;ψ)

)k
=

∞∑
k=0

wkgk(x;ψ), (10)

where gk(x;ψ) = (k + 1)
(
G(x;ψ)

)k
g(x;ψ) is the exponentiated-G (Exp-G) distribution with power parameter k

and

wk =

∞∑
p,q,l,j=0

(−1)p+q+j+k
Γ(α+ 1 + p)

Γ(α+ 1)p!

(
p

q

)(
−b(q + α)− 1

l

)

×
(
−a(l + 1)− 1

j

)(
a(l + 1)− 1 + j

k

)
2αab

k + 1
. (11)

2.4. Some Special Cases

We considered some special cases by changing the baseline distribution functionG(x;ψ) to flexible distributions. The
parameter vector space is limited to atmost 2 component vector to avoid over parametrization and redundancy.

2.4.1. EHL-OBIII-Log-Logistic (EHL-OBIII-LLoG) distribution

Consider the log-logistic distribution as the baseline distribution with parameter λ > 0 having CDF and PDFG(x;λ) =
1− (1 + xλ)−1 and g(x;λ) = λxλ−1(1 + xλ)−2, respectively. The CDF, PDF and HRF of EHL-OBIII-LLoG distri-
bution are given by

F (x; a, b, α, λ) =


(

1 +
(

1−(1+xλ)−1

(1+xλ)−1

)−a)−b
1 +

[
1−

(
1 +

(
1−(1+xλ)−1

(1+xλ)−1

)−a)−b]

α

, (12)
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f(x) = 2αab

(1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−bα−1(
1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−b−1

×

1 +

1−

(
1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−b−(α+1)(
1− (1 + xλ)−1

(1 + xλ)−1

)−a−1

× λxλ−1(1 + xλ)−2

((1 + xλ)−1)
2 , (13)

and

h(x) = 2αab

(1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−bα−1(
1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−b−1

×

1 +

1−

(
1 +

(
1− (1 + xλ)−1

(1 + xλ)−1

)−a)−b−(α+1)(
1− (1 + xλ)−1

(1 + xλ)−1

)−a−1

× λxλ−1(1 + xλ)−2

((1 + xλ)−1)
2

1−


(

1 +
(

1−(1+xλ)−1

(1+xλ)−1

)−a)−b
1 +

[
1−

(
1 +

(
1−(1+xλ)−1

(1+xλ)−1

)−a)−b]

α
−1

,

respectively, for a, b, α, λ > 0.

Figure 1: Density and HRF plots for EHL-OBIII-LLoG distribution

Figure 1 illustrates the flexible nature of the EHL-OBIII-LLoG distribution for selected parameter values. The PDFs
of the EHL-OBIII-LLoG distribution can adopt various shapes that include reverse-J, uni-modal, left or right skewed
shapes. In addition, the EHL-OBIII-LLoG distribution exhibit decreasing, increasing, bathtub, upside down bathtub
and bathtub followed by upside down bathtub shapes.
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2.4.2. EHL-OBIII-Exponential (EHL-OBIII-E) distribution

Let the exponential distribution be the baseline distribution with PDF and CDF given by g(x;λ) = λe−λx and
G(x;λ) = 1 − e−λx, respectively, for λ > 0, then the CDF, PDF and HRF of the EHL-OBIII-E distribution are
given by

F (x; a, b, α, λ) =


(

1 +
(

1−e−λx
e−λx

)−a)−b
1 +

[
1−

(
1 +

(
1−e−λx
e−λx

)−a)−b]

α

, (14)

f(x) = 2αab

(1 +

(
1− e−λx

e−λx

)−a)−bα−1(
1 +

(
1− e−λx

e−λx

)−a)−b−1

×

1 +

1−

(
1 +

(
1− e−λx

e−λx

)−a)−b−(α+1)(
1− e−λx

e−λx

)−a−1

× λe−λx

(e−λx)
2 (15)

and

h(x) = 2αab

(1 +

(
1− e−λx

e−λx

)−a)−bα−1(
1 +

(
1− e−λx

e−λx

)−a)−b−1

×

1 +

1−

(
1 +

(
1− e−λx

e−λx

)−a)−b−(α+1)(
1− e−λx

e−λx

)−a−1
λe−λx

(e−λx)
2

×

1−


(

1 +
(

1−e−λx
e−λx

)−a)−b
1 +

[
1−

(
1 +

(
1−e−λx
e−λx

)−a)−b]

α
−1

,

respectively, for a, b, α, λ > 0.
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Figure 2: Density and HRF plots for EHL-OBIII-E distribution

Figure 2 demonstrate the efficacy of the EHL-OBIII-E distribution for selected parameter values. The PDFs of the
EHL-OBIII-E distribution takes various shapes that include reverse-J, uni-modal, left or right skewed shapes. Fur-
thermore, the EHL-OBIII-E distribution gives decreasing, increasing and bathtub followed by upside down bathtub
shapes.

