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Abstract

In this article, the reliability inference for a multicomponent stress-strength (MSS) model, when both stress and
strength random variables follow inverse Topp-Leone distributions, was studied. The maximum likelihood and uni-
formly minimum variance unbiased estimates for the reliability of MSS model were obtained explicitly. The exact
Bayes estimate of MSS reliability was derived under the squared error loss function. Also, the Bayes estimate was
obtained using the Markov Chain Monte Carlo method for comparison with the aforementioned exact estimate. The
asymptotic confidence interval was determined under the expected Fisher information matrix. Furthermore, the highest
probability density credible interval was established through using the Gibbs sampling method. Monte Carlo simu-
lations were implemented to compare the different proposed methods. Finally, a real life example was presented in
support of the suggested procedures.
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1. Introduction

In the reliability context, the stress-strength models have gained a great deal of consideration over recent decades due
to its wide utilization in numerous fields. In these models, our major focus is the assessment of R = P (Y < X),
where X presents the random strength exposed to the random stress Y . In engineering applications, if X presents the
strength of a building and Y presents the resultant of the destructive forces acting on it, such as an earthquake, then R
can be interpreted as the safety factor of a building. In aquaculture, ifX is the growth value of fish in a treatment group
and Y is the growth value of a control group, then R shows the effectiveness of treatment. This fundamental idea was
firstly studied by Birnbaum(1956). Thereafter, the problem of estimating R has been discussed by a great number
of researchers. Of the recent efforts pertaining to stress-strength models, to name a few, are Al-Mutairi et al.(2013),
Genc(2013) , Rezaei et al.(2015), Basirat et al.(2016), Al-Zahrani and Basloom(2016), Akgül and Şenoğlu(2017), Bai
et al.(2019), Xavier and Jose(2021), Pak et al.(2022) and Jose(2022).
In recent years, inference for the reliability of MSS system has received much attention among researchers. This
system contains k identical and independent strength components and it operates when at least s (1 ≤ s ≤ k) of the
components work properly against a common stress. It is commonly known as s-out-of-k: G system. MSS models
appear in many practical situations, such as communication systems, industrial operations, military technologies and
so on. For example, consider an airplane with four engines that flies when at least two engines work satisfactorily.
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Thus, the airplane operation is a 2-out-of-4: G system. As another example, the kidney function in the human body
is a 1-out-of-2: G system, since a person can survive with at least one healthy kidney. Assume X1, X2, ..., Xk are
independent random variables with common cdf of F (.) and exposed to the common stress Y with cdf of G (.). Thus,
the reliability in a MSS model is given by

Rs,k = P [at least s of (X1, X2, ..., Xk) exceed Y ]

=

k∑
i=s

(
k
i

)∫ ∞
0

[1− FX (y)]
i
[FX (y)]

k−i
dG (y). (1)

The mentioned model was firstly examined by Bhattacharyya and Johnson(1974). Thereafter, many authors have
shown considerable interests in the MSS model. Some recent efforts regard to the issue, to mention a few, can be found
in Dey et al.(2017), Kızılaslan(2017), Kızılaslan and Nadar(2018), Akgül(2019), Pak et al.(2019), Jha et al.(2019), Ko-
hansal and Shoaee(2019), Maurya and Tripathi(2020), Kayal et al.(2020), Mahto et al.(2020), Jana and Bera(2022),
Azhad et al.(2022) and Saini et al.(2022).
The Topp-Leone (TL) distribution, proposed by Topp and Leone(1955), is one of the most important lifetime distri-
butions with finite support. However, it cannot be used for most lifetime data that have infinite support in theory. The
cumulative distribution function (cdf) of the TL distribution with one positive shape parameter is specifid by

FZ (z; θ) = [z (2− z)]θ, 0 < z < 1,

and corresponding probability density function (pdf) is

fZ (z; θ) = 2θ (1− z) [z (2− z)]θ−1, 0 < z < 1.

