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Abstract  

 

The Model assisted estimators are approximately design unbiased, consistent, provides robustness and reduce 

design variance if underlying model reasonably defines the regression relationship.  If the model is mis specified, 

then model assisted estimators might result in an increase of the design variance but remain approximately design 

unbiased and show robustness against model-misspecification. The well-known model assisted estimators, 

generalized regression estimators are members of a larger class of calibration estimators. Calibration method 

generates calibration weights that meet the calibration constraints and have minimum distance from the sampling 
design weights. By using different distance measures, classical calibration approach generates different 

calibration estimators but with asymptotically identical properties. Later, the constraint of distance minimization 

was reduced for studying the properties of calibration estimators by proposing a simple functional form approach. 

This approach generates calibration weights that prove helpful to control the changes in calibration weights by 

using different functions of auxiliary variable’s values.  This paper is an extended work on model assisted 

approach by using functional form calibration weights. Some new model assisted estimators are considered to get 

efficient and stabilized regression weights by introducing a control matrix. The asymptotic un-biasedness of the 

proposed estimators is verified and the expressions for MSE are derived in three different cases.  A simulation 

study is done to compare and evaluate the efficiency of the proposed estimators with some existing estimators of 

population total. 
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1. Introduction  

A well-known model assisted approach, the classical calibration approach by Deville and Särndal (1992) uses 

auxiliary information to produce efficient estimates of the population parameters. The approach uses weighted 

sample observations, whereas the weights are obtained such that the distance between these and design weights are 

minimized under the condition that they have to satisfy a calibration to benchmark constraints and therefore named 
as calibration weights.  

Let 𝑦𝑘 is the value of 𝑘𝑡ℎ observation of the study variable and 𝒙′𝑘 = (𝑥1𝑘 , 𝑥2𝑘, … . . , 𝑥𝑝𝑘)  for 𝑗 = 1,2, . . . . . , 𝑝 is the 

auxiliary vector associated with  𝑦𝑘 such that the population totals of the auxiliary variables are known prior to 

sampling. Let the population total of  𝑗𝑡ℎ variable is   𝑡𝑥𝑗 = ∑ 𝑥𝑗𝑘𝑈    and a vector of population total(s) of p auxiliary 

variables is denoted by 𝑿, where Σ𝑈  is the sum of all 𝑘 ∈ 𝑈 for 𝑈 ={1,2,…….,N} is known prior to estimation of 
population total of study variable. Also, vector of Horvitz Thompson estimators of population total(s) for auxiliary 

variables is  �̂�𝒙𝝅 = ∑ 𝑑𝑘𝑥𝑘𝑠 , where Σ𝑠is the sum on  𝑘 ∈ 𝑠.  

The classical calibration estimator proposed by Deville and Särndal (1992) for estimating population total of 

study variable  is defined as  

  

         �̂�𝑦𝑐 = ∑ 𝑤𝑘𝑦𝑘𝑠                                                                                                                                                 (1.1) 

 

                                                                                                                                        

 

y
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They named the weights , the calibration weights because these weights have minimum distance from the 

survey design weights and satisfy a calibration to benchmark constraints: 

 

                       ∑ 𝑤𝑘𝑥𝑘𝑠 = 𝑿                                                                                                                                      (1.2)        

By using different distance functions many linear and nonlinear calibration estimators can be obtained. The 

chi square distance functions generate linear calibration weights that result in linear calibration estimators. 

The resulted calibration weights can be written in the form:                                 

 

𝑤𝑘 = 𝑑𝑘(1 + 𝑞𝑘�́�𝒌𝝀𝑠).                                                                                                                 (1.3)                       

 

The  𝑑𝑘 = 1
𝜋𝑘

⁄  is the sampling design weight where 𝑞𝑘 is any individual observation weight for 𝑘𝑡ℎ 

observation.  Also,  𝝀𝒔 is a vector of Lagrange multipliers and can be obtained from calibration constraints 

defined in (1.2).Using value of 𝝀𝒔 = (∑ 𝑑𝑘𝑠 𝑞𝑘𝒙𝑘𝒙′𝑘)−1(𝑿 −  �̂�𝒙𝝅), the calibration estimator (1.1) can also be 

seen an approximate general linear regression estimator, 

  

