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Abstract

In this paper, we are interested in estimating a multivariate normal mean under the balanced loss function using the
shrinkage estimators deduced from the Maximum Likelihood Estimator (MLE). First, we consider a class of estimators
containing the James-Stein estimator, we then show that any estimator of this class dominates the MLE, consequently
it is minimax. Secondly, we deal with shrinkage estimators which are not only minimax but also dominate the James-
Stein estimator.
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1. Introduction

The problem of estimation the mean parameters is the most widely used statistical tool applied in almost all fields.
This problem has been attracted the attention of many researchers for multivariate normal distribution. Several de-
terministic approaches have been proposed in this context. Stein(1956) discovered that when the dimension of the
parameter space is large, the usual maximum likelihood estimator is inadmissible. James and Stein(1961) provided
an explicit class of dominating estimators. They provided results for both cases of known and unknown variance.
Alternative techniques have been developed to improve the MLE. In this paper, we aim to develop shrinkage esti-
mators that are both minimax and capable of effective risk reduction over the usual estimator. Recent studies, in
the context of shrinkage estimation, include Selahattin et al.(2011), Amin et al.(2020), Yuzba et al.(2020). Tsukuma
and Kubukawa(2015) address the problem of estimating the mean vector of a singular multivariate normal distribu-
tion with an unknown singular covariance matrix. Xie et al.(2016) introduced a class of semi-parametric/parametric
shrinkage estimators and established their asymptotic optimality properties. Benkhaled and Hamdaoui(2019), have
considered the model X ~ N, (0, 0211,) where o2 is unknown and studied two different forms of shrinkage esti-

mators of §: estimators of the form 6% = (1 — ¥(S2, || X|*)S2/ || X||*) X, and estimators of Lindley-Type given by
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§% = (1 — ¢(S%,7T%)S?/T?)(X — X) + X, that shrink the components of the MLE X to the random variable X.
The authors showed that if the shrinkage function 1 (respectively ) satisfies the new conditions different from the
known results in the literature, then the estimator 0¥ (respectively 6¥) is minimax. When both sample size and the
dimension of parameters space tend to infinity, they studied the behaviour of risks ratio of these estimators to the MLE.
Hamdaoui et al.(2020), have treated the minimaxity and limits of risks ratios of shrinkage estimators of a multivariate
normal mean in the Bayesian case. The authors have considered the model X ~ N, (97 CTQIP) where o2 is unknown
and have taken the prior law 6 ~ NV, (U, T2Ip). They constructed a modified Bayes estimator 63 and an empirical
modified Bayes estimator d}, 5. When n and p are finite, they showed that the estimators 6 and 7, are minimax.
The authors have also interested in studying the limits of risks ratios of these estimators, to the MLE X, when n and p
tend to infinity. The majority of these authors have been considered the quadratic loss function for computing the risk.

Zellner(1994) proposed a balanced loss function that takes error of estimation and goodness of fit into account. This
balanced loss function consists of weighting the predictive loss function and the goodness of fit term. Sanjari and
Asgharzadeh(2004) have considered the model: X1, ..., X, to be a random sample from N, (0, 02Ip) with o2 known
and the aim is to estimate the parameter 0. They studied the admissibility of the estimator of the form aX + b under
the balanced loss function. Selahattin and Issam(2019) introduced and derived the optimal extended balanced loss
function (EBLF) estimators and predictors and discussed their performances.

In this work, we deal with the model X ~ N, (9, oQIp), where the parameter o2 is known. Our aim is to estimate
the unknown parameter ¢ by shrinkage estimators deduced from the MLE. The adopted criterion to compare two
estimators is the risk associated to the balanced loss function. The rest of this article is organized as follows. Section
2 contains some necessary preliminaries that are useful for our main results. In the first part of the Section 3, we
establish the minimaxity of the estimators defined by d,, = (1 —a(1/||X||")) X, where 2 < r < (p + 2)/2 and
the real constant @ may depend on p. In the second part of the Section 3, we consider the estimators of the form
Spr =055 +b(1/| X)) X with 2 < r < (p + 2)/2 and the real constant b may depend on p. We show that these
estimators dominate the James-Stein estimator J ;s under some conditions on the parameter b. Section 4 is devoted to
some numerical comparisons. The proofs of some our main results are collected in the Appendix.