Recently, Hassan et al.(2020), introduced the inverse Topp-Leone (ITL) distribution defined on the domain (0,∞).
The ITL distribution corresponds to the distribution of the variable X = 1/Z −1, where Z has a TL distribution. The
transformation X = 1/Z − 1, is more appropriate than the transformation X = 1/Z , which makes it more flexible
for modelling lifetime data. The pdf and cdf of the ITL distribution are as follows, respectively:

fX (x; θ) =
2θx

(1 + x)
3

[
1 + 2x

(1 + x)
2

]θ−1
, x ≥ 0, θ > 0, (2)

FX (x; θ) = 1−

[
1 + 2x

(1 + x)
2

]θ
, x ≥ 0, θ > 0, (3)

where θ controls the shape of the distribution. Hereafter, the short form ITL (θ) indicates the random variable X has
an ITL distribution with parameter θ. Hassan et al.(2020) have discussed the several distributional properties of the
ITL distribution. This distribution has a long right tail, so it will affect long term reliability predictions. Many random
variables have long-tailed distributions, including traffic patterns in the internet, city population sizes, natural resource
occurrences, stock price fluctuations, company sizes, income and so on.
It is important to mention that, to our knowledge, no work has been carried out on the MSS model under the ITL
distribution. The focus of this article is to establish classical and Bayesian inferences on the reliability of the MSS
model when the stress and the strength both follow ITL distributions. The rest of the content of this paper is organized
as follows. In Section 2, the maximum likelihood estimate (MLE) of Rs,k and associated asymptotic confidence
interval (ACI) are obtained. In Section 3, the uniformly minimum variance unbiased estimate (UMVUE) of Rs,k is
investigated. The Bayes estimator of Rs,k is determined explicitly, in Section 4. For the sake of comparison, another
method of the Bayes estimate is used thought using the Markov chain Monte Carlo (MCMC) method. In addition,
the highest probability density (HPD) credible interval is provided in this section. In Section 5, proposed methods are
compared via Monte Carlo simulations. In Section 6, the analysis of real data sets are presented for a demonstration
of the findings. Finally, concluding comments are given in Section 7.
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2. MLE of Rs,k

Let X1, X2, ..., Xk be independent strength random variables which follow ITL (α) and Y be stress random variable
follows ITL (β). Hence, the reliability of MSS model, using Equation (1) is obtained as

Rs,k =

k∑
i=s

(
k
i

)
2β

∞∫
0

[
1 + 2y

(1 + y)
2

]αi1−

(
1 + 2y

(1 + y)
2

)αk−i y

(1 + y)
3

[
1 + 2y

(1 + y)
2

]β−1
dy.

By using the change of variable ν = 1+2y
(1+y)2

, the above integral becomes

Rs,k =

k∑
i=s

(
k
i

)
β

1∫
0

ναi+β−1(1− να)
k−i

dν

=

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
β

1∫
0

να(i+j)+β−1dν

=

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
β

α (i+ j) + β
. (4)

To compute the MLE of Rs,k, assume that x1, x2..., xm and y1, y2..., yn are random observations from ITL (α) and
ITL (β) distributions, respectively. Thus, the likelihood function takes the following form

L (α, β |x, y ) = 2m+nαmβn exp

[
m∑
i=1

ln
xi

(1 + xi)
3 + (α− 1)

m∑
i=1

ln
1 + 2xi

(1 + xi)
2

]

× exp

[
n∑
i=1

ln
yi

(1 + yi)
3 + (β − 1)

n∑
i=1

ln
1 + 2yi

(1 + yi)
2

]
, (5)

and the corresponding log-likelihood function is

l (α, β |x, y ) =m lnα+ n lnβ +

m∑
i=1

ln
xi

(1 + xi)
3

+ (α− 1)

m∑
i=1

ln
1 + 2xi

(1 + xi)
2 +

n∑
i=1

ln
yi

(1 + yi)
3

+ (β − 1)

n∑
i=1

ln
1 + 2yi

(1 + yi)
2 , (6)

where the constant term is omitted from the above equation. The MLEs of unknown parameters can be computed as
the solution of the following equations:

∂l

∂α
=

m

α
+

m∑
i=1

ln
1 + 2xi

(1 + xi)
2 = 0,

∂l

∂β
=

n

β
+

n∑
i=1

ln
1 + 2yi

(1 + yi)
2 = 0.

Consequently,
α̂ = − m

m∑
i=1

ln 1+2xi
(1+xi)

2

, and β̂ = − n
n∑
i=1

ln 1+2yi
(1+yi)

2

. (7)
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By the invariance property of MLE, the MLE of Rs,k is obtained as

R̂MLE
s,k =

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
β̂

α̂ (i+ j) + β̂
. (8)

Now, we derive the ACI of Rs,k using the asymptotic distribution of θ = (α, β) . The expected Fisher information
matrix of θ = (α, β) . is defined as

I (θ) = −E

[
∂2l
∂α2

∂2l
∂α∂β

∂2l
∂α∂β

∂2l
∂β2

]
.

