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Abstract 

A new scheme ‘Rhombus Ranked Set Sampling’ (RRSS) is developed in this research together with its properties for 

estimating the population means. Mathematical comparison with simulation is given. The proposed method is an 

addition to the family of different sampling methods and generalization of ‘Folded Ranked Set Sampling’ (FRSS). For 

the simulation process, nine probability distributions are considered for the efficiency comparison of proposed scheme 

from which four are symmetric and rest are asymmetric among which Weibull and beta distributions which are used 

twice, unlike parametric values. (Al-Naseer, 2007 and Bani-Mustafa, 2011). Through simulation processes, it is 

observed that RRSS is competent and more reliable relative to simple random sampling (SRS), ranked set sampling 

(RSS) and folded ranked set sampling (FRSS). It is noted that for all the underlying distributions, an increase in the 

efficiency of Rhombus Ranked Set Sampling (RRSS) is achieved via increasing the size of the sample ‘p’. Besides the 

efficiency comparison, consistency of the proposed method is also valued by using Co-efficient of Variation (CV).  

Secondary data on zinc (Zn) concentration and lead (Pb) contamination in different parts and tissues of freshwater fish 

was collected to illustrate the evaluation of RRSS against SRS, RSS, FRSS and ERSS (extreme ranked set sampling). 

The results obtained through real life illustration defend the simulation study and hence indicates that the RRSS 

estimator is efficient substitute for existing methods (Al-Omari, 2011). 

 

Key Words: Ranked Set Sampling (RSS), Extreme Ranked Set Sampling (ERSS), Folded Ranked Set Sampling 

(FRSS), Rhombus Ranked Set Sampling (RRSS), Relative Efficiency (RE). 

 

1. Introduction 

‘Ranked set sampling’ (RSS) is a non-parametric methodology of assembling data that improves estimation through 

sampler’s belief or by using statistics of sampling units (Bohn. 1996; Presnell & Bohn, 1999; Sroka, 2008 and Barabesi 

& El-Sharaawi, 2001). It is amongst one of the most accepted and reliable method commenced by McIntyre (1952) that, 

over the years, have also been widely studied for estimations of parameters of different distributions (Muttlak & 

McDonald, 1992; Fei et al., 1994 and Lam et al., 1994). Recently, the properties and their impact have also been 

reviewed by Wolfe (2012). It is two stage sampling scheme that holds information about measurements on the variable 

of interest and the ranking method follows the concept of order statistics (Hogg & Craig, 1970). The representation of 

RSS measured units are by Y1(1: p), Y2(2: p), ..., Yp(p:p). The ranked set sample works on the basic rule of taking average of 

the sample observations as can be seen in equation (1) with variance given in equation (2), where 𝑌𝑣[𝑣:𝑝]𝑤 is the vth order 

statistics of size ‘p’ in wth cycle 
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𝑛

𝑤=1

𝑝
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‘Extreme ranked set sampling’ (ERSS) is one of the revised method of RSS introduced by Samawi et al. (1996) 

which is more robust to imperfect ranking errors as it only in-takes the first and last units for quantification 

(McIntyre,1952 and Samawi et al., 1996). ‘Median Ranked Set Sampling’ (Muttlak, 1997), ‘Double-ranked set 

sampling’ (Al-Saleh & Al-Kadiri, 2000) and ‘Multi-stage ranked set sampling’ (Al-Saleh & Al-Omari, 2002) are also 

proposed adjustment to RSS. Likewise RSS was also practiced on concomitant variables, namely as ‘Two-layer ranked 

set sampling’ (Chen & Shen, 2003). ‘Moving extreme ranked set sampling’ (Al-Saleh & Al-Hadrami, 2003), ‘L ranked 

set sampling’ (LRSS) based on L Statistics (Al-Naseer, 2007) have also been used as effective procedures. A further 

addition named as ‘Folded ranked set sampling’ has been introduced in recent years to overcome the problem of wastage 

of sampling units (Bani-Mustafa et al., 2011). By acknowledging the literature, a new tool ‘Rhombus Ranked Set 

Sampling’ (RRSS) is introduced, an extension to ‘FRSS’, whose working is healthier than almost all the advancements 

made in RSS in the preceding years. This paper is ordered as follows: In Section 2 FRSS is briefly defined, in Section 3 

RRSS is introduced along with estimation of its population mean and expressions of mean and variance are introduced. 