                            �̂�𝑦𝑐 =  �̂�𝑦𝜋 + �́�𝒘𝒔(𝑿 −  �̂�𝒙𝝅)                                                                                                           (1.4)                             

 

 

The      �̂�𝑦𝜋 = ∑ 𝑑𝑘𝑦𝑘𝑠    is the Horvitz Thompson estimators for population total of study variable and 𝒃𝒘𝒔 is a 

vector of order 𝑝 × 1 defined as  𝒃𝒘𝒔 = (∑ 𝑑𝑘𝑞𝑘𝑠 𝒙𝒌𝒙′𝒌)−1(∑ 𝑑𝑘𝑞𝑘𝑠 𝒙′𝒌𝒚𝒌)  with elements  𝑏𝑤𝑗 =

(∑ 𝑑𝑘𝑞𝑘𝑠 𝒙𝒋𝒌′𝒙𝒋𝒌)
−1

(∑ 𝑑𝑘𝑞𝑘𝑠 𝒙′𝒋𝒌𝒚𝒌) where  𝒙′𝒋𝒌 = (𝑥𝑗1, 𝑥𝑗2, … . . , 𝑥𝑗𝑛). 

                                                       

 

To study the properties of calibration estimators in general, Estevao and Särndal (2000) proposed a functional form 

of calibration weights. They proposed weights 𝑤𝑘𝐶𝐴𝐿𝐹 that had mathematical form and by defining two parameters 

produce different weight systems. 

They specified a vector  𝒛′𝑘 = (𝑧1𝑘 , 𝑧2𝑘 , … . . , 𝑧𝑝𝑘)  for every 𝑘 ∈ 𝑠 such that  

(a) 𝐷𝑖𝑚(𝒙𝑘)= 𝐷𝑖𝑚(𝒛𝑘) = 𝑝  and 

(b)  The matrix 𝑿′𝑿 of order 𝑝 × 𝑝  is non-singular 

The components of vector 𝒛𝑘   are functions of 𝒙𝑘  and can be defined as 

 

       𝒛′𝑘 = (𝑥1𝑘
𝑚−1, 𝑥2𝑘

𝑚−1, … . . , 𝑥𝑝𝑘
𝑚−1)              for 𝑚 ≥ 0 and 𝑥𝑗𝑘 > 0                                                                     (1.5) 

 

Also, for  𝑚 = 2, we have 𝒛𝑘 = 𝒙𝑘 

 

The resulted calibration weights are asymptotically design unbiased.  

 

   𝑤𝑘𝐶𝐴𝐿𝐹 = 𝑑𝑘(1 + 𝑞𝑘 �́�𝑘𝝀𝑠)  
     

                                                                                                                             (1.6) 

 

Where the parameters 𝑞𝑘 and 𝒛𝒌 are chosen to satisfy (a) and (b) and the vector 𝝀𝒔 = (∑ 𝑑𝑘𝑠 𝑞𝑘𝒛𝑘𝒛𝑘)−1(𝑿 −
 �̂�𝒙𝝅)  is determined by the calibration constraints. 

 

The 𝑿 = ∑ 𝑤𝑘𝑥𝑘𝑠 = ∑ 𝑥𝑘𝑈   vector is the vector of population totals for 𝑗 auxiliary variables and assumed to be 

known prior to estimation. The final form of  𝑤𝑘𝐶𝐴𝐿𝐹  can be obtained using  𝝀𝑠 in (1.6), that is 

 

           𝑤𝑘𝐶𝐴𝐿𝐹 = 𝑑𝑘 + (𝑿 −  �̂�𝒙𝝅)′𝑹𝒌                                                                                                                       (1.7)
    

Where   𝑅𝑘 = (∑ 𝑑𝑘𝑞𝑘𝑠 𝒛𝒌𝒛′,𝑘)
−1

𝑑𝑘𝑞𝑘𝒛𝑘                                                                                                                 (1.8) 

 

 

The resulted functional form of calibration estimator can be obtained as 

kw
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 �̂�𝐶𝐴𝐿𝐹 = ∑ 𝑤𝑘𝐶𝐴𝐿𝐹𝑠 𝑦𝑘 and can be written in the form          �̂�𝐶𝐴𝐿𝐹 = �̂�𝑦𝜋 + (𝑿 −  �̂�𝒙𝝅)′�̂�𝑘                               (1.9)
 