The elements of the above matrix are obtained as

I11 =
m

α2
, I22 =

n

β2
, I12 = I21 = 0.

Notice that the MLE of Rs,k has an asymptotically normal distribution with the mean Rs,k and variance

H =

2∑
i=1

2∑
j=1

∂Rs,k
∂θi

∂Rs,k
∂θj

I−1ij ,

where I−1ij is the (i, j)th element of the inverse of I (θ). Also, we have

∂Rs,k
∂α

=

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j+1
β (i+ j)

[α (i+ j) + β]
2 ,

∂Rs,k
∂β

=

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
α (i+ j)

[α (i+ j) + β]
2 .

Hence, the asymptotic variance is computed by

Ĥ =
α2

m

(
∂Rs,k
∂α

)2

+
β2

n

(
∂Rs,k
∂β

)2
∣∣∣∣∣(α̂, β̂) ,

and the 100(1-δ)% ACI of Rs,k is obtained as follows

R̂MLE
s,k

± zδ/2
√
Ĥ, (9)

where, zδ/2 is the upper δ/2 th quantile of the N (0, 1) . It should be pointed out that the confidence interval obtained
from Equation (9) may not be within the interval (0,1). In this situation, we employ Logit transformation according to
h (R) = log [R/(1−R) ] , by using the method of Ghitany et al.(2015). Thus, the 100(1-δ)% ACI for h (R) takes the
following form

log

(
R̂

1− R̂

)
± z δ

2

√
Ĥ

R̂
(

1− R̂
) ≡ (L1, L2) .

Finally, the 100(1-δ)% ACI of Rs,k computed as follow(
eL1

1 + eL1
,

eL2

1 + eL2

)
. (10)

3. UMVUE of Rs,k

In this section, we derive the UMVUE of Rs,k through an unbiased estimator of ϕ(α, β) = (−1)jβ/[α(i + j) + β]
and a complete sufficient statistic of (α, β). According to equation (5), we see that the IT distribution belongs to the
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exponential family, so by result from Casella and Berger(2002) about sufficiency and completeness for the mentioned
family, (U∗, V ∗) is a jointly complete sufficient statistic for (α, β). Where

U∗ = −
m∑
i=1

ln
1 + 2xi

(1 + xi)2
, and V ∗ = −

n∑
i=1

ln
1 + 2yi

(1 + yi)2
. (11)

Furthermore, U∗ and V ∗ follow Gamma (m,α) and Gamma (n, β) respectively. Let

U = − ln
1 + 2Xi

(1 +Xi)2
, and V = − ln

1 + 2Yi
(1 + Yi)2

.

It is easy to know that U and V come from the exponential distributions with parameters α and β respectively. Hence,

ψ(U, V ) =

{
1, U > (i+ j)V

0, otherwise
,

is an unbiased estimator of ϕ(α, β), since

E[ψ](U, V ) = P [u > (i+ j)v]

= αβ

∫ ∞
−

∫ u/(i+j)

0

e−αue−βvdvdu

= α

∫ ∞
0

e−αu
[
1− e−

βu
i+j

]
du

= α

[
1

α
− 1

α+ β/(i+ j)

]
=

β

α(i+ j) + β
.

and so the UMVUE of ϕ(α, β) can be derived by using the Lehmann-Scheffe Theorem. Therefore,

ϕ̂UM (α, β) = E [ψ (U, V ) |U∗ = u, V ∗ = v ]

=

∫
A

∫
fU |U∗=u∗ (u |u∗ ) fV |V ∗=v∗ (v |v∗ ) du dv, (12)

where A = {(u, v) : 0 < u < u∗, 0 < v < v∗, u > (i+ j) v}. This integral can be discussed with regards to h < 1
and h > 1, where h = (i+ j) v∗/u∗ . When h < 1, the integral in Equation (12) reduces to

ϕ̂UM (α, β) =

∫ v∗

0

∫ u∗

v(i+j)

(m− 1) (n− 1)

u∗v∗

(
1− u

u∗

)m−2(
1− v

v∗

)n−2
du dv

= (n− 1)

∫ 1

0

(1− z)
n−2

(1− hz)m−1dz, where z = v/v∗

=

m−1∑
l=0

(−1)
l
(h)

l

(
m− 1
l

)
/

(
n+ l − 1

l

)
. (13)