Simulation results and comparisons along with graphs are given in Section 4. Application on real data sets is presented in 

Section 5, Section 6 briefly displays summary and conclusion of the findings and the final section directs attention to 

some future proposals.  

2. Folded Ranked Set Sampling 

FRSS is mapped when ‘p’ samples are randomly chosen all of equal size i.e. ‘p’, where ‘p’ is not large so that the 

ranking errors can be minimized. Underneath are the steps for FRSS: (Bani-Mustafa et al., 2011).  

i. Chose(
𝑝+1

2
)random samples all of size ‘p’. 

ii. Through visual examination, rank each unit within the sample, w.r.t the variable of interest.  

iii. From the first set of sample, chose1stand pth  unit for actual calculations. 

iv. Pick 2ndand (p−1)th unit  from the second sample for the actual measurement. 

v. This practice is repeated until the pth  unit is attained. 

vi. The process could be iterated n’ times to obtain the preferred sample size. 

With mean and variance as follows: 

�̅�𝐹𝑅𝑅𝑆 =
1

𝑝𝑛
∑ ∑  (𝑌𝑣[𝑣:𝑝]𝑤

𝑛
𝑤=1

𝑝+1

2
𝑣=1 + 𝑌𝑣[𝑝−𝑣+1:𝑝]𝑤) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑣 <  𝑝 − 𝑣 + 1              (3) 

𝑉𝑎𝑟(�̅�𝐹𝑅𝑅𝑆) =  
1

𝑝2𝑛
∑ {∑ 𝑉𝑎𝑟 (𝑌[𝑣:𝑚]) +  2 ∑ 𝐶𝑜𝑣 (𝑌[𝑣:𝑝],

𝑝+1

2
𝑣=1 𝑌[𝑝−𝑣+1:𝑝]

𝑝
𝑣=1 )  }𝑛

𝑤=1     (4) 

        It is interesting to note that when the observations are observed from their own row, they will be dependent and as a 

result covariance term exists whereas, the observations will be independent when studied from different rows.  

 

3. Rhombus Ranked Set Sampling 

The proposed procedure is fairly inspired by FRSS. The application will become more suitable when the strongly 

correlated variables of interest are effortlessly ranked. The execution of the process begins with the selection of ‘p’ 
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random samples each of size ‘p’, where ‘p’ must not be large so that the ranking errors can be minimized (Patil et al., 

2002).  

3.1 Proposed Algorithm 

Following are the steps to carry out RRSS scheme: 

Step 1:  Select ‘p’ samples each of size ‘p’, randomly from the target population. 

Step 2: Within each set, rank the units with accordance to the variable of interest through visual investigation.  

Step 3: Sample size i.e.‘p’will be either even or odd 

• For even sample size: 

Initiating from (p/2+1)th sample set chose1st and pth ranked unit, from  (p/2+2)th set select 2nd and (p-1)th ranked 

unit and continue this process till vth and (p-w)th ranked units are selected from (p/2+v)th sample set where v= 1, 

…, (p/2) and w< v for every sample. 

Repeat the above procedure for the remaining 1st  to (p/2)th samples vice versa, for the sample set(p/2)th pick1st 

and pth ranked unit, for (p/2-1)th sample chose2nd and (p-1)th unit, perform the same process till from (p/2-v)th 

sample set wth and (p-v)th ranked units are selected where w= 1, …, (p/2) and v < w for every sample. 

• For odd sample size: 

Starting from ((p+1)/2)th sample set select 1st and pth ranked unit, select 2nd and (p-1)th ranked unit from 

(((p+1)/2)+1)th set and repeat until from (((p+1)/2)+v)th sample set wth and (p-v)th ranked units are selected 

where w= 1, . . . , ((p+1)/2) and v < w for every sample. 

From remaining 1st  to (((p+1)/2)-1)th samples repeat the same process but vice versa, for (((p+1)/2)-1)th sample 

select 2nd and (p-1)th unit, repeat this process until from (((p+1)/2)-v)th sample set wth and (p-v)th ranked units are 

selected where w= 2, …,(((p+1)/2)-1) and v < w for every sample.  

Step 4: The process could be repeated ‘n’ times to obtain the preferred sample sizei.e. N.  

Without loss of generality, assume that the cycle repeats only once, n=1.Samples are ranked critically since it is 

supposed that the judgment ranking provides accurate and precise details as the actual ranking.Observed values whether 
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from the same rows or different rows are assumed to be independently distributed. 