 

Where  �̂�𝒌 = (∑ 𝑑𝑘𝑞𝑘𝑠 𝒛𝒌𝒛′𝑘)−1(∑ 𝑑𝑘𝑞𝑘𝑠 𝒛′𝒌𝒚𝒌)                                                                                              (1.10)                                            

 

 

The functional form �̂�𝐶𝐴𝐿𝐹  generates variety of calibration weights when different values of 𝒒𝒌 and 𝒛𝒌 are used, 

therefore is more convenient and flexible. Also, the functional form of calibration estimator is asymptotically 

equivalent to instrumental calibration estimators proved by Kim and Park (2014).  

Due to the flexibility and formation of the functional form calibration weights, these can helpful to control the 

undesirable effects of auxiliary variables by using different choices of 𝒒𝒌 and 𝒛𝒌 .The functional form of calibration 

estimator �̂�𝐶𝐴𝐿𝐹  defined in (1.9) is a linear function of the design weights and the adjustment term. For a strong to 

moderate linear relationship between the study variable and the auxiliary variable(s) the adjustment term will be 

equal to the error of the design weights with opposite signs and therefore give minimum mean square error but 

presence of discrepant or multi-collinear auxiliary variable(s) may cause of negative, inefficient or extreme weights. 

Estevao and Särndal (2002) have shown that the purpose is not to put the given auxiliary information blindly in 

estimation but efficient use of auxiliary information is important. The efficient use of auxiliary information in model 

assisted approaches can result in substantial gain in precision. According to Ståhl et.al (2016), the main advantage of 

model-assisted estimation is that it does not rely totally on the suitability of the model, but the model only helps to 

improve the precision of an estimator and in case of failure of assumed model, the resulting estimator remains 

asymptotically unbiased. The model assisted estimators have been proved efficient and robust under different 
scenarios. Kim and Rao  (2012) used model assisted approach in integrating the data sets from two independently 

conducted surveys. Breidt (2017) used the model-assisted approach from a complex survey together with auxiliary 

information to estimate finite population parameters. They reviewed a very broad class of prediction methods 

including linear models, linear mixed models, nonparametric regression and machine learning techniques. Also, 

different functions of auxiliary variables have been considered by researchers to improve efficiency of the model 

assisted estimators. Kumar et.al (2017) considered the case when study variable and auxiliary variable are inversely 

related and have shown that two calibration approaches provide the different variances.  

Gard (2019) explored that model assisted estimators generates the most accurate estimates if relevant auxiliary 

variables that explain nonresponse and the target variables are available. The efficiency of the estimator depends not 

only on good and related auxiliary information but also on the methods by which the information has been utilized 

in estimation.  Eric (2020) also used model assisted approach in estimating model parameters in circumstances of a 

complex survey. Recently, Ben et.al (2021) considered the case of obtaining calibration weights when covariates are 
high dimensional and especially when interactions between variables exist. They proposed a multilevel calibration 

weighting system that satisfies strict calibration constraints for main weights and loosen calibration constraints for 

higher-order interactions. Also, the asymptotic properties of these estimators were developed and assessed.  

 

2. The New Functional Form of Calibration Weights: 

 

In this paper, some new model assisted estimators are proposed using a new functional form of calibration weights 

that can be used to control unwanted effects of auxiliary variable(s) and to stabilize the calibration weights for 

precise estimation and prediction. The proposed functional form of calibration estimators is 

  

 𝑤𝑘𝑁𝐶𝐴𝐿𝐹 = 𝑑𝑘 +  𝑪𝒑𝑑𝑘𝑞𝑘�́�𝑘𝝀𝑠                                                                                                                               (2.1) 

          
                                                                                                                           

 

Here the  𝑪𝒑   is a matrix of order × 𝑝 . We called it control matrix because it will be used to control the effect of 

auxiliary variables in model assisted estimation. The 𝝀𝑠  is obtained from the calibration constraints (1.2) and vector 

𝒛𝒌  has been defined in (1.5). 