Similarly, when h > 1, the integral in Equation (12) reduces to

ϕ̂UM (α, β) =

∫ u∗

0

∫ u/(i+j)

0

(m− 1) (n− 1)

u∗v∗

(
1− u

u∗

)m−2(
1− v

v∗

)n−2
dv du

= 1− (m− 1)

∫ 1

0

(1− z)
m−2(

1− h−1z
)n−1

dz, where z = u/u∗
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= 1−
n−1∑
l=0

(−1)
l
(h)
−l
(
n− 1
l

)
/

(
m+ l − 1

l

)
. (14)

Thus, the ϕ̂UM (α, β) is obtained from Equations (13) and (14). Finally, the UMVUE of Rs,k is determined by
applying the linearity property of UMVUE as follows

R̂UMs,k =

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
ϕ̂UM (α, β) . (15)

4. Bayes estimation of Rs,k

In this section, we compute the Bayesian estimate ofRs,k under assumption that the prior distributions for α and β fol-
low Gamma(a1, b1) and Gamma(a2, b2) respectively, where ai, bi > 0, i = 1, 2. Thus, the joint posterior distribution
of α and β becomes

π (α, β |x, y ) =
L (x, y |α, β )π1 (α)π2 (β)∫∞

0

∫∞
0
L (x, y |α, β )π1 (α)π2 (β) dαdβ

=
(b1 + U∗)

m+a1(b2 + V ∗)
n+a2

Γ (m+ a1) Γ (n+ a2)
αm+a1−1βn+a2−1 exp [−α (b1 + U∗)− β (b2 + V ∗)] ,

Where U∗ and V ∗ are shown in Equation (??). Then, the Bayes estimate ofRs,k against the squared error loss function
is calculated by

R̂Bs,k = E (Rs,k |x, y ) =

k∑
i=s

k−i∑
j=0

(
k
i

)(
k − i
j

)
(−1)

j
∫ ∞
0

∫ ∞
0

β

α (i+ j) + β
π (α, β |x, y ) dαdβ.

Now, by using the method of Kızılaslan and Nadar(2018), the Bayes estimate of Rs,k can be rewritten as follows

R̂Bayess,k =


k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)

j
(1− w)

n+a2 n+a2
q 1F2 (q, n+ a2 + 1; q + 1, w) , |w| < 1

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j(n+a2)
q(1−w)m+a1 1F2

(
q,m+ a1 + 1; q + 1, w

w−1

)
, w < −1

where q = m+ n+ a1 + a2 and w = 1− (b2+V
∗)(i+j)

b1+U∗ . Notice that

2F1 (a, b; c, x) =
1

Beta (a, c− a)

∫ 1

0

wa−1(1− w)
c−a−1

(1− xw)
−b
dw, |w| < 1,

is the hypergeometric series, which is available in standard software such as R. Therefore, for this example, the Bayes
estimate is derived in the closed form. However, we provided the Bayes estimate by using another technique, namely
the MCMC method. It helps assess how efficient the approximate MCMC method compared to exact one, in terms of
bias and MSE. For this purpose, we use the Gibbs sampling algorithm to determine the Bayes estimate and to establish
the credible interval for Rs,k. The posterior conditional density of α and β can be derived as

π∗ (α |β, x, y ) =
(b1 + U)

m+a1

Γ (m+ a1)
αm+a1−1 exp [−α (b1 + U)] , (16)

π∗ (β |α, x, y ) =
(b2 + V )

n+a2

Γ (n+ a2)
βn+a2−1 exp [−β (b2 + V )] . (17)

We see that the posterior pdfs of α and β given in Equations (16) and (17) have Gamma distribution. Thus, we generate
random sample from α and β by using the Gibbs sampling algorithm steps as follows:
Step 1: Set p = 1.
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Step 2: Generate α(p) from Gamma(m+ a1, b1 + U).
Step 3: Generate β(p) from Gamma (n+ a2, b2 + V ).
Step 4: Compute R(p)

s,k from Equation (8) at
(
α(p), β(p)

)
.

Step 5: Set p = p+ 1.
Step 6: Repeat steps 2-5, N times, and obtain R(p)

s,k for p = 1, 2, ..., N.
The Bayes estimate of Rs,k, based on the MCMC method is calculated by

R̂B−MC
s,k

=
1

N

N∑
p=1

R
(p)
s,k.