  

Figure 1: Selection scheme of RRSS for different sample size 

If ‘p’is even, for the vth sample (v = 1, . . . , p), if it is ((p/2)-v) ≥ 0 then let 𝑌
𝑣(
𝑝

2
−𝑣+1:𝑝)𝑤

∗ and𝑌
𝑣(𝑣+

𝑝

2
:𝑝)𝑤

∗ be the ((p/2)-v+1)th 

and (v+(p/2))th selected ranked units respectively for the wth cycle (w = 1, . . . , n). If the vth sample is ((p/2)-v) < 0 then 

let 𝑌
𝑣(𝑣−

𝑝

2
:𝑝)𝑤

∗ and 𝑌
𝑣(
3𝑝

2
−𝑣+1:𝑝)𝑤

∗ be the (v-(p/2))th and ((3p/2)-v+1)th selected ranked units respectively for the wth cycle.  

The estimator of the population mean using RRSS is given by 
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with variance given by 
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In the case of odd sample size ‘p’, if the vth sample (v = 1, . . . , p)is (2 ≤ v ≤ ((p+1)/2)) then let 𝑌
𝑣(
𝑝+1

2
−𝑣+1:𝑝)𝑤

∗ and 

𝑌
𝑣(𝑣+

𝑝−1

2
:𝑝)𝑤

∗ be the (((p+1)/2)-v+1)th and (v+((p-1)/2))th ranked units respectively for the wth cycle (w = 1, . . . , n). If the 

vth sample is (((p+1)/2) < v ≤ (p-1)) then let 𝑌
𝑣(𝑣−

𝑝+1

2
+1:𝑝)𝑤

∗ and 𝑌
𝑣(
3𝑝+1

2
−𝑣:𝑝)𝑤

∗ be the (v-((p+1)/2)+1)th and (((3p+1)/2)-v)th 

ranked units for the wth cycle (w = 1, . . . , n) and if the vth sample is v=p then let and be the ((v+1)/2)th ranked units from 

the 1st and last sample, respectively. The estimator of the population mean using RRSS is given by 

�̅�𝑅𝑅𝑆𝑆(𝑂)
∗ =
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with variance given by  
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Let that the measured units for even and odd sample sizes are mutually independent with same probability distribution. 

Let µ(𝑘:𝑝)
∗ =E(𝑌𝑣(𝑘:𝑝)𝑤

∗ )and𝜎(𝑘:𝑝)
2∗ = 𝑣𝑎𝑟(𝑌𝑣(𝑘:𝑝)𝑤

∗ )wherek = ((p/2)-v+1), (v+(p/2)), (v-(p/2)), ((3p/2)-v+1), (((p+1)/2)-v+1), 

(v+((p-1)/2)), (v-((p+1)/2)+1), (((3p+1)/2)-v), (1), (p), ((p+1)/2)) (Al-Omari, 2011). Keeping these notations in view, 

the RRSS variance can also be stated as follows. 

For even case: 
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For odd case: 
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Mean Square Error of RRSS for even and odd sample size when underlying distribution is asymmetric is given 

respectively in the following equations: 
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Theorem: Prove �̅�𝑅𝑅𝑆𝑆(𝑒𝑣𝑒𝑛)
∗   and �̅�𝑅𝑅𝑆𝑆(𝑒𝑣𝑒𝑛)
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     Consider equation (5) for when sample size is even  
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Under symmetrical distribution about μ, let assume on the base of literature that �̅�∗(𝑣:𝑝) = �̅�
∗
(𝑝−𝑣+1:𝑝)  and µ(𝑣:𝑝) +

µ(𝑝−𝑣+1:𝑝) = 2µ  also 𝜎2(𝑣:𝑝) = 𝜎2(𝑝−𝑣+1:𝑝) (David & Nagaraja, 2003). So,  
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                                                                                                                                                                          (14) 

Assume that q =(𝑝/2 − 𝑣 + 1), (𝑣 + 𝑝/2)  then the above equation becomes 

�̅�𝑅𝑅𝑆𝑆(𝐸)
∗ =

2

2𝑝𝑛
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∗ )
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𝑛
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Applying expectation, 
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                                                                                                                               (15) 

Hence it has been proved that for even number of samples that the mean of proposed scheme is an unbiased estimator of 

population mean under symmetrical distribution, likewise for the odd sample size.  