 
This method like the ridge regression approach is a tradeoff between bias and variance. To stabilize the calibration 

weights and to prevent them from unwanted effects of the auxiliary variable(s) a control matrix is used, but unlike 

the ridge approach the penalty factor is not added to the 𝑿′𝑿 matrix; instead the adjustment terms are controlled 

explicitly by using a control matrix.   
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We can simplify the new functional form of calibration weights defined in (2.1) using the vector  𝝀𝑠: 

 

   𝑤𝑘,𝑁𝐶𝐴𝐿𝐹 = 𝑑𝑘 +  𝑪𝒑(𝑿 −  �̂�𝒙𝝅)′𝑹𝒌                                                                                                                       (2.2) 

 

            
                                                                                                          

 

Where 𝑅𝑘 is defined in (1.8). The new functional form of model assisted estimators for population total can be 

obtained using functional form calibration weights defined in (2.2): 

 

   �̂�𝑁𝐶𝐴𝐿𝐹 =  ∑ 𝑤𝑘𝑁𝐶𝐴𝐿𝐹𝑠 𝑦𝑘 = �̂�𝑦𝜋 + 𝑪𝒑(𝑿 −  �̂�𝒙𝝅)′�̂�𝒌                                                                                             (2.3) 

 

   We have defined  �̂�𝒌      in (1.10). The different model assisted estimators can be obtained by using different 

values of 𝑪𝒑  ,  𝑞𝑘and 𝒛𝒌 in (2.3) that results in a wider class of  regression  type estimators. 

To obtain the different functional form model assisted estimator, we need to specify in (2.3): 

  

(i) A matrix  𝑪𝒑  of order 𝑝 × 𝑝 such that the resulted estimator remains asymptotically unbiased under the 

randomization distribution.   

(ii) Auxiliary variables we want to calibrate,  

(iii) To specify the value of 𝑚 to get vector of instrumental variables and 

(iv) The value of  𝑞𝑘. 

 

The functional form of the calibration estimators proposed by Estevao &Särndal (2000) and the General Regression 

Estimator (GREG) estimators are the special cases of the proposed estimator and can be defined as a subset of the 

proposed functional form calibration estimators, i.e. 

 

             
�̂�𝐺𝑅𝐸𝐺 ⊆ �̂�𝐶𝐴𝐿𝐹 ⊆ �̂�𝑁𝐶𝐴𝐿𝐹

  

A specific case when 𝑪𝒑 is an identity matrix of order 𝑝 × 𝑝 and 𝑚 = 2 in vector  𝒛𝒌 
 is the classical calibration 

estimator proposed by Deville and Särndal (1992) for estimating population total of study variable  𝑦. 

 

   �̂�𝑁𝐶𝐴𝐿𝐹(𝑆) = �̂�𝑦𝜋 + 𝒃′𝒘𝒔(𝑿 −  �̂�𝒙𝝅) = �̂�𝑦𝑐                                                                                                                (2.4) 

    

         

                                                                                                         
The objective is to find the values that prove helpful in controlling the undesirable variability in calibration weights 

and to get stabilize weights.  

For example, total number of deaths by COVID-19 in Pakistan using sample data can be estimated when confirmed 

and recovered cases are used as auxiliary variables and their population totals are known prior to estimation but due 

to high variation within the data (daily observations of confirmed and recovered cases within and after the wave) can 

cause extreme calibration weights and may effects the estimation of total deaths. In this case, instead of using   𝑚 =
2 in 𝒛𝒌, some other values of 𝑚 maybe a good choice to generate optimum weights and estimates. Also, in some 

cases when multiple auxiliary variables are available for estimation, it may helpful to assign weights to these 

auxiliary variables according to their correlation with the study variable. An example can be estimation of total 

population on the basis of household size, employed persons and tax payers from a previous survey but size of a 
household is highly correlated with the variable “population size” as compared to other variables and therefore may 

get large weight in estimating total population.  

We are free to made different choices of the matrix 𝑪𝒑 for which the calibration weights remains asymptotically 

unbiased. We consider three different cases for which the resulting calibration estimators remain asymptotically 
unbiased. 