2.4.3. EHL-OBIII-Lomax (EHL-OBIII-Lx) distribution

Suppose that we take the baseline distribution to be a Lomax distribution with CDF and PDF given by G(x; γ, λ) =

1 − (1 + λx)
−γ and g(x; γ, λ) = γλ (1 + λx)

−γ−1, for γ, λ > 0, and x > 0, then we obtain the EHL-OBIII-Lx
distribution with CDF, PDF and HRF given by

F (x; a, b, α, γ, λ) =


(

1 +
(

1−(1+λx)−γ

(1+λx)−γ

)−a)−b
1 +

[
1−

(
1 +

(
1−(1+λx)−γ
(1+λx)−γ

)−a)−b]

α

, (16)

f(x) = 2αab


1 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b

α−11 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b−1

×

1 +

1−

1 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b


−(α+1)(

1− (1 + λx)
−γ

(1 + λx)
−γ

)−a−1

× γλ (1 + λx)
−γ−1

((1 + λx)−γ)
2 (17)

and
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h(x) = 2αab


1 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b

α−11 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b−1

×

1 +

1−

1 +

(
1− (1 + λx)

−γ

(1 + λx)
−γ

)−a−b


−(α+1)(

1− (1 + λx)
−γ

(1 + λx)
−γ

)−a−1

× γλ (1 + λx)
−γ−1

((1 + λx)−γ)
2

1−


(

1 +
(

1−(1+λx)−γ

(1+λx)−γ

)−a)−b
1 +

[
1−

(
1 +

(
1−(1+λx)−γ
(1+λx)−γ

)−a)−b]

α
−1

,

respectively, for a, b, α, γ, λ > 0.

Figure 3: Density and HRF plots for EHL-OBIII-Lx distribution

From Figure 3, we note tha the EHL-OBIII-Lx distribution can adopt various flexible shapes and these include reverse-
J, uni-modal, left or right skewed shapes. It can also be noted that the HRF of the EHL-OBIII-Lx distribution gives
decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside down bathtub shapes.

2.5. EHL-OBIII-Lindley (EHL-OBIII-L) distribution

If we let Lindley distribution be the baseline distribution with PDF and CDF given by g(x;λ) = λ2

(1+λ) (1+x)e−λx and
G(x;λ) = 1− (1 + λx

1+λ )e−λx, respectively, for λ > 0, then the CDF, PDF and HRF of the EHL-OBIII-L distribution
are given by

F (x; a, b, α, λ) =



(
1 +

(
1−(1+ λx

1+λ )e
−λx

(1+ λx
1+λ )e

−λx

)−a)−b

1 +

1−

(
1 +

(
1−(1+ λx

1+λ )e
−λx

(1+ λx
1+λ )e

−λx

)−a)−b



α

, (18)
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f(x; a, b, α, λ) = 2αab


1 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b

α−11 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b−1

×

1 +

1−

1 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b


−(α+1)

×

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−1 λ2

(1+λ) (1 + x)e−λx(
(1 + λx

1+λ )e−λx
)2 (19)

and

h(x; a, b, α, λ) = 2αab


1 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b

α−11 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b−1

×

1 +

1−

1 +

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−b


−(α+1)

×

(
1− (1 + λx

1+λ )e−λx

(1 + λx
1+λ )e−λx

)−a−1 λ2

(1+λ) (1 + x)e−λx(
(1 + λx

1+λ )e−λx
)2

×

1−



(
1 +

(
1−(1+ λx

1+λ )e
−λx

(1+ λx
1+λ )e

−λx

)−a)−b

1 +

1−

(
1 +

(
1−(1+ λx

1+λ )e
−λx

(1+ λx
1+λ )e

−λx

)−a)−b



α

−1

,

respectively, for a, b, β, λ > 0.

Figure 4: Density and HRF plots for EHL-OBIII-L distribution
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Figure 4 reveals the flexibility of the EHL-OBIII-L distribution. The PDFs of the EHL-OBIII-L distribution can flexi-
bly take different shapes that include reverse-J, uni-modal, left or right skewed shapes. Additionally, the EHL-OBIII-L
distribution HRF plots also give decreasing, increasing, bathtub and upside down bathtub shapes and decreasing-
increasing-decreasing shapes.

3. Some Mathematical Properties

In this section, we derive some useful mathematical and statistical properties for the EHL-OBIII-G family of distri-
butions such as moments, conditional moments, Lorenz and Bonferroni curves, probability weighted moments, Rényi
entropy and maximum likelihood estimates.

3.1. Moments

Let Yk ∼ Exp-G(k), then using equation (10) the sth raw moment, µ′s of the EHL-OBIII-G family of distributions is
obtained as

µ′s = E(Xs) =

∫ ∞
−∞

xsf(x)dx =

∞∑
k=0

wkE(Y sk ),

where wk is given by equation (11). We presnt the first five moments for the EHL-OBIII-E distibution and the
corresponding standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of
kurtosis (CK) from selected values. These results are given under Table 2. The quantile values are also presented
under Table 1.