Also, through the above procedure, the 100(1-δ)% HPD credible interval for Rs,k can be computed using the method
of Chen and Shao(1999), by minimizing(

Rs,k
([(1−δ)N ]+i) −Rs,k(i)

)
, 1 ≤ i ≤ δN,

where, [.] denotes the largest integer function and the values of Rs,k are ranked in ascending order from 1 to N .

5. Simulation study

In this section, we performed Monte Carlo simulations to compare the performances of different estimates of Rs,k
by using the classical and Bayesian methods. In this regard, we generated random samples from stress and strength
variables for different combinations of parameters and sample sizes 10, 30 and 50. We estimated the reliability of
the MSS model in two cases (s, k) = (1, 4) and (2,5) .The criteria of mean square error (MSE), bias, average length
(AL) as well as coverage probability (CP) at confidence level of 95%, were used to evaluate the simulation results.
To investigate the Bayes estimations, non-informative and informative priors were considered and had been dubbed
Prior 1 and Prior 2, respectively. We had also derived the Bayes estimates using the MCMC method. All of the
computations were done by using R 3.4.4 based on 10,000 replications. Furthermore, the Bayes estimate along with
its credible interval, were calculated using 1,000 sampling. Table 1 represents the details of the simulations. All of
results are reported in Tables 2-5. The following findings can be drawn from Tables 2-5.

• As anticipated, the biases and MSEs of all the estimators decrease as sample sizes increase.

• As expected, the MSEs of all estimators are close to each other as the sample size increases.

• The biases of the estimates of Rs,k have the general order as follows, where R̂B−P1

s,k and R̂B−P2

s,k are Bayes
estimates based on Prior 1 and Prior 2, respectively.

bias
(
R̂UMs,k

)
< bias

(
R̂MLE
s,k

)
< bias

(
R̂B−P2
s,k

)
< bias

(
R̂B−P1
s,k

)
• The MSEs of estimates are generally in the following order when Rs,k is close to extreme values.

MSE
(
R̂B−P2
s,k

)
< MSE

(
R̂UMs,k

)
< MSE

(
R̂MLE
s,k

)
< MSE

(
R̂B−P1
s,k

)
• In most cases, the MSEs of estimates are in the following order when Rs,k is close to o.55.

MSE
(
R̂B−P2
s,k

)
< MSE

(
R̂B−P1
s,k

)
< MSE

(
R̂MLE
s,k

)
< MSE

(
R̂UMs,k

)
• The reliability of the Bayes and ML estimates are biased negatively when Rs,k > 0.55. In the case of UMVUE,

the biases are negligible.

• The MSEs of all the estimates are large when the true value of MSS reliability is about 0.55 and they are small
when the true value of MSS reliability is close to extreme values.

• As anticipated, the ALs of the intervals of Rs,k tend to shrink as the sample size increases.

Estimation of Multicomponent Stress-strength Reliability under Inverse Topp-Leone Distribution 843



Pak.j.stat.oper.res. Vol.18 No.4 2022 pp 837-852 DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3655

• In general, The ALs of the interval estimates of Rs,k are ordered as

AL
(
R̂B−P2
s,k

)
< AL

(
R̂B−P1
s,k

)
< AL

(
R̂MLE
s,k

)
• The biases and MSEs of the exact Bayes estimates are almost identical to the Bayes estimates which are com-

puted from the MCMC method.

• The CPs of the interval estimates are relatively well, however, most of these values are lower than the predefined
nominal level of 95%.

• The CPs of the asymptotic confidence intervals are more appropriate than HPD credible intervals except in a
few cases for n=10 .

6. Real example

To display the application of the different approaches developed in this paper, we have considered lifetime data sets
reported in Nelson(2003). The data represent the length of times (in minute) to the breakdown of an insulating fluid
at seven voltage levels, ranging from 26 to 38 kilovolts (kV). These data sets are briefly referred to as the breakdown
time data. Here, we consider the time to the breakdown of 34 kV and 36 kV. These data sets are reported as follows:

X: 34 kV 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91,

36.71, 72.89.

Y: 36 kV 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77, 25.50.