   



Pak.j.stat.oper.res.  Vol.17  No. 4 2021 pp 963-970  DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3667   

 
Some Model Assisted Estimators Using Functional Form Calibration Approach 967 

 

 

CASE I: 

 

The efficiency of the model assisted estimators depends on the correlated auxiliary variables, used in estimation 

procedure. In most surveys the complete information about the variance of the study variable is not available and 
available auxiliary information define only a portion of the variability. The correlation coefficient of determination 

is a measure of variation that is explained by the auxiliary variables used in a model.   

In the first case we consider 𝑪𝒑𝟏 = 𝑅2  a matrix of order  1 × 1 where 𝑅2 is the adjusted coefficient of 

determination. The functional form model assisted estimator in this case will be 

 

      �̂�𝑁𝐶𝐴𝐿𝐹1 = �̂�𝑦𝜋 + 𝑅2(𝑿 −  �̂�𝒙𝝅)′�̂�𝒌                                                                                                                      (2.5) 

 

                                                                                                   
The value of adjusted 𝑅2  will assign an appropriate weight to the adjustment term according to the proportion of 

variability explained by the auxiliary variables. If the value of adjusted 𝑅2 ≈ 0  the adjustment term will also tend to 

zero and the auxiliary variable(s) automatically will be excluded from the model and only design based Horvitz 

Thompson estimator will be used for estimation.  For the case when the linear relations of the study variable are 

perfectly defined by the use of the auxiliary variable(s), the value of  𝑅2 ≈ 1   and there will be no change in 

calibration weights. 

 
CASE II: 

 

In today’s world bulk of information is available and multiple auxiliary variables are used in estimation to increase 

precision and accuracy of the estimates. When a large number of auxiliary variables are used in estimation, a case of 

obtaining inefficient weights may be that some of the less correlated auxiliary variable(s) has large sampling errors 

and therefore influenced the calibration weights and result in unstable or inefficient weights. To avoid such 

situations the auxiliary variables can be weighted according to their correlation with the study variable.  

Therefore one possible value for control matrix 𝑪𝒑 can be: 

 

   𝑪𝒑𝒓 = |𝑟𝑘𝑗|𝑰𝒑×𝒑                                                                                                                                                      (2.6) 

    
                                                                                                                                                    

  𝑪𝒑𝒓   is a diagonal matrix of order p having partial correlation coefficients values 𝑟𝑘𝑗  as its diagonal elements, 

where 𝑟𝑘𝑗  is the partial correlation coefficient value of 𝑋𝑗   with  𝑦 . The norm is used to avoid the negative sign. The 

matrix 𝑪𝒑𝒓 will assign weights to the sampling error(s) of auxiliary variable(s) according to their correlation with the 

study variable and therefore a more correlated auxiliary variable will get large weight and a less correlated variable 

will be assigned small weight in construction of the calibration weights. If an auxiliary variable has perfect 

correlation with the study variable, then its correlation coefficient value will be near to 1 and therefore its residual 

will remain same. Similarly, if an explanatory variable is not correlated with study variable, the 𝑟𝑘𝑗 value will be 

approximately zero and in this case the variable will be excluded from the model. Some of these correlations 

coefficient’s values (of p variables included in the estimation) can be obtained from any previous survey and others 

can be obtained at the sample level. The estimator of population total in this case will be: 

 

  �̂�𝑁𝐶𝐴𝐿𝐹2 = �̂�𝑦𝜋 + (𝑿 −  �̂�𝒙𝝅)′𝑪𝒑𝒓�̂�𝒌                                                                                                                        (2.7) 

                                                                                                     

 

CASE III: 

 
We consider another case when inefficient weights are occurring because some of the auxiliary variable’s values are 

more disperse as compared to study variable and therefore may have large sampling errors. This may influence the 

calibration weights and may cause of inefficient or extreme weights. The matrix given below may be useful to 

assign appropriate weights to auxiliary variables by comparing its variation with study variables i.e. 