2. Preliminaries

We recall that if X is a multivariate Gaussian random N, (6, 021,) in R?, then ”f—z“g ~ X2 (X) where x2 () denotes
— Lo

the non-central chi-square distribution with p degrees of freedom and non-centrality parameter A ooz - We also
recall the following definition given in formula (1.2) by Arnold(1981). It will be used to calculate the expectation of
functions of a non-central chi-square law’s variable.

2
P
[4

Definition 2.1. Let U ~ X;% (M) be non-central chi-square with p degrees of freedom and non-centrality parameter \.
The density function of U is given by

X e (3)k pp/DHh-1p-/2

e
f(z) = :
kZ:O k! F(g + k)Q(p/2)+k

0<z<+o0.

The right hand side (RHS) of this equality is none other than the formula
oo A
£t
R e

k=0

where Xi oy, 18 the density of the central x? distribution with p + 2k degrees of freedom.

To this definition we deduce that if U ~ X,Q, (A), then for any function f : Ry — R, Xf) (M) integrable, we have

E[fO)] = ; Fl@)xy (\) da
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2 2 (A)k
[ R, (x)Xp+2k (0) d.’I,"| ez ?C'
9 A
[R ()X} o dr P<2;dk>7 (1
-+

where P (%, dk) being the Poisson distribution of parameter % and Xf, o 18 the central chi-square distribution with

p + 2k degrees of freedom.

Using the last equality, we conclude the following Lemma.

Proposition 2.1. Let U ~ X%()\) be non-central chi-square with p degrees of freedom and non-centrality parameter

A Then for0 <r < L,

EWU™)

where K has a Poisson distribution with mean

E[(x;(N)™"]
E[(XfﬂrQK)iT]

o (T(E -1+ K)
2E s

).

A

2

We recall the following Lemma given by Stein (13), that we will use often in the next.

Proposition 2.2. Let X be a N (U, 02) real

random variable and let f : R — R be an indefinite integral of the

Lebesgue measurable function, f' essentially the derivative of f. Suppose also that E (|f' (X)]) < +oo, then

X
2|(
3. Main results

In this section, we present the model X ~ N,
parameter 6 by the shrinkage estimators under

— v

g

)1 0] =B ).

(0, azlp) where o2 is known. Our aim is to estimate the unknown mean
the balanced squared error loss function. For the sake of simplicity, we

treat only the case when o = 1, as long as by a change of variable, any model of type Y ~ N, (91, azlp) can be

reduced to the model Z ~ N, (03, I,). Name
unknown parameter 6.

Definition 3.1. Suppose that X is a random

ly, we consider the model X ~ N, (0, I,) and we want to estimate the

vector having a multivariate normal distribution N, (6,1,,) where the

parameter 0 is unknown. The balanced squared error loss function is defined as follows:

Lw(éa 0) = wH(S -

Sl + (1 —w)6 =6 0<w<1, 2)

where O is the target estimator of 0, w is the weight given to the proximity of 0 to dg, 1 — w is the relative weight given

to the precision of estimation portion and ¢ is

For more details about this loss see Jafari et
et al.(2018).

a given estimator.

al.(2014), Guikai et al.(2014), Zinodiny et al.(2017) and Karamikabir

We associate to this balanced squared error loss function the risk function defined by

In this model, it is clear that the MLE is X :=
Indeed: we have

R,(X,0)
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R, (0,0) = E(L,(0,0)).

0o, its risk function is (1 — w)p.

WE(|X = X|*) + (1 - w)B(| X — 0]*)
(1 —w)E(IX —0|).
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As X ~ N, (0,1,), then X — 6 ~ N,, (0, I,,), therefore || X — 6]|* ~ x2.

Hence, E(| X — 0]?) = E(x2) = p. and the desired result follows.

It is well known that g is minimax and inadmissible for p > 3, thus any estimator dominates it is also minimax. We
give the following Lemma, that will be used in our proofs and its proof is postponed to the Appendix.