Table 1: Quantiles for EHL-OBIII-E Distribution for selected parameter values
(a,b,α, λ)

u (1.4,8.5,6.1,0.4) (1.3,8.3,6.4,0.6) (1.1,9.9,5.8,0.8) (1.6,9.1,6,0.3) (1.2,8.2,6.2,0.6) (1.1,8.9,5.7,0.2)
0.1 3.0531 2.0120 1.7548 3.7952 2.1975 7.8777
0.2 2.3981 1.6071 1.3186 3.0811 1.6747 5.3712
0.3 2.1813 1.4615 1.1694 2.8329 1.5039 4.7265
0.4 2.0543 1.3753 1.0823 2.6859 1.4046 4.3598
0.5 1.9664 1.3154 1.0224 2.5836 1.3362 4.1103
0.6 1.9001 1.2702 0.9775 2.5062 1.2847 3.9244
0.7 1.8474 1.2341 0.9419 2.4444 1.2440 3.7779
0.8 1.8040 1.2043 0.9128 2.3933 1.2104 3.6580
0.9 1.7672 1.1791 0.8882 2.3499 1.1821 3.5572

Table 2: Moments for EHL-OBIII-E Distribution for selected parameter values
(a,b,α, λ)

(0.8,1.4,0.6,1.5) (0.3,1.7,1.1,1.8) (0.8,2.2,0.7,2.4) (0.4,2.3,0.7,1.7) (0.5,1.5,0.7,0.9)
E(X) 0.2298 0.0843 0.3063 0.1210 0.1169
E(X2) 0.1378 0.0525 0.1930 0.0746 0.0692
E(X3) 0.0980 0.0384 0.1395 0.0543 0.0493
E(X4) 0.0759 0.0304 0.1088 0.0427 0.0383
E(X5) 0.0619 0.0252 0.0889 0.0352 0.0313

SD 0.2916 0.2131 0.3149 0.2449 0.2356
CV 1.2691 2.5277 1.0280 2.0239 2.0157
CS 1.1002 2.7252 0.6298 2.0916 2.1548
CK 2.9224 9.4740 2.0402 6.2188 6.6049
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3.2. Probability Weighted Moments (PWMs)

The (i, η)th Probability Weighted Moment (PWM) of X denoted by κi,η is

κi,η = E(Xi(F (X))η) =

∫ ∞
−∞

xi(F (x))ηf(x)dx.

Using equations (5) and (6), we can write

f(x)(F (x))η = 2αab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α(η+1)−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α(η+1)+1)(

G(x;ψ)

G(x;ψ)

)−a−1

×
g(x;ψ)(
G(x;ψ)

)2 .
Using the series expansion1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α(η+1)+1)

=

∞∑
p=0

(−1)p
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

×

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

p

=

∞∑
p,q=0

(−1)p+q
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−bq

we can write

f(x)(F (x))η = 2αab

∞∑
p,q=0

(−1)p+q
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+(α(η+1)))−1(
G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2 .
Furthermore, applying the series expansion1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+(α(η+1)))−1

=

∞∑
l=0

(
−b(q + (α(η + 1)))− 1

l

)(
G(x;ψ)

G(x;ψ)

)−al
,
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we get

f(x)(F (x))η = 2αab

∞∑
p,q,l=0

(−1)p+q
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)(
−b(q + (α(η + 1)))− 1

l

)

×
(
G(x;ψ)

)−a(l+1)−1 g(x;ψ)(
G(x;ψ)

)−a(l+1)+1
.

Using the expansion

(
G(x;ψ)

)−a(l+1)−1
=
(
1−G(x;ψ)

)−a(l+1)−1
=

∞∑
j=0

(
−a(l + 1)− 1

j

)
(−1)jG

j
(x;ψ),

we have

f(x)(F (x))η = 2αab

∞∑
p,q,l,j=0

(−1)p+q+j
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)(
−b(q + (α(η + 1)))− 1

l

)

×
(
−a(l + 1)− 1

j

)
g(x;ψ)

(
G(x;ψ)

)a(l+1)−1+j

= 2αab

∞∑
p,q,l,j,k=0

(−1)p+q+j+k
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)(
−b(q + (α(η + 1)))− 1

l

)

×
(
−a(l + 1)− 1

j

)(
a(l + 1)− 1 + j

k

)
g(x;ψ)

(
G(x;ψ)

)k
=

∞∑
w=0

w∗kgk(x;ψ), (20)

where gk(x;ψ) = (k + 1)
(
G(x;ψ)

)k
g(x;ψ) is the exponentiated-G (Exp-G) distribution with power parameter k

and

w∗k =

∞∑
p,q,l,j=0

(−1)p+q+j+k
Γ(α(η + 1) + 1 + p)

Γ(α(η + 1) + 1)p!