The validity of the ITL distribution for the considered data sets has been checked by using the Kolmogorov-Smirnov
(K-S) test. It was observed that for X, the K-S distance and the corresponding p-value are 0.1899 and 0.4451, respec-
tively. Also, for Y, the K-S distance and the corresponding p-value are 0.1826 and 0.6345, respectively. Based on
p-values, it is clear that the ITL distribution provides reasonable satisfaction for both of the data sets. Furthermore,
in this example the ITL distribution was compared to some well-known lifetime distributions, namely Chen, Gom-
pertz, generalized Rayleigh (GR), Burr type XII (B-XII) and generalized inverted exponential (GIE). The pdfs of these
distributions are listed below:

Chen : f (z;α, θ) = αθzθ−1 exp
[
α
{

1− exp
(
zθ
)}

+ zθ
]
,

Gompertz : f (z;α, θ) = α exp
[
θz − α

θ
{exp (θz)− 1}

]
,

GR : f (z;α, θ) = 2αθ exp
(
−θz2

) [
1− exp

(
−θz2

)]α−1
,

B-XII : f (z;α, θ) = αθzθ−1
(
1 + zθ

)−(α+1)
,

GIE : f (z;α, θ) =
αθ

z2
exp

(
−θ
z

)[
1− exp

(
−θ
z

)]α−1
,

where α, θ and z are positive. For the purpose of comparison of the above distributions with the ITL distribution,
we used several criteria including, the Akaike information criterion (AIC), the finite sample-corrected AIC (AICc),
the Bayesian information criterion (BIC) and Hannon and Quinn information criterion (HQIC). The statistic value of
AIC, AICc, BIC and HQIC is reported in Table 6 for the X and Y data sets. Based on Table 6, it was claimed that
the ITL distribution has the lowest goodness of fit statistics compared to the other competitive models. So, it can
be selected as the suitable model. Now, we obtain the reliability of the MSS model through classical and Bayesian
methods for (s, k)=(1,3), (2,4), (1,4) and (2,5). First, from the above data sets, the ML estimates of α and β were
computed as α̂ = 0.6570 and β̂ = 1.1886, respectively. Then, the MLE of Rs,k along with its ACI were obtained
from Equations (8) and (10), respectively. Also, the UMVUE ofRs,k was determined in Equation (15). To analyze the
data from the Bayesian view, because there does not exist any prior knowledge of unknown parameters, we had taken
non-informative priors with the sets of hyperparameters as (ai, bi) =(0.0001, 0.0001) , i = 1, 2. Table 7 gives the
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point and interval estimates of Rs,k. It was observed that the Bayes estimates obtained by using the MCMC method
were the same as the exact Bayes estimates. Moreover, the HPD credible intervals ofRs,k, were shorter than the ACIs.

7. Concluding comments

In this article, we considered the reliability of the MSS model under the assumption that the stress and strength random
variables were taken from ITL distributions. The reliability of the MSS model was obtained using the ML, UMVU
and Bayes estimates, explicitly. The asymptotic and HPD intervals were constructed, respectively, through the Fisher
information matrix and the MCMC algorithm.
The simulation results showed that the bias and MSE of Rs,k decrease as the sample size increases. Also, the average
lengths of interval estimates get shorter when the sample size increases. The biases of the UMVU estimates were
lesser than that of the other estimates in all cases. According to the MSE and AL values, the Bayesian estimators
under the informative priors had the best performances among the estimators. Moreover, the MSEs and ALs of the all
estimators were small when Rs,k tends to the extreme value and they were large when Rs,k tends to 0.55. Comparing
the different estimators in terms of the CPs indicated that the asymptotic confidence intervals generally worked better.
Furthermore, the estimates of Rs,k obtained from the MCMC and exact Bayes methods were almost identical.

Table 1: Different combinations of stress and strength parameters along with the true values of MSS reliability
for Monte Carlo simulations.

True values of Rs,k Bayesian framework

Rs,k Prior 1 Prior 2

(α,β) (1,4) (2,5) (a1, b1)=(a2, b2) (a1, b1) (a2, b2)

(3,0.1544) 0.10 0.063 (0.0001,0.0001) (3,1) (0.154,1)

(3,0.3333) 0.20 0.130 (0.0001,0.0001) (3,1) (0.333,1)

(3,0.5444) 0.30 0.202 (0.0001,0.0001) (3,1) (0.544,1)

(3,0.7993) 0.40 0.279 (0.0001,0.0001) (3,1) (0.799,1)

(3,1.1169) 0.50 0.361 (0.0001,0.0001) (3,1) (1.117,1)

(3,1.3085) 0.55 0.406 (0.0001,0.0001) (3,1) (1.309,1)

(3,1.5304) 0.60 0.452 (0.0001,0.0001) (3,1) (1.530,1)

(3,2.1047) 0.70 0.552 (0.0001,0.0001) (3,1) (2.105,1)

(3,3) 0.80 0.667 (0.0001,0.0001) (3,1) (3,1)

(3,4.7869) 0.90 0.803 (0.0001,0.0001) (3,1) (4.787,1)
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Table 4: ALs of the interval estimates of R1,4 and their corresponding CPs (presented in parenthesis).