Proposition 3.1. Let U ~ xi()\) be non-central chi-square with p degrees of freedom and non-centrality parameter
A then,

i) for any real numbers s and r wher fg < s < r <0, the real function

EW)  Jr, "X dx)
E(U?) fR+x Xp()\,d )

Hyrs(V) =

is nondecreasing on \.

ii) Furthermore, if X ~ N, (6,1,), we get

—2r+42 P _
Sup<E<||X ))ZHzr(Q re1)

o \ E(IX]77) NG
3.1. A general class of James-Stein estimator
Consider the estimator
0 <1 ! ) X=X ! X 3)
a,r = —a = —a s
’ X1 X1

where 2 < r < % and the real positive constant ¢ may depend on p.

Proposition 3.1. Under the balanced squared error loss function L, the risk function of the estimator §,_, given in

(3) is
Ro(Gars6) = (1—w) {p ~ a(p—r)E <|X1”) } +a’E <|X”122) .

Proof. Using the risk function associated to the balanced squared error loss function defined in (2), we obtain

Ry (Ba,r,0) = wE([|00r — X|[*) + (1 = w) E(|[6a,r — 0]1%).

2
1
Bsar ~ X1 = B (| -argrex|| ) =8 (s )
| X2

E <HXQ||)(1||TX9 2)
E(|X -0|>)+E ( a 2) —2F <<X 0 a”;HT >>
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and using the Lemma 2.2, we get

B({x-oapzpx)) -

ﬁq@

E{ i

E i
1 <3X x| )
X2
= (537 - =)
— \IXIm X

= a0 (x5

3

I
m

3

M=

= a

Then
R,(64.,,0) = wd’E (1> +(1-w) {p—o— a*FE <1) —2a(p—r)E <1)]
ceen | X||2=2 X |2r=2 l[yll”
1 1
o a-0e (o)) o ()
x| | X 22
and the desired result is obtained. O

Theorem 3.2. Assume the estimator d,, , defined in (3).

i) A sufficient condition that 6, dominates the MLE (so it is minimax), is

I'(5)

0§a§25(1*w)(19*7’)ma

ii) the optimal value for a that minimizes the risk function R, (04 r,0), is

=2 (1 —w)(p— )2

Proof. 1) By using Proposition 3.1, we have

Ro(bar0) = (1-w) {p‘%(p‘”E (uinr)}

oo (Sl gy,

B () X1

1= {p=2a0-5 (5 ) |

p—2r+2
+ o2 T )E<|1 >

Using Lemma 3.1, leads to

Rw(du,ra 0)

IN

I(%5") RYY
= l-wp—-2a(l-w)p—1)E (HX1||7)
ngag(%) 1
T £ (1) @
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From the RHS of the last equality, it is easy to show that a sufficient condition for that R, (ds,r,0) < R, (X,0) =
(1 — w)p and consequently ¢, , dominates the MLE (so it is minimax), is

“2alt =)= 8 () 427 F(r<+>)E<||§> =0

2

which is equivalent to

that leads to

- r(er
0<a< 25(1—w)(p—r)%.
M=)

ii) Using the convexity on a of the function given in RHS of the equality (4), one can easily obtain the result. The
proof of the Theorem is completed. O

For r = 2, we note @ by d := (1 — w)(p — 2), then we obtain the James-Stein estimator

1
515 =042 = (1 - d”X”2> X. 5)

From Proposition 3.1 and Lemma 2.1, the risk function of J ;5 is

R,(675,0) = (1 —w)p— (p—2)*(1 —w)’E <p_21+2K> (6)

where K ~ P <|I9H )
From the formula (6), we note that

R, (055,0) < (1 —w)p=R,(X,0),

then § ;5 dominates the MLE X, therefore it is also minimax.

3.2. Estimators dominating the James-Stein estimator

Since the estimator 0, , = X — arxTE X”T X dominates the MLE X for certain values of a and r, we think to add the term

bWX to the James-Stein estimator § ;g to obtain an estimator that outperforms § ;5. Namely, we consider

Op,r =08 + by (7

IIXH

< b2

where 2 < r and the real positive constant b may depend on p.