(
p

q

)(
−b(q + (α(η + 1)))− 1

l

)

×
(
−a(l + 1)− 1

j

)(
a(l + 1)− 1 + j

k

)
2αab

k + 1
. (21)

Finally, the PWMs of the EHL-OBIII-G family of distributions can be written as

κi,η =

∫ ∞
0

xi
∞∑
k=0

w∗kgk(x;ψ)dx

∞∑
k=0

w∗k

∫ ∞
−∞

xigk(x;ψ)dx,

which shows that the (i, η)th PWMs of EHL-OBIII-G family of distributions can be obtained from the moments of
the E-G distribution.

3.2.1. Rényi Entropy

The Rényi entropy ((22)), is an extension of Shannon Entropy ((24)) and is defined as

IR(v) =
1

1− v
log

(∫ ∞
0

[f(x; a, b, α,ψ)]vdx

)
, v 6= 1, v > 0. (22)
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Note that as v → 1, the Rényi entropy tends to Shannon entropy and IR(v) for the EHL-OBIII-G distribution can be
written as

IR(v) =
1

1− v
log

(∫ ∞
0

[
(2αab)v


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

vα−v1 +

(
G(x;ψ)

G(x;ψ)

)−a−vb−v

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−v(α+1)(

G(x;ψ)

G(x;ψ)

)−va−v
gv(x;ψ)(
G(x;ψ)

)2v
]
dx

)
.

Using the generalized binomial series expansion1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−v(α+1)

=
∞∑
p=0

(−1)p
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

×

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

p

=

∞∑
p,q=0

(−1)p+q
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−bq ,
we can write

fv(x; a, b, α,ψ) = (2αab)v
∞∑

p,q=0

(−1)p+q
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)

×

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+v+(vα−v))−1(
G(x;ψ)

G(x;ψ)

)−va−v
gv(x;ψ)(
G(x;ψ)

)2v .
Furthermore, applying the expansion1 +

(
G(x;ψ)

G(x;ψ)

)−a−b(q+v+(vα−v))−1

=

∞∑
l=0

(
−b(q + v + (vα− v))− 1

l

)(
G(x;ψ)

G(x;ψ)

)−al
,

we get

fv(x; a, b, α,ψ) = (2αab)v
∞∑

p,q=0

(−1)p+q
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)(
−b(q + v + (vα− v))− 1

l

)

×
(
G(x;ψ)

)−a(l+v)−v g(x;ψ)(
G(x;ψ)

)−a(l+v)+v .
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Using the generalized binomial series expansion

(
G(x;ψ)

)−a(l+v)−v
=
(
1−G(x;ψ)

)−a(l+v)−v
=

∞∑
j=0

(
−a(l + v)− v

j

)
(−1)jG

j
(x;ψ),

we have

fv(x; a, b, α,ψ) = (2αab)v
∞∑

p,q,j=0

(−1)p+q+j
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)(
−b(q + v + (vα− v))− 1

l

)

×
(
−a(l + v)− v

j

)
gv(x;ψ)

(
G(x;ψ)

)a(l+v)−v+j
= (2αab)v

∞∑
p,q,j,k=0

(−1)p+q+j+k
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)(
−b(q + v + (vα− v))− 1

l

)

×
(
a(l + v)− v + j

k

)(
−a(l + v)− v

j

)
gv(x;ψ)

(
G(x;ψ)

)k
.

(23)

Finally, we can write the Rényi entropy for the EHL-OBIII-G family of distributions as

IR(v) =
1

1− v
log

(
(2αab)v

∞∑
p,q,j,k=0

(−1)p+q+j+k
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)(
−b(q + v + (vα− v))− 1

l

)

×
(
a(l + v)− v + j

k

)(
−a(l + v)− v

j

)
1[

1 + k
v

]v ∫ ∞
0

([
1 +

k

v

]
G(x;ψ)

k
v g(x;ψ)dx

)v)

=
1

1− v
log

[ ∞∑
k=0

w∗∗k exp((1− v)IREG)

]
,

for v > 0, v 6= 1, where IREG = 1
1−v log

[∫∞
0

([
k
v + 1

]
(G(x;ψ))

k
v g(x;ψ)

)v
dx

]
is the Rényi entropy of Exp-G

distribution with power parameter
(
k
v + 1

)
, and

w∗∗k =
1

1− v
log

(
(2αab)v

∞∑
p,q,j=0

(−1)p+q+j+k
Γ(v(α+ 1) + p)

Γ(v(α+ 1))p!

(
p

q

)(
−b(q + v + (vα− v))− 1

l

)

×
(
a(l + v)− v + j

k

)(
−a(l + v)− v

j

)
1[

1 + k
v

]v .
3.3. Stochastic Ordering

The stochastic ordering for random variables is a common and widely used concept. The usual stochastic order, the
hazard rate order and the likelihood ratio order are the commonly known orders of distribution functions. These three
orders are defined as below.