 

 

     �̂�𝒑𝑪𝟎 = 𝐶 𝑉2
𝑦.𝑥𝑗𝑰𝒑×𝒑        for             𝑗 = 1,2, . . . . , 𝑝                                                                                           (2.8) 
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The 𝑪𝒑𝑪𝟎 matrix in this case will be a diagonal matrix having 𝐶 𝑉2
𝑦.𝑥𝑗 =

 𝐶2
𝒚

 𝐶2
𝒙𝒋

    as diagonal elements where  

𝑪 𝑉2
𝒚.𝒙𝒋  is the ratio of   𝐶2

𝒚 (square of the coefficient of variation of study variable) and  𝐶2
𝒙𝒋  (square coefficient 

of variation of the  𝑗𝑡ℎ auxiliary variable). The elements of the control matrix will assign appropriate weight to the 

sampling error of each auxiliary variable by comparing its variance with study variable.  

The functional form of model assisted estimator in this case will be: 

 

   �̂�𝑁𝐶𝐴𝐿𝐹3 = �̂�𝑦𝜋 + (𝑿 −  �̂�𝒙𝝅)′�̂�𝒑𝑪𝟎�̂�𝒌                                                                                                                      (2.9) 

 

The Asymptotic unbiased-ness and mean square error (MSE) of the proposed estimators (2.5), (2.7) and (2.9) are 

derived with the help of following results.  

 The error associated with adjustment term �̂�𝑦𝜋 , 𝒕𝒙𝝅 and �̂�𝑘  is denoted by  

       
𝒆𝒙 = (𝒕𝒙𝝅 − 𝑿), 𝒆𝒚 = (�̂�𝑦𝜋 − 𝑌) and 𝒆𝒅 = (�̂�𝒌 − 𝑫𝑵) where �̂�𝒌  is an estimator of  𝑫𝑵 . Also, we have the 

results  𝐸(𝑒𝑥𝑗
2 ) = 𝜃𝑋𝑗

2𝐶𝑥𝑗
2 ,  𝐸(𝑒𝑦

2) = 𝜃𝑌2𝐶𝑦
2 and   𝐸(𝑒𝑥𝑗𝑒𝑦) = 𝜃𝑌𝑋𝑗𝐶𝑥𝑗𝐶𝑦𝜌𝑦.𝑥𝑗    where  𝜌𝑦.𝑥𝑗 =

𝑆𝑦.𝑥𝑗  

𝑆𝑥𝑗 𝑆𝑦   
. 

 

We assume that 𝒆𝒙  and   𝒆𝒚   are smaller magnitude as compare to 𝑿 (auxiliary variable(s) Total) and 𝑌  (study 

variable total), also 𝑋𝑗  ( population total of 𝑗𝑡ℎauxiliary variable)  is positive and  |
𝑒𝑥𝑗

𝑋𝑗
| <1  

 

Result 1: 

 

The calibration estimator (2.5) is asymptotically unbiased and the bias related to it is  

 

𝐵𝑖𝑎𝑠�̂�𝑁𝐶𝐴𝐿𝐹1
= −𝐸{(�̂�2 − 𝑅𝑁

2 )(𝑿 −  �̂�𝒙𝝅)′(�̂�𝒌 − 𝑫𝑵)}  

 

Using results Fuller and Isaki (1982) and Estevao and Sarndal (2000), the bias of the quantities      𝑁−1(�̂�𝒌 − 𝑫𝑵), 

 𝑁−1(𝑿 −  �̂�𝒙𝝅)  and  𝑁−1(�̂�2 − 𝑅𝑁
2 )   are of order (

1

√𝑛
) and hence bias of the estimator is of  𝑂(

1

𝑛
3
2

) which is 

negligible when 𝑛 is large and even for a modest sample size.  

 

The Mean Square Error (MSE) of the estimator (2.5) is:  

 
 

𝑀𝑆𝐸�̂�𝑁𝐶𝐴𝐿𝐹1
= 𝛳 [𝑌2𝐶𝑦

2 +
1

𝐽
(𝑅2)2 ∑ 𝐷𝑗

2𝑋𝑗
2𝐽

𝑗=1 𝐶𝑥𝑗
2 −

2

𝐽
𝑌𝐶𝑦𝑅2 ∑ 𝐷𝑗𝑋𝑗𝐶𝑥𝑗

𝐽
𝑗=1 𝜌𝑦.𝑥𝑗]    

 

 
Result 2:  

The estimator (2.7) is asymptotically unbiased as  𝑁−1(𝑿 −  �̂�𝑥𝜋)  has bias of order(
1