4. Simulation Study 

The efficiency of RRSS relative to SRS (for symmetric distributions) can be attained through the following formula (Al-

Omari, 2011)  

                         𝑒𝑓𝑓(�̅�𝑅𝑅𝑆𝑆(𝐸) ,
∗ �̅�𝑆𝑅𝑆) =  

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆 )

𝑉𝑎𝑟(�̅�𝑅𝑅𝑆𝑆(𝐸)
∗ )

                                       (16) 

  𝑒𝑓𝑓(�̅�𝑅𝑅𝑆𝑆(𝑂) ,
∗ �̅�𝑆𝑅𝑆) =  

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆 )

𝑉𝑎𝑟(�̅�𝑅𝑅𝑆𝑆(𝑂)
∗ )

                                                            (17) 

For skewed distributions, effectiveness can be assessed by incorporating the following definition: 

                    𝑒𝑓𝑓(�̅�𝑅𝑅𝑆𝑆(𝐸) ,
∗ �̅�𝑆𝑅𝑆) =  

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆 )

𝑀𝑆𝐸(�̅�𝑅𝑅𝑆𝑆(𝐸)
∗ )

                                     (18) 

                   𝑒𝑓𝑓(�̅�𝑅𝑅𝑆𝑆(𝑂) ,
∗ �̅�𝑆𝑅𝑆) =  

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆 )

𝑀𝑆𝐸(�̅�𝑅𝑅𝑆𝑆(𝑂)
∗ )

                                     (19) 

       The Tables inserted below summarized the increased efficiency by using various sampling scheme. The simulations are 

carried out through R language. The study took 10,000 cycles for efficiency test of the process. Furthermore, by varying the 

sample sizes from 3 to 8, observations were generated from symmetric and skewed distributions.  

4.1 Efficiency Comparison 
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The following tables explain the gain in efficiency by means of several sampling procedures i.e RSS, FRSS and RRSS. 

The reduced amount of variance is directly proportional to perfectly ranked items in each set. It is evident from the 

following distributions (discussed in the Table 1-Table 6) that RRSS delivers significant outcomes as according to the 

texts greater the efficiency, superior the estimate (Al-Naseer, 2007 and Bani-Mustafa et al., 2011).   

Table 1: The Efficiency relative to SRS for estimating the population mean with p = 3 

Distribution RSS FRSS RRSS 

Normal (0, 1) 1.900689 1.586927 2.274733 

Uniform (0, 1) 1.938468 1.619806 2.210398 

Student-t (5) 1.808032 1.529049 2.228187 

Logistic (0, 1) 1.840119 1.520984 2.216770 

Exponential (1) 1.748657 1.511075 2.290616 

Weibull (2, 1) 1.815457 1.563754 2.192410 

Weibull (1, 3) 1.625265 1.428479 2.115486 

Gamma (0.5, 1) 1.474751 1.386893 2.138804 

Beta (7, 4) 1.992553 1.669410 2.320844 

Beta (2, 9) 1.851630 1.574827 2.272376 

Log N (0, 1) 1.369955 1.296123 2.054768 
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Table 2: The Efficiency relative to SRS for estimating the population mean with p = 4 

Distribution RSS FRSS RRSS 

Normal (0, 1) 2.375616 1.720148     3.399560 

Uniform (0, 1) 2.535309 1.708118     3.350705 

Student-t (5) 2.117512 1.594729     3.264217 

Logistic (0, 1) 2.217024 1.720836     3.337768 

Exponential (1) 2.086292 1.595515     3.261677 

Weibull (2, 1) 2.396377 1.701187     3.467639 

Weibull (1, 3) 1.967228 1.655908     3.335833 

Gamma (0.5, 1) 1.619501 1.568024     3.204246 

Beta (7, 4) 2.393648 1.688905     3.404205 

Beta (2, 9) 2.276412           1.667624     3.337134 

Log N (0, 1) 1.482573           1.369666     2.887037 

Table 3: The Efficiency relative to SRS for estimating the population mean with p = 5 

Distribution RSS FRSS RRSS 

Normal (0, 1) 2.724755 2.146754      3.764511 

Uniform (0, 1) 2.978888 2.373142      3.587909 

Student-t (5) 2.351561 2.109256      3.621224 

Logistic (0, 1) 2.540010 2.087141      3.677086 

Exponential (1) 2.144132 1.908045      3.615522 

Weibull (2, 1) 2.884309  2.280303      3.728871 

Weibull (1, 3) 2.303079  1.986898      3.707177 

Gamma (0.5, 1) 1.884225  1.740036      3.622538 

Beta (7, 4) 2.816648            2.179442      3.742866 

Beta (2, 9) 2.705152  2.206215      3.679316 

Log N (0, 1) 1.450402            1.413952      3.133893 

            Table 4: The Efficiency relative to SRS for estimating the population mean with p = 6 