Proposition 3.2. Under the balanced squared error loss function L, the risk function of the estimator 0y, given in
(7) is

Ry(0pr,0) = Ru(dss,0) = 2b(1 - w)(r — 2)E (II;I’”> +0’E (”)(”12_2> .
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Proof. Using the risk function associated to the balanced loss function defined in (2), we obtain

Ry(6p,,0) = <‘5J5+b”XHT - X 2) +(1-w)E <‘5J5+b”XH -0 2)
= @ | Bldss = XI5 (H X ) e (<5"S‘X’b|)§nrx>)]
b (L= |E(I5ss - 0IP) (H T 2>+2E (<5Js—9,b”X1||rx>)]

1 1
= R,(8;s,0) +VE (> 2wdbE ( >
| X ][22 X"
X, b

+ 2<1—“>E(<X O~ A VT >)
= Ru(dss,0) +b°E (”X||122> — 2wdbE (|)§||r) ~ 21 ~w)dbE (IIP;I’”>

P

+ 2(1-— w)bZE {(Xq; —6,) é”

— Rw(5J570)+b2E(H)(H12T—2> 2dbE(H);H)
o 23 (X 00 e

Using the Stein’s Lemma 2.2, we get

R.(05s,0) + b°E (”X|1> 2k (||;||T>

- 2(1w)b§E[a§g <||X1||2Xﬂ

= 00+ (s ) —208 ()

+ 201 —wb(p—r)E (”Xl|r>

— Ru(515.0) + 88 (s ) + 20— o)~ B ()

— Ru(5ys,0) + V°E <”X|12_2> — (1 —w)(r — 2)E (Il;llr> .

Rw<6b,7‘7 9)

Theorem 3.3. Under the balanced squared error loss function Ly, the estimator 0y, . with

(5

b=27 (1-w)(r— Z)W’
2

dominates the James-Stein estimator § ;5.
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Proof. By using Proposition 3.2, we have

—

[®

E 3
Rw((sb,m 9) < Rw (5J57 9) + b2 <HX” ) E ( ! )
E( ! ) X1
X1

— (1 — w)(r — 2)bE <”X1,|> .

By Lemma 3.1, we get

oo D(E=5H2
Rw(6b,r79) < Rw(JJSHG)_"bZQi 2 ( 2 )E( : >

INESS X1
1
— 2b(1 —w)(r — 2)bE ( ) . (8)
X1
The optimal value for b that minimizes the RHS of the inequality (8), is
~ r—2 (1)
b=27 (1—w)(r—2) (”’QZ’"“)

Thus

w02 p( ]
0) < Ru(0ss,0) =27 (1-w)(r—2) F(”QQM)E(IXHT)

IN

R, (dss,0).

4. Simulation results

We recall the form of the James-Stein estimator J ;5 given in (5)

815 = (1—d”X12>X: (1—(1—w)(p—2)”X12) X,

where d = (1 — w)(p — 2). Its risk function associated to the balanced squared error loss function L, is given by the
formula (6). It is well known that the Positive-part of James-Stein estimator is defined by

5t 1 dil +X 1 di1 X1
= —_— = — 1
s IXT? X7 sy

its risk function associated to L, is

Rw(éj& 9) = Rw(5J5>9)

1
2 2 _ _

-1 denote the indicating function of the set (d 0 XIHZ >1).

x|z=
We also recall the estimator §, ;- given in (3) where

with Id 1
II

(%)

=925 (1 - )2
a ( W) (p T)F(p—22r+2)
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its risk function associated to L,, is given in Proposition 3.1 and the estimator &, given in (7) where

b=27(1—w)(r— 2)W’

its risk function associated to L,, is given in Proposition 3.2.

In this part, we firstly present the graphs of the risks ratios of the estimators d g, 6}“5, 0q,r and dy ,, to the MLE

Ry(3s5,0) Rw(075.0) Ru(3a.r.9) R (8y,r,0) - _ ey -
B (X0) 0 L (X0) 0 (%0 and R, (%) function of A = 5, for various values

Ru(875,8) Ru(6¥5.0) Ru(da.r,9)
R,(X,0) > Ru(X.,0) ' Ru(X.0)

X denoted respectively:

of p,r and w. Secondly, we give tables that present the values of risks ratios and

Ry, (0p,r,0) . .
T (X0) where in this case we fix r and vary the values of p and w.