HPD

(α,β) R1,4 n Asymptotic Prior1 Prior2

10 0.1813 (0.9456) 0.1742 (0.9277) 0.1615 (0.9482)

(3,0.1544) 0.10 30 0.0982 (0.9483) 0.0939 (0.9301) 0.0917 (0.9361)

50 0.0748 (0.9487) 0.0718 (0.9275) 0.0705 (0.9352)

10 0.3045 (0.9475) 0.3001 (0.9250) 0.2786 (0.9471)

(3,0.3333) 0.20 30 0.1756 (0.9482) 0.1692 (0.9316) 0.1653 (0.9319)

50 0.1357 (0.9478) 0.1304 (0.9231) 0.1288 (0.9360)

10 0.3893 (0.9489) 0.3863 (0.9228) 0.3619 (0.9494)

(3,0.5444) 0.30 30 0.2346 (0.9487) 0.2280 (0.9245) 0.2225 (0.9388)

50 0.1831 (0.9502) 0.1773 (0.9263) 0.1745 (0.9363)

10 0.4448 (0.9491) 0.4419 (0.9143) 0.4136 (0.9420)

(3,0.7993) 0.40 30 0.2760 (0.9506) 0.2681 (0.9236) 0.2612 (0.9331)

50 0.2170 (0.9509) 0.2101 (0.9261) 0.2065 (0.9338)

10 0.4753 (0.9504) 0.4692 (0.9093) 0.4408 (0.9428)

(3,1.1169) 0.50 30 0.2999 (0.9501) 0.2918 (0.9187) 0.2842 (0.9320)

50 0.2370 (0.9507) 0.2297 (0.9272) 0.2254 (0.9309)

10 0.4823 (0.9505) 0.4724 (0.9079) 0.4436 (0.9428)

(3,1.3085) 0.55 30 0.3054 (0.9499) 0.2967 (0.9245) 0.2878 (0.9309)

50 0.2416 (0.9502) 0.2338 (0.9283) 0.2290 (0.9330)

10 0.4839 (0.9507) 0.4691 (0.9114) 0.4395 (0.9447)

(3,1.5304) 0.60 30 0.3062 (0.9501) 0.2963 (0.9266) 0.2870 (0.9305)

50 0.2423 (0.9491) 0.2342 (0.9265) 0.2291 (0.9311)

10 0.4693 (0.9494) 0.4413 (0.9076) 0.4101 (0.9498)

(3,2.1047) 0.70 30 0.2928 (0.9489) 0.2795 (0.9179) 0.2699 (0.9342)

50 0.2310 (0.9496) 0.2210 (0.9246) 0.2163 (0.9298)

10 0.4258 (0.9460) 0.3840 (0.9204) 0.3472 (0.9557)

(3,3) 0.80 30 0.2554 (0.9481) 0.2383 (0.9261) 0.2295 (0.9370)

50 0.1992 (0.9499) 0.1884 (0.9230) 0.1843 (0.9302)

10 0.3365 (0.9431) 0.2796 (0.9237) 0.2373 (0.9631)

(3,4.7869) 0.90 30 0.1818 (0.9460) 0.1634 (0.9255) 0.1530 (0.9434)

50 0.1377 (0.9487) 0.1269 (0.9286) 0.1221 (0.9315)
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Table 5: ALs of the interval estimates of R2,5 and their corresponding CPs (presented in parenthesis).