Let X and Y be the two random variables with the CDFs Fx(t) and Fy(t), respectively, and F x(t) = 1 − Fx(t)
is the reliability or survival function. The random variable X is said to be stochastically smaller than the random
variable Y if F x(t) ≤ F y(t) for all t or Fx(t) ≥ Fy(t) for all t. This is denoted by X <st Y. The hazard rate order
and likelihood ratio order are stronger and are given by X <hr Y if hx(t) ≥ hy(t) for all t, and X <`r Y if fx(t)

fy(t)

is decreasing in t. It is well established thatX <`r Y =⇒ X <hr Y =⇒ X <st Y, (see (23) for additional details).

In this section, the likelihood ratio ordering is presented as follows. If we let X1 and X2 be the two independent
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random variables following EHL−OBIII−G(a, b, α1, ϕ) and EHL−OBIII−G(a, b, α2, ϕ) distributions, then
the PDFs are given by

f1(x) = 2α1ab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α1−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α1+1)(

G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2
and

f2(x) = 2α2ab


1 +

(
G(x;ψ)

G(x;ψ)

)−a−b

α2−11 +

(
G(x;ψ)

G(x;ψ)

)−a−b−1

×

1 +

1−

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b


−(α2+1)(

G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)(
G(x;ψ)

)2 .
The ratio, f1(x)f2(x)

takes the form

f1(x)

f2(x)
=

α1

α2
zα1−α2 (1 + [1− z])−(α1−α2+2)

, (24)

where

z =

1 +

(
G(x;ψ)

G(x;ψ)

)−a−b .
If we differentiate equation (24) with respect to x, we get

d

dx

(
f1(x)

f2(x)

)
=

α1

α2
(α1 − α2) zα1−α2 (1 + [1− z])−(α1−α2+2)

[
1

z
+

(1 + 2(α1 − α2))

(1 + [1− z])

]
,

where z′ = ab

(
1 +

(
G(x;ψ)

G(x;ψ)

)−a)−b−1(
G(x;ψ)

G(x;ψ)

)−a−1
g(x;ψ)

(G(x;ψ))
2 , and finally if α2 < α1, then d

dx

(
f1(x)
f2(x)

)
< 0,

and therefore, the likelihood ratio order X1 <`r X2 exists. Consequently, X1 <st X2, since X1 <`r X2 =⇒
X1 <hr X2 =⇒ X1 <st X2, where X1 <hr X2 and X1 <st X2 denote hazard rate order and stochastic order,
respectively.

3.4. Maximum Likelihood Estimation

In this section, the method of maximum likelihood estimation (MLE) is used to estimate the model parameters. Let
X ∼ EHL−OBIII −G(a, b, α,ψ) and ∆ = (a, b, α,ψ)T be the vector of model parameters. The log-likelihood
function `n = `n(∆) based on a random sample of size n from the EHL-OBIII-G family of distributions is given by
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`n(∆) = n ln (2αab) + (α− 1)

n∑
i=1

ln


1 +

(
G(xi;ψ)

Gxi;ψ)

)−a−b
 (−b− 1)

n∑
i=1

ln

1 +

(
G(xi;ψ)

G(xi;ψ)

)−a

+ (−a− 1)

n∑
i=1

ln

(
G(xi;ψ)

G(xi;ψ)

)
(α+ 1)

n∑
i=1

ln

1 +

1−

1 +

(
G(xi;ψ)

G(xi;ψ)

)−a−b



+

n∑
i=1

ln
(
g(xi;ψ)

)
− 2

n∑
i=1

ln
(
G(xi;ψ)

)
.

The elements of the score vector are given in the Appendix A. Note that these system of non-linear equations have
no closed form. To obtain the estimates of model parameters denoted by ∆̂, the Newton-Raphson procedure is
used to solve the system of non-linear equations (∂`n∂a ,

∂`n
∂b ,

∂`n
∂α ,

∂`n
∂ψ

k

)T = 0. The multivariate normal distribution

Nq+3(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0)T and J(∆̂)−1 is the observed Fisher information matrix
evaluated at ∆̂, which is critical in approximating confidence intervals for model parameters.

4. Monte Carlo Simulations

Inorder to evaluate consistency of the MLEs, simulation experiments were conducted using the EHL-OBIII-E distri-
bution. The MLEs are computed for each sample by generationgN=1000 random samples of size n obtaining average
bias and Root Mean Square Error (RMSE) from each sample. The results are presented under Table 3. We note that
as the sample size n increase the values of average bias and RMSE decreases which satisfies convergence propoerties
of consistent and unbiased estimators.