√𝑛
), also the 𝐶𝑝𝑟 = 𝑑𝑖𝑎𝑔{𝑟𝑘𝑗}  is 

a diagonal matrix having 𝑟𝑘𝑗  at its diagonal such that  0 ≤ 𝑟𝑘𝑗 ≤ 1 for 𝑗 = 1,2, . . . . . , 𝑝 and hence estimator (2.7)  is 

asymptotically unbiased estimator as the term  𝑁−1(𝑿 −  �̂�𝒙𝝅)′𝑪𝒑𝒓�̂�𝒌 → 𝟎 𝒂𝒔 𝒏 → ∞   

 

The MSE expression of estimator (2.7) is derived as: 

 

𝑀𝑆𝐸�̂�𝑁𝐶𝐴𝐿𝐹2
= 𝛳 [𝑌2𝐶𝑦

2 +
1

𝐽
∑ 𝐷𝑗

2𝑋𝑗
2

𝐽

𝑗=1

𝐶𝑥𝑗
2 𝜌𝑦.𝑥𝑗

2 −
2

𝐽
𝑌𝐶𝑦 ∑ 𝐷𝑗𝑋𝐶𝑥𝑗

𝐽

𝑗=1

𝜌𝑦.𝑥𝑗
2 ] 

 

Result 3:  

 
The estimator (2.9) is asymptotically unbiased with bias  
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𝐵𝑖𝑎𝑠�̂�𝑁𝐶𝐴𝐿𝐹3
= −𝐸{(�̂�𝒌 − 𝑫𝑵)(�̂�𝒑𝑪𝟎 − 𝑪𝒑𝑪𝟎)(𝑿 −  �̂�𝒙𝝅)′}  

 

 

Where �̂�𝒑𝑪𝟎  is a matrix of order 𝑝 × 𝑝  estimating the matrix 𝑪𝒑𝑪𝟎 . The diagonal elements of  �̂�𝒑𝑪𝟎 matrix are  

𝐶 𝑉2
𝑦.𝑥𝑗 =

 𝐶2
𝒚

 𝐶2
𝒙𝒋

 . The 𝐶𝑉 has bias of 𝑂(
1

𝑛
) and hence the estimator has bias of  𝑂(

1

𝑛2), 

The MSE of estimator (2.9) is derived as: 

 

𝑀𝑆𝐸�̂�𝑁𝐶𝐴𝐿𝐹3
= 𝛳𝐶𝑦

2 [𝑌2 + 𝐶𝑦
2 +

1

𝐽
∑ 𝐷𝑁𝑗

2
𝑋𝑗

2

𝐶𝑥𝑗
2

𝐽

𝑗=1

−
2

𝐽
𝑌𝐶𝑦 ∑ 𝐷𝑁𝑗

𝑋𝑗

𝐶𝑥𝑗

𝐽

𝑗=1

𝜌𝑦.𝑥𝑗] 

. 

3-Simulation Study: 

 

We examine and compare the performance of the proposed estimators   �̂�𝑁𝐶𝐴𝐿𝐹1, �̂�𝑁𝐶𝐴𝐿𝐹2 and �̂�𝑁𝐶𝐴𝐿𝐹3   defined in 

(2.5), (2.7) and (2.9) respectively through a simulation study with classical Horvitz Thompson estimator (�̂�𝑦𝜋)  and 

with the special case of the functional form calibration estimator (�̂�𝐶𝐴𝐿𝐹) proposed by Estevao &Särndal (2000, 

2002) defined in (1.9). The efficiency is compared through bias and Mean square Error. A population consists of 

1000 normally distributed values of dependent variable (Y) is generated. The correlated auxiliary information is 

generated in two cases, in first case only one moderately linearly related variable (
1X ) with the study variable is 

generated such that  𝑚 = 2 or 𝒛𝒌 = 𝒙𝒌  . The Bias and MSE are calculated on repeated sampling of 500 samples 

each of size 100. Similarly the process is repeated for two auxiliary variables; one auxiliary variable is generated 

taking ( 0.65 < 𝜌 < 0.85) such that the generated variable is moderately correlated with study variable whereas 
second variable is generated by fixing the value of correlation coefficient between (0.25 to 0.30). In particular, the 

purpose is to study the impact of including less correlated auxiliary variables in model assisted estimation.  