0.7

LA James-Stein estimator
0.5 51:! T

04 Positive-part of James-Stein

03g 2 4 & 8 W 12 M % 1B N
A

Ry(3s5.0) Fu(¥)5.0) Ru(Par0) o4 Ru(8b.r,0)

: _ lep? _ _
T, (X0 RL(n) 0 mve and as functions of A = 5 forp=4,r =

Figure 1: Graph of risks ratios
2.5andw = 0.1

I _ames-S‘rein estimator

0.7 B ¢

Positive-part of James-Stein

06 2 4 6 & W 2 M 1% 1B 2N
A

Ry(675,0) Ru(0F5,0) Ry (8a.r,0)

R, (X,0) * Ru(X,0) ' Ru(X.0)

R, (0y,+,0)
R, (X,0)

Figure 2: Graph of risks ratios and as functions of A = @ forp=4,r =

25andw = 0.5
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0.7

06 g r

05 ein estimator
04}
0.3 Positive-part of James-Stein
0 2 4 ; 8 10

A
Ry(0y5.0) Ru(¥j50) Ru(ar0) 504 Rulbn.r.0)
Ru(X.0) 7 "Ru(X.0) * "Ru(X.0) R, (X.0)

Figure 3: Graph of risks ratios as functions of A = % forp=6,r =

25andw =0.1

Positive-part of James-Stein

06y 2 4 6 8 1
)
"
Figure 4: Graph of risks ratios Rﬁj?}s,ég), Rﬁw(?j(s’(ﬁ), Rﬁﬁ}’té‘)}) and Rgf?;:'ég) as functions of A = @ forp=6,r =
2.5and w =0.5
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04 - James-Stein estimator
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-
0.3 Positive-part of James-Stein
1' 53 ;
A
n
Figure 5: Graph of risks ratios Ré’:?;(f(;i), Rgffg(f(;i), R“Lff}fé?) and R};’:f}”‘éﬁ) as functions of A = “92”2 for p =
10,r =2.5and w = 0.2
”"K O
0761 Positive-part of James-Stein
i 53 ' ;
A
n
Figure 6: Graph of risks ratios Rﬁj?ﬁé?)v jo?‘)’géﬁ), Ré”f((s‘;gé(;) d R}‘gff}};ﬁ) as functions of A = “92”2 for p =

10,r =2.5and w = 0.7
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w(875,0) Ruw(6F5.0) Ru(Sa.r,6) R (8b.,0)
w(X,0) 7 Ru.(X,0) * Ru,(X,0) R, (X,0)

estimators d 5, 5}FS, dq,r and dp » dominate the MLE X for diverse values of p, r and w, therefore are minimax. We
note that the estimator J, , dominates the James-Stein estimator 6 ;5. We also observe that the gain increases if w is
near to 0 and decreases if w is near to 1. The following tables illustrate this note. In these tables we give the values of

Ru(875,0) Ruw(375.0) Ru(Sa.r.0) and Fe(00.r-0)
Ry (X,0) ' Ro(X,0) ' Ro(X,0) Ro(X.0)

The figures 1-6 show that the risks ratios & and are less than 1, then the

the risks ratios for the different values of p, w and A when r = 2.5. The

"
first entry is %}}?, the second entry is %jjg), the third entry is % and the fourth entry is %.
Table 1: p =4 and r = 2.5
A w=0.0 w=0.1 w=0.2 w=0.5 w=0.7 w=20.9

0.7860 0.8074 0.8288 0.8930 0.9358 0.9786
0.5507 0.5957 0.6406 0.7754 0.8652 0.9551
0.5270 0.5743 0.6216 0.7635 0.8581 0.9527
0.4359 0.4326 0.4913 0.5508 0.7303 0.8462 0.9526

0.8232 0.8408 0.8585 09116 0.9469 0.9823
0.6275 0.6648 0.7020 0.8138 0.8882 0.9627
0.6079 0.6471 0.6863 0.8039 0.8824 0.9608
1.2418 0.5326 0.5826 0.6326 0.7809 0.8748 0.9611

0.8957 0.9061 0.9166 0.9479 0.9687 0.9896
0.7743 0.7969 0.8194 0.8871 0.9323 0.9774
0.7627 0.7865 0.8102 0.8814 0.9288 0.9763
3.7523 0.7298 0.7601 0.7898 0.8750 0.9278 0.9769

0.9169 0.9252 0.9335 0.9584 0.9751 0.9917
0.8165 0.8348 0.8532 0.9082 0.9449 0.9816
0.8072 0.8265 0.8458 0.9036 0.9422 0.9807
5.0019 0.7868 0.8108 0.8342 0.9009 0.9423 0.9814