Table 3: Simulation Results for EHL-OBIII-E Distribution; Mean, Average Bias and RMSE
Parameter Sample Size Set I: a=1.4, b=0.6 , α=1.8 , λ=2.1 Set II: a=2.6, b=0.9, α=1.4 , λ=0.7 Set III: a=1.8, b=1.3 , α=0.8 , λ=2.3

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

a 50 4.3848 2.9848 0.5194 4.1738 1.5738 3.0836 3.7459 1.9459 0.3548
100 4.2985 2.8985 0.3322 3.4377 0.8377 2.2148 3.3726 1.5726 0.2216
200 3.6489 2.2489 0.2997 3.1527 0.5527 1.8854 2.7388 0.9388 0.1970
400 3.4375 2.0375 0.2510 2.9376 0.3376 1.6376 2.4628 0.6628 0.1744
800 2.3385 0.9385 0.2250 2.8365 0.2365 0.6049 1.9285 0.1285 0.1377

1200 1.6028 0.2028 0.1488 2.6838 0.0838 0.4307 1.8827 0.0827 0.1164
1800 1.4204 0.0204 0.1325 2.6184 0.0184 0.2819 1.8327 0.0327 0.0895

b 50 1.7489 1.1489 0.4658 1.9264 1.0264 0.7609 2.6374 1.3374 0.5840
100 1.3385 0.7385 0.4335 1.7256 0.8256 0.6576 2.3787 1.0787 0.4755
200 1.2538 0.6538 0.3983 1.2737 0.3737 0.6272 1.8266 0.5266 0.4579
400 1.1439 0.5439 0.3655 1.1828 0.2828 0.5864 1.5218 0.2218 0.4353
800 0.8399 0.2399 0.3536 1.1029 0.2029 0.5499 1.4375 0.1375 0.3847

1200 0.7039 0.1039 0.2977 0.9938 0.0938 0.5116 1.3848 0.0848 0.3586
1800 0.6298 0.0298 0.2723 0.9204 0.0204 0.4485 1.3265 0.0265 0.2073

α 50 3.1939 1.3939 0.2710 2.1654 0.7654 0.4236 1.6267 0.8267 0.4197
100 2.8399 1.0399 0.2481 2.0918 0.6918 0.3992 1.4878 0.6878 0.3319
200 2.8028 1.0028 0.2114 1.8928 0.4928 0.3795 1.2528 0.4528 0.3095
400 2.2739 0.4739 0.1622 1.7628 0.3628 0.3431 1.0266 0.2266 0.2652
800 2.0177 0.2177 0.1496 1.5277 0.1277 0.3158 0.9827 0.1827 0.2232

1200 1.9274 0.1274 0.1012 1.4829 0.0829 0.2917 0.8928 0.0928 0.1876
1800 1.8199 0.0199 0.0812 1.4593 0.0593 0.2508 0.8478 0.0478 0.1623

λ 50 3.6488 1.5488 0.5090 1.6749 0.9749 0.7456 5.3737 3.0737 0.4352
100 3.5388 1.4388 0.4269 1.5784 0.8784 0.7172 3.2668 0.9668 0.3372
200 2.9366 0.8366 0.4106 1.5187 0.8187 0.6986 2.8266 0.5266 0.2883
400 2.6313 0.5313 0.3990 1.1739 0.4739 0.6665 2.6527 0.3527 0.2617
800 2.2885 0.1885 0.3664 0.9277 0.2277 0.5775 2.4726 0.1726 0.2074

1200 2.1938 0.0938 0.2909 0.7828 0.0828 0.3208 2.3744 0.0744 0.1627
1800 2.1084 0.0084 0.2330 0.7256 0.0256 0.2767 2.3018 0.0018 0.1108

5. Applications

We present applications based on the two real-life data sets to evaluate the efficacy of the proposed model and measure
its performance in comparison to other non-nested models. The first data set is reported by (6) and relates to the
survival times (in years) of a group of patients given chemotherapy treatment alone. The data consists of survival
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times (in years) for 46 patients and is as follows; 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296,
0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271,
1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003,
4.033. The second data set is a real life example presented by (11) also reported by (21), and consists of 101 data
points representing the stress-rupture life of kevlar 49/epoxy strands that are subjected to constant sustained pressure
at the 90% stress level. The data set is as follows; 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07,
0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40,
0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,
0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43,
1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03,
3.03, 3.34, 4.20, 4.69, 7.89.