Distribution           RSS FRSS RRSS 

Normal (0, 1) 3.214739 2.344427       4.690370 

Uniform (0, 1) 3.533365 2.431436       4.812852 

Student-t (5) 2.733802 2.200724       4.493076 

Logistic (0, 1) 3.059141 2.331085       4.599552 

Exponential (1) 2.590381 2.149536       4.379441 

Weibull (2, 1) 3.243132  2.343701       4.899566 

Weibull (1, 3) 2.499491  2.074259       4.124868 

Gamma (0.5, 1) 1.979120 1.856055       3.697573 

Beta (7, 4) 3.256671            2.426500       4.995697 

Beta (2, 9) 3.006295  2.254875       4.608488 

Log N (0, 1) 1.809860            1.670231       3.269977 

            Table 5: The Efficiency relative to SRS for estimating the population mean with p = 7 

Distribution RSS FRSS RRSS 

Normal (0, 1) 3.636909  2.903593       5.283566 

Uniform (0, 1) 3.990101  3.054665       4.824234 

Student-t (5) 2.926974  2.736542       5.389158 

Logistic (0, 1) 3.299143  2.707349       5.198378 

Exponential (1)         2.914194  2.538131       5.184560 

Weibull (2, 1)      3.708990   2.809191       5.038000 

Weibull (1, 3) 2.833727  2.573972       5.067725 

Gamma (0.5, 1) 2.407013  2.177907                         4.848202 

Beta (7, 4)  3.726049            2.903047       5.201646 

Beta (2, 9)         3.576307            2.907880       5.110221 
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Log N (0, 1)  2.271208            2.076661       4.651208 

      Table 6: The Efficiency relative to SRS for estimating the population mean with p = 8 

Distribution RSS FRSS RRSS 

Normal (0, 1) 4.068623 2.956947       6.034384 

Uniform (0, 1) 4.548384 3.060433       6.230850 

Student-t (5) 3.335561 2.682162       5.257967 

Logistic (0, 1) 3.590705 2.834324       5.541082 

Exponential (1)         2.948848 2.478356       5.211668 

Weibull (2, 1)      3.912778  2.926632       6.055105 

Weibull (1, 3)  2.979072 2.617919       5.351596 

Gamma (0.5, 1)  2.567787 2.386182            4.937070 

Beta (7, 4)  4.302969           3.040364       6.266706 

Beta (2, 9)         3.943365           3.063744       6.149940 

Log N (0, 1)  2.076824           1.816431       3.859022 

4.2 Graphical Illustrations 

 All the discussed mean estimators are found to be precise but RRSS has more precision in comparison to the others as seen 

in the Tables 1- Table 6. Based off different sample sizes, RE is graphically demonstrated for symmetrical (Figure 2) and 

asymmetrical (Figure 3) distributions for comprehension of the study. Rise in efficiency can be demonstrated effortlessly 

through the Figures as ‘p’ increases, rise in effectiveness is seen and approximately for all the distributions a linear trend is 

observed for the proposed estimator 
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Figure 2: Relative Efficiency for Symmetrical Distributions 
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Figure 3: Relative Efficiency for Asymmetrical Distributions 

4.3 Consistency Comparison 

Larger the co-efficient of variation, greater the variability and smaller the value signifies less variability. It is manifested 

from Table 7 that less inconsistency is achieved with increase in sample size, this explains sure beneficial outcomes 

through RRSS with increase in the numbers of elements selected from portion of population, and thereby study 

pronounces less risk and more striking results. 