0.9608 0.9648 0.9687 0.9804 0.9882 0.9961
0.9046 0.9142 0.9237 0.9523 0.9714 0.9905
0.9003 0.9103 0.9202 0.9501 0.9700 0.9900
10.4311 0.9002 0.9108 0.9212 0.9515 0.9712 0.9904

0.9753 0.9778 0.9802 0.9876 0.9926 0.9975
0.9351 0.9416 0.9481 0.9676 0.9805 0.9935
0.9324 0.9391 0.9459 0.9662 0.9797 0.9932
15.4110 0.9344 0.9411 0.9477 0.9678 0.9805 0.9935

0.9820 0.9838 0.9856 0.9910 0.9946 0.9982
0.9500 0.9550 0.9600 0.9750 0.9850 0.9950
0.9480 0.9532 0.9584 0.9740 0.9844 0.9948
20.0000 0.9499 0.9549 0.9599 0.9750 0.9850 0.9950
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Table2: p =8and r = 2.5
A w=20.0 w=0.1 w=0.2 w=0.5 w=0.7 w=20.9
0.4189 0.4770 0.5351 0.7094 0.8257 0.9419
0.2891 0.3602 0.4313 0.6446 0.7867 0.9289
0.2843 0.3559 0.4275 0.6422 0.7853 0.9284
0.4359 0.2059 0.2884 0.3727 0.6252 0.7826 0.9288

0.4719 0.5247 0.5775 0.7359 0.8416 0.9472
0.3533 0.4180 0.4827 0.6767 0.8060 0.9353
0.3490 0.4141 0.4792 0.6745 0.8047 0.9349
1.2418 0.2800 0.3567 0.4341 0.6619 0.8030 0.9353

0.8957 0.9061 0.9166 0.9479 0.9687 0.9896
0.7743 0.7969 0.8194 0.8871 0.9323 0.9774
0.7627 0.7865 0.8102 0.8814 0.9288 0.9763
3.7523 0.7298 0.7601 0.7898 0.8750 0.9278 0.9769

0.6419 0.6777 0.7135 0.8209 0.8926 0.9642
0.5557 0.6001 0.6446 0.7778 0.8667 0.9556
0.5527 0.5975 0.6422 0.7764 0.8658 0.9553
5.0019 0.5221 0.5749 0.6266 0.7739 0.8661 0.9556

0.7673 0.7905 0.8138 0.8836 0.9302 0.9767
0.7025 0.7322 0.7620 0.8512 0.9107 0.9702
0.7005 0.7305 0.7604 0.8503 0.9102 0.9700
10.4311 0.6944 0.7267 0.7585 0.8507 0.9107 0.9702

0.8282 0.8454 0.8626 0.9141 0.9485 0.9828
0.7739 0.7966 0.8192 0.8870 0.9322 0.9774
0.7725 0.7953 0.8180 0.8863 0.9318 0.9772
15.4110 0.7721 0.7954 0.8185 0.8869 0.9322 0.9774

0.8632 0.8769 0.8906 0.9316 0.9590 0.9863
0.8155 0.8339 0.8524 0.9077 0.9446 0.9815
0.8144 0.8329 0.8515 0.9072 0.9443 0.9814
20.0000 0.8150 0.8337 0.8522 0.9077 0.9446 0.9815

From the results presented in Tables 1 and 2, we see that if w and A = Lo~ are small, the gain of the risks ratios

2
R.,(675,0) Ruw(675,0) Ry(8a,r,0) Ry (8b,r,0) - . . . .
ks w((;{sﬁ))v Rw(if(s,ﬂ) D R (%0) and Rw(gf,ﬁ) is very important. Also, if the values of w and )\ increase, the gain

decreases and approaches zero, a little improvement is then obtained. We also observe that, if the values of p increase,
the gain increases and this for each fixed value of w. We also see that, if the values of p are large, the gain is large and
consequently we obtain more improvement. We conclude that, the gain is important when the parameters p and A are
large and w is near to 0. As seen above, the gain of the risks ratios is influenced by various values of w, p and A.