HPD

(α,β) R2,5 n Asymptotic Prior1 Prior2

10 0.1231 (0.9451) 0.1167 (0.9291) 0.1074 (0.9475)

(3,0.1544) 0.063 30 0.0648 (0.9489) 0.0618 (0.9307) 0.0598 (0.9319)

50 0.0491 (0.9492) 0.0469 (0.9301) 0.0461 (0.9365)

10 0.2247 (0.9460) 0.2185 (0.9275) 0.2004 (0.9507)

(3,0.3333) 0.130 30 0.1243 (0.9491) 0.1191 (0.9294) 0.1161 (0.9385)

50 0.0952 (0.9497) 0.0913 (0.9303) 0.0897 (0.9360)

10 0.3088 (0.9494) 0.3040 (0.9213) 0.2797 (0.9499)

(3,0.5444) 0.202 30 0.1778 (0.9491) 0.1718 (0.9318) 0.1671 (0.9363)

50 0.1375 (0.9485) 0.1325 (0.9309) 0.1306 (0.9343)

10 0.3765 (0.9482) 0.3736 (0.9197) 0.3457 (0.9478)

(3,0.7993) 0.279 30 0.2251 (0.9494) 0.2187 (0.9262) 0.2128 (0.9319)

50 0.1752 (0.9509) 0.1695 (0.9328) 0.1663 (0.9361)

10 0.4293 (0.9493) 0.4262 (0.9163) 0.3978 (0.9489)

(3,1.1169) 0.361 30 0.2643 (0.9500) 0.2579 (0.9233) 0.2495 (0.9373)

50 0.2072 (0.9498) 0.2009 (0.9283) 0.1969 (0.9311)

10 0.4508 (0.9513) 0.4488 (0.9135) 0.4153 (0.9455)

(3,1.3085) 0.406 30 0.2803 (0.9507) 0.2731 (0.9289) 0.2643 (0.9368)

50 0.2205 (0.9515) 0.2136 (0.9263) 0.2097 (0.9323)

10 0.4672 (0.9506) 0.4637 (0.9108) 0.4312 (0.9452)

(3,1.5304) 0.452 30 0.2934 (0.9498) 0.2857 (0.9226) 0.2766 (0.9394)

50 0.2314 (0.9503) 0.2244 (0.9290) 0.2199 (0.9316)

10 0.4874 (0.9501) 0.4775 (0.9154) 0.4424 (0.9525)

(3,2.1047) 0.552 30 0.3091 (0.9501) 0.3002 (0.9250) 0.2898 (0.9333)

50 0.2447 (0.9485) 0.2366 (0.9260) 0.2310 (0.9349)

10 0.4826 (0.9484) 0.4590 (0.9114) 0.4213 (0.9527)

(3,3) 0.667 30 0.3039 (0.9510) 0.2920 (0.9238) 0.2799 (0.9375)

50 0.2403 (0.9497) 0.2302 (0.9268) 0.2248 (0.9351)

10 0.4315 (0.9461) 0.3861 (0.9174) 0.3397 (0.9637)

(3,4.7869) 0.803 30 0.2581 (0.9493) 0.2404 (0.9193) 0.2278 (0.9402)

50 0.2013 (0.9486) 0.1890 (0.9231) 0.1828 (0.9340)
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Table 6: Goodness of statistics for breakdown time data.

Data Model AIC AICc BIC HQIC

Chen 143.71 144.46 145.60 144.03

Gompertz 143.24 143.99 145.13 143.56

X
GR 143.20 143.95 145.09 143.52
Burr 146.90 147.65 148.79 147.22

GIE 148.87 149.62 150.76 149.19

ITL 142.55 142.79 143.49 142.71

Chen 84.18 85.18 85.59 84.16

Gompertz 79.82 80.82 81.24 79.80

Y
GR 84.33 85.33 85.75 84.32
Burr 76.47 77.47 77.89 76.46

GIE 76.13 77.13 77.55 76.12

ITL 75.15 75.46 75.86 75.14

Table 7: Point and interval estimates of Rs,k for breakdown time data.

Point estimates Interval estimates

Classic Bayes Asymptotic interval HPD interval

(s, k) MLE UMVUE Exact MCMC Interval AL Interval AL

(1,3) 0.8834 0.8937 0.8718 0.8717 (0.7067,0.9597) 0.2530 (0.7461,0.9765) 0.2303

(2,4) 0.7745 0.7823 0.7642 0.7642 (0.5542,0.9046) 0.3505 (0.5862,0.9260) 0.3398

(1,4) 0.9197 0.9308 0.9077 0.9077 (0.7519,0.9774) 0.2255 (0.7988,0.9906) 0.1918

(2,5) 0.8344 0.8453 0.8219 0.8219 (0.6126,0.9414) 0.3288 (0.6588,0.9634) 0.3046
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