      Table 7:  The Co-efficient of Variation for the RRSS for asymmetric and symmetric distributions 

 

Distribution 

Sample size 

p= 3 p= 4 p= 5 p= 6 p= 7  p= 8 

Normal (0, 1) 21.929            18.601       15.149           9.480 4.826 3.010 

Uniform (0, 1) 0.230     0.159       0.128 0.106 0.094 0.079 

Student-t (5) 27.526     17.617       10.948       8.224 2.999 2.560 

Exponential (1) 0.381     0.269       0.246 0.192   0.168 0.152 

Weibull (2, 1) 0.193     0.147       0.118         0.098 0.091     0.074 

Weibull (1, 3) 0.391     0.277       0.248  0.185 0.182     0.153 

Gamma (0.5, 1) 0.579     0.417       0.355      0.279      0.260     0.221 

Beta (7, 4) 0.084     0.060       0.053  0.041 0.037 0.029 

Beta (2, 9) 0.225     0.167       0.146  0.114 0.105 0.086 
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Log N (0, 1) 0.568     0.394       0.367  0.227 0.243 0.229 

 

5. Application 

To further establish the credibility of the RRSS, the method was applied to the data of freshwater fish to check its 

practical implementation. For quantification, a sample of treated fresh water fish was considered to further investigate 

the working of the proposed scheme. The records of mean concentration of heavy metals such as zinc (Zn) and lead (Pb) 

accumulated in different parts and tissues of fish were studied (Afshan et al., 2013). 

Example: Mean concentration of zinc (Zn) and lead (Pb) 

The efficiency of the proposed plan for p= 3, 4, 5, 6, 7was calculated by means of the attained data on zinc (Zn) and lead 

(Pb). From Table 8, it is observed that the increase in sample size gives rise to the Relative Efficiency, hence providing 

competent effectiveness. RRSS provides enhanced results as comparative to all the discussed plans therefore justifying 

the simulation study. In Table 9, ‘Extreme Ranked Set Sampling’ is also discussed to value the execution of RRSS.  

Working of ERSS in this framework is demonstrated for highlighting the process of the proposed plan. ERSS is found to 

be less proficient than SRS for many of skewed distributions. 

Table 8: The RE for estimating the average zinc (Zn) concentrated freshwater fish 

Sample Size RSS FRSS RRSS 

3 2.132455 1.687155 2.575721 

4 2.649796 1.741772       4.283374 

5 3.243720 2.495261       4.820145 

6 4.354396 2.860048       8.405086 

7        5.854871 4.027556       12.31199 

Table 9: The RE for estimating lead (Pb) contaminated freshwater fish 

Sample Size ERSS FRSS RRSS    

3 0.899672 1.140856     1.571429 

4 0.565171 1.176044     2.195381 

5 0.611542 1.187171     2.606006 

6 0.545894 1.314159     2.876818 

7         0.710573 1.608054     3.484297 

 

Table 8 and 9 verifies that the improvement in Relative Efficiency is directly proportional to size of sample. Observing 

the outturns, for all sample sizes RRSS generates better results. Hence proving that ERSS, FRSS and SRS are less fit 

than ‘Rhombus Ranked Set Sampling’ and thus recommended to be used as an enhanced alternative.  

In this paper, evidence based on real data set of fish tissue is provided that defends the literature of ERSS being least 

reliable than all the considered plans. It can also be observed that it is less competent when compared to SRS (Bani-

Mustafa et al., 2011).  

6. Conclusion 

A new procedure ‘Rhombus Ranked Set Sampling’ has been introduced. The proposed method is divided into even and 

odd sample size. The number of total samples selected from even sample set are more than the odd i.e. for even, the 

number of samples included are ‘2p’whereas for odd sample set ‘2(p-1)’ samples are integrated. Both symmetric and 

asymmetric distributions are used to demonstrate the effective outcomes. The results of General Monte Carlo simulations 

encourage the use of the proposed procedure as it has shaped attractive conclusions i.e., relative efficiency is greater than 
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those of RSS and FRSS (Al-Naseer, 2007 and Bani-Mustafa et al., 2011) and it enhances with the increase in sample 

size. The achieved values of co-efficient of variation explains reduced amount of dispersion with increase in the size of 

‘p’ for almost all probability distributions, hence signifying consistent outcomes.With underlying symmetrical 

distribution RRSS is also proved as an unbiased estimator of population mean for both cases(even and odd).  

The idea functioned to assess RRSS through two sets of real-lifesecondary data of zinc (Zn) and lead (Pb) concentration 

in fresh water fish was encouraged by literature and the observed variances justifies the proposed theory of exhibiting 

improved estimates. This study verifies the fact that ERSS is less capable while dealing with skewed distributions based 

on real data set (Bani-Mustafa et al., 2011). Therefore, it is deduced that the proposed estimators came out with better 

precision relative to the existing estimators based on RSS, FRSS and ERSS schemes.  
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