We also remark that if A increases or w is near to 1, the estimator &, , not only dominates 6 ;5 but also dominates the
estimator (5}5. We will give the following figures (figures 7-8) that confirm this note.
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Figure 7: Graph of risks ratios RR as functions of A = @ forp=4,r=25andw = 0.1
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Figure 8: Graph of risks ratios Ré’:?‘)’f (’;;) and R}%“f((sgétéi) as functions of A = @ forp=8,r=25andw = 0.7

5. Appendix

Proof. (Proof of Lemma 3.1) First, we show that, for any real v

a v\ 8 v, 2 v—1 +U+k) é
a—AE(U )_5‘/\/ rVx, (N dx) = v2 Zip( +1+k)P dk ),

where P(3) being the Poisson distribution of parameter 3.
Using the formula (1) we have, for any real v

b
W] , ©)

BU") = BUOGO)") = Blid)’] = 2B [ 2L
2

where K ~ P(3). Then

0 vy =
aE(U = 8)\/ a:Xp)\dx
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- R [ () e ()]
SR () (2]

- (S 6]
(DS )

e E O RG]

+U+k A
_ v— 1§ .
= v F —|—1+k;P< dk)'

Let the function

Kpra) = (;’A / ey dx)) ( / G dm))
(c’)a/\/ x Xp()\ dm)) (/R+x Xp()\ dx)) .

For the function H,, , s to be strictly increasing, it suffices that the function K, ;. ; takes positive values. From the
equality (9), we obtain

Rl o D ]
Err+)TE+s+j) (A A
Ky..(\) = 2orts—! 2 Pl =di | P| =;dj
pors(A) r;;)r +i+1) T(E+3j) (2’ Z> <2’ J>
+oo+oo )
+r+j DE+s+id) (X . A
_ 9grts-1 2 P =dj | P ;di).
ZZ 7)) Terivy \27Y) 72

As, r > sthen
+00 o0 A A
Kprs(\) > r2rtst Zzlp,r,s(i,j)P <2;di> P (Q;dj) ;
=0 j=0
where

FE+r+il'E+s+7)—TE+r+)0(5 +s+1)
L(E+i+1)T(5 +7) '

lp,r,s (Zu .7) =

We note that, for any ¢, [, - s(¢, j) = 0; then we have

+o0 00
. rs— . . A A
Kprs(i,j) > r2rts—t ZZ(IP’T’S(Z’J) +lprs(4, 7)) P (2;d1> P (2;d]) .

i=0 j>i
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Butif¢ < j, we get

ll),r,s (ia .7) + ZZJJ‘,S (.77 Z)

I
/N
!
A
+
=
+
\N_/
=
/N
N
+
VA
+
<
N—
|
—
/N
o
+
=
+
<
N—
!
/N
o
_|_

VA
+
C/
N~——

F(g rJrz)F(ngeri)[ 1 1 ]
PE+OTGE+)) L5+ 5+
j—i—1 Jj+i—1
x [ (E4s+itt)= [T (5+r+i+e)
t=0 2 t=0 2
< 0

because for any ¢, & + s +i+t < § +r + i+ t. Asin hypothesis r < 0, we have K, ;. ;(\) > 0. Thus, we obtain

the desired result. .

ii) Using 1) it is clear that the function H; ~A) = % is non-decreasing on A, then the function ﬁ is
; T

e (Fiiar) = e (o)

non-increasing on A, thus

_ 1
H,;,(0)
_ —7‘2+2 F(g 77"4’1)
I'(557)

Conclusion

In this work, we studied the estimating of the unknown mean ¢ of a multivariate normal distribution X ~ N, (9, oI p)
where o2 is known using the risk associated to the balanced loss function as a tool to compare two estimators. First,
we established the minimaxity of the estimators defined by 0., = (1 — a(1/[|X||")) X, where 2 < r < (p + 2)/2
and the real constant ¢ may depend on p. Secondly, we showed that the estimator &, = dys + b (1/||X||") X with
2 < r < (p+2)/2 and the real constant b may depend on p, dominates the James-Stein estimator 055, thus it is
also minimax. In the simulation results we noted that if A = ||6]|® /2 increases, the estimator Jp. not only dominates
075 but also dominates the estimator 5}'5. An attempt will be made to construct a subclass of the estimators dj,
which dominate the positive-part of James-Stein 5}'5 for all values of X\ and treat the behaviour of risks ratios of our
considered estimators to the MLE, when the dimension of parameters space p tends to infinity. The study will serve
the purpose to extend this work for a model having a symmetrical spherical distribution.
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