The population total of 1000 values 1000

1
i

i
Y

=


=9970.055 is estimated using the five estimators. The table below is 

showing the results of simulation study. 

 

 

Table 1: Table showing results of simulation study for comparison of the proposed estimators: 

 

Estimators  One Auxiliary variable Two auxiliary variables 

Estimate Bias MSE Estimate Bias MSE 

𝒕𝒚𝝅 9990.50 12.44514 143.577 9990.50 12.44514 143.557 

𝒕𝑪𝑨𝑳𝑭 9961.371 -11.68338 136.5013 9962.956 -11.324 135.867 

𝒕𝑵𝑪𝑨𝑳𝑭𝟏 9978.995 10.94009 135.6836 9978.395 10.356 135.145 

𝒕𝑵𝑪𝑨𝑳𝑭𝟐 9978.208 9.15232 134.86228 9977.410 8.452 133.856 

𝒕𝑵𝑪𝑨𝑳𝑭𝟑 9979.395 9.8999 135.80934 9978.02 9.324 134.986 

 

 

The results of the simulation study show that the estimator  �̂�𝐶𝐴𝐿𝐹 under-estimate the total of the study variable as 

compared to �̂�𝑦𝜋 (Horvitz Thompson’s estimator) and the three considered cases of the functional form model 

assisted estimators. However, when only one auxiliary variable is used, the decrease in bias and Mean Square Error 

(MSE) can be observed when the proposed functional form model assisted estimators are used to estimate 

population total under the condition when response variable follow a normal distribution. An interesting result can 

be observed that by choosing control matrix 𝑪𝒑𝒓 = 𝑟𝑖𝑗𝑰𝒑×𝒑  , where  𝑪𝒑𝒓  is a diagonal matrix (consists of partial 

correlations of 𝑋𝑗  with 𝑦 as diagonal elements) yields optimum results among all estimators considered for 

comparison. Also, for the case of two auxiliary variables when one is weakly correlated with the response variable 

the �̂�𝑁𝐶𝐴𝐿𝐹2 again produces the minimum bias and MSE, the reason may be that control matrix assign weights to the 

sampling errors of the auxiliary variables that are proportional to their correlation with the study variable and hence 

second auxiliary variable get less weight as compared to the first variable in generation of calibration weights and in 



Pak.j.stat.oper.res.  Vol.17  No. 4 2021 pp 963-970  DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3667   

 
Some Model Assisted Estimators Using Functional Form Calibration Approach 970 

 

estimation.
 
Also, we can examine that the other two proposed estimators are also more efficient than Horvitz 

Thompson (�̂�𝑦𝜋) and functional form calibration estimator proposed by Estevao &Särndal (2000) (�̂�𝐶𝐴𝐿𝐹) but yield 

slightly larger bias and MSE than �̂�𝑁𝐶𝐴𝐿𝐹2  when the data is generated through normal distribution.  

 

4-Conclusion: 

 

The utility of a given estimator depends on what auxiliary data are available and how it is used in estimation. The 

auxiliary variables having large variances and discrepant values may effects estimation process.  To control the 

unwanted effects of auxiliary variables and for optimal use of the available information, a new functional form of 

calibration estimator is proposed to estimate population total which result in a family of model assisted estimators. 

Also, the bias and MSE expressions of the three functional form calibration estimators are derived and a simulation 

study is conducted to assess the performance of the proposed estimators. The result demonstrates that the proposed 

estimators perform well as compared to Horvitz Thompson and functional form calibration estimators proposed by 
Estevao and Sarndal (2000). As the results are obtained under a single condition, when random error follow a 

normal distribution and auxiliary variables are moderately or weakly correlated with the study variables, therefore, 

more work may be needed to develop specific guidelines for various type of auxiliary information available for 

estimation. A further study can explore performance of different cases of the proposed functional form under various 

other probability distributions. The important question is that for more than two auxiliary variables which case of 

control matrix may result better. Also, for auxiliary variables having large variances what will be the role of control 

matrix and which estimator will perform well.  
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