The EHL-OBIII-E distribution is compared to other known non-nested models namely, the Kumaraswamy Odd
Lindley-log logistic (KOLLLoG) distribution by (10), Weibull-Lomax (WLx) distribution by (26), the Beta Gen-
eralized Exponential (BGE) distribution by (5), the Exponentiated Modified Weibull (EMW) distribution by (18),
the Kumaraswamy Weibull (KW) distribution by (16) and Generalized Weibull Log-Logistic (GWLLoG) distribu-
tion by (17). To evaluate and measure the model performances, we used the goodness-of-fit statistics namely, -2
log-likelihood (−2 ln(L)), Akaike Information Criterion (AIC = 2p − 2 ln(L)), Bayesian Information Criterion
(BIC = p ln(n) − 2 ln(L)) and Consistent Akaike Information Criterion

(
AICC = AIC + 2 p(p+1)

n−p−1

)
, where

L = L(∆̂) is the value of the likelihood function evaluated at the parameter estimates, n is the number of obser-
vations, and p is the number of estimated parameters. We computed results on the Crameŕ-von Mises (W ∗) and
Anderson-Darling Statistics (A∗) proposed by (9), including the Kolmogorov-Smirnov (K-S) statistic and the associ-
ated P-values. Note that smaller values are preferred for the log-likelihood function at its maximum (`n) and similarly
for AIC, AICC, BIC, and the goodness-of-fit statistics W ∗, A∗ and K-S, smaller values are also preferred. The results
from two real lifetime data sets are presented under tables 4 and 5. The R software was used to compute estimates for
model parameters and run goodness-of-fit tests. The PDFs of the non-nested models used for comparisons are;

Kumaraswamy Odd Lindley-log-logistic (KOLLLoG) distribution

f(x; a, b, λ, c) = ab

[
λ2

(1 + λ)

cxc−1

(1 + xc)−1
exp

{
−λ1− (1 + xc)−1

(1 + xc)−1

}]
×

[
1− λ+ (1 + xc)−1

(1 + λ)(1 + xc)−1
exp

{
−λ (1− (1 + xc)−1)

(1 + xc)−1

}]a−1
×

(
1−

[
1− λ+ (1 + xc)−1

(1 + λ)(1 + xc)−1
exp

{
−λ (1− (1 + xc)−1)

(1 + xc)−1

}]a)b−1
,

for a, b, λ, c > 0 and x > 0,

Weibull-Lomax (WLx) distribution

f(x; a, b, α, β) =
abα

β

[
1 +

(
x

β

)]bα−1{
1−

[
1 +

(
x

β

)]−α}b−1
× exp

{
− a
{

1 +

(
x

β

)α
− 1

}b}
,

for a, b, c, λ > 0 and x > 0,

Beta Generalized Exponential (BGE) distribution

f(x; a, b, α, λ) =
αλ

B(a, b)
e−λx(1− e−λx)αa−1{1− (1− e−λx)α}b−1,
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for a, b, α, λ > 0 and x > 0,

Exponentiated Modified Weibull (EMW) distribution

f(x;α, β, λ, θ) = θ(α+ λβxλ−1)e−(αx+βx
λ)(1− eαx+βx

λ

)θ−1,

for α, β, λ, θ > 0 and x > 0,

Kumaraswamy Weibull (KW) distribution

f(x; a, b, c, λ) = abcλcxc−1exp{−(λx)c}[1− exp{−(λx)c}]a−1

× {1− [1− exp{−(λx)c}]a}b−1,

for a, b, c, λ > 0 and x > 0 and

Generalized Weibull Log-Logistic (GWLLoG) distribution.

f(x;α, β, γ, a) =
αβγxγ−1

aγ

(
1 +

(
x

a

)γ)−1[
log

(
1 +

(
x

a

)γ)]β−1
× exp

{
− α

[
log

(
1 +

(
x

a

)γ)]β}
,

for α, β, γ, a > 0 and x > 0.

The estimates of model parameters for the EHL-OBIII-E distribution and the other non-nested models (with standard
error in parentheses), AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (K-S) and the
associated P-values are given in Table 4. The plots of the fitted densities and observed probabilities are given in Figure
5.

Table 4: Model estimates for Survival times data
Estimates Statistics

Model a b α λ −2 log L AIC AICC BIC W ∗ A∗ K − S P-value
EHL-OBIII-E 0.8594 10.4693 0.1369 1.1934 114.5943 122.5943 123.5943 129.821 0.0694 0.4713 0.1059 0.6541

(0.2946) (12.0444) (0.1283) (0.5663)

a b λ c
KOLLLoG 1.2521 0.1422 5.8092 0.9775 115.8898 123.8898 124.8898 131.1164 0.0735 0.4963 0.1150 0.5521

(0.8038) (0.0839) ( 3.1117) (0.1733)
a b α β

WLx 5.4516 0.9734 1.969× 103 17.2670 115.9419 123.9419 124.9419 131.1685 0.0887 0.5897 0.1114 0.5924
(1.1398) (0.1136) (3.8605× 10−3) (4.4017× 10−4)

α λ a b
BGE 13.8679 0.4085 0.0617 11.0365 115.273 123.273 124.273 130.4996 0.1080 0.7146 0.12763 0.421

(14.8578) (0.2297) (0.0675) ( 39.0023 )
γ δ λ θ

EMW 1.1049 0.7943 17.001 1.0× 10−4 116.1897 124.1897 125.1897 131.4163 0.0785 0.5268 0.1099 0.6094
( 0.2196) (0.1511) (1.8250× 10−18) (3.1034× 10−13)

a b β α
KW 0.2060 3.6323 4.4705 0.1451 115.5601 123.5601 124.5601 130.7867 0.0974 0.6443 0.1157 0.5439

(1.2986) ( 16.9361) ( 25.1920) (0.4282)
α β a θ

GWLLoG 31.7894 0.3602 36.5270 2.9245 116.2522 124.2522 125.2522 131.4788 0.0813 0.5437 0.1094 0.6143
( 6.6608) ( 1.2399) (6.1217) ( 10.0601)
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Figure 5: Fitted PDF and Observed probability Plots for Survival times data

From Table 4 and Figure 5, we note that the EHL-OBIII-E model performs better than other non-nested models look-
ing at its smallest values of W∗, A∗, AIC, AICC, BIC and the higher P-value for the K-S statistic. The fitted density
of the EHL-OBIII-E distribution also remain closer to the sample histogram and similarly its fitted probability plot
is also closer to the empirical line. Basing on these results, the EHL-OBIII-E provides a better fit compared to these
other known non-nested models used for comparison.

The model parameter estimates for the EHL-OBIII-E distribution and other non-nested models (with standard error in
parentheses), AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (K-S) with P-values
are presented under table 5. Plots of the fitted densities and observed probability are given in Figure 6.

Table 5: Model estimates for Kevlar Epoxy data
Estimates Statistics

Model a b α λ −2 log L AIC AICC BIC W ∗ A∗ K − S P-value
EHL-OBIII-E 1.7704 0.7699 0.4634 0.5852 203.2637 211.2637 211.6804 221.7242 0.0650 0.5220 0.0648 0.7886

(0.5205) (0.6396) (0.3549) (0.1578)

a b λ c
KOLLLoG 0.9437 3.1448 0.6028 0.8524 205.0603 213.0603 213.477 223.5208 0.1480 0.8781 0.0786 0.5591

(0.4861) (12.7460) (1.5014) (0.4004)
a b α β

WLx 0.2506 0.7860 1.3580 0.3302 205.1976 213.1976 213.6143 223.6581 0.14402 0.8627 0.0787 0.5587
(0.4172) (0.1803) (0.4580) (0.6282)

α λ a b
BGE 2.8508 0.5761 0.2831 0.3695 205.0185 213.0185 213.4351 223.479 0.1414 0.8493 0.0775 0.5781

( 3.8184) (0.5246) (0.3695) ( 1.8191)
γ δ λ θ

EMW 0.8663 0.8883 17.8940 1.0× 10−4 205.6399 213.6399 214.0566 224.1004 0.1786 1.0183 0.0887 0.4045
(0.1098) (0.1201) (2.0310× 10−19) (3.6356× 10−14)

a b α β
KW 1.2800 2.0691× 103 2.6750× 10−4 0.7239 205.9592 213.9592 214.3758 224.4197 0.1991 1.1134 0.0911 0.3714

(0.0245) (7.6348× 10−8) (1.6886× 10−4) (0.0438)
α β a θ

GWLLoG 3.1309 0.1734 3.0819 5.6875 207.0122 215.0122 215.4289 225.4727 0.2240 1.2327 0.0900 0.3858
(0.3872) (0.0166) (0.1552) ( 0.2913)

From the results presented under Table 5, the EHL-OBIII-E distribution gives the smallest values of W ∗, A∗, K-S and
higher P-value compared to other competing models which shows its superiority over the other models. Figure 6, also
show that the EHL-OBIII-E distribution provides a better fit to the real life data compared with the other non-nested
models.

6. Conclusion

In this article a new generalized family of distributions called exponentiated half-logistic Odd Burr III-G (EHL-OBIII-
G) was developed. The structural properties of this new family of distributions have been derived and studied. Some
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Figure 6: Fitted PDF and Observed probability Plots for Kevlar Epoxy data
of its special cases have been discussed and the EHL-OBIII-Exponential distribution is applied to two real life data
examples together with the other known non-nested models for comparison. Based on the results, the model provides
better fits and performs better than the other non-nested models in fitting real life data, see Tables 4 and 5 and also
Figures 5 and 6 for more details. From the simulation results, the consistency of the model estimators is indicated
by bias and RMSE coverging towards zero as the sample size increases. We hope that these new generated family
of distributions will find wider applicability in different disciplines such financial modelling, economics, agriculture,
engineering, genomics and operations research, to mention just a few.
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APPENDIX

A. Elements of the score vector

The elements of the score vector, U(∆) are given by

∂`

∂a
=

n

a
− (α− 1)

n∑
i=1

b

(
1 +

(
G(xi;ψ)

G(xi;ψ)
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and
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