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Abstract 

 

The Internet of things ((IoT) consisted of physical devices networks such as sensors, home appliances, 

electronics, and software’s. It enables us to collect and exchange data in several fields. After data collection 

from IoT, variable selection is considered a major problem because many variables are involved in real life 

datasets. The current study focused on large data analysis of the problem of model selection, including 

interaction terms. The dataset used in this study is taken from solar drier with moisture ratio removal (%) as 

dependent variable while ambient temperature, chamber temperature, collector temperature, chamber relative 

humidity, ambient relative humidity, and solar radiation as independent variables. LASSO with Huber M, 

LASSO with Hampel M and LASSO with Bisquare M are used in this study. Comparison of techniques are 

made with ridge regression and OLS (ordinary least square) after multicollinearity test and coefficient test. 

MAPE (mean absolute percentage error) for the efficient selected model is used to forecast with its minimum 
possible value. As a result, the hybrid model of LASSO with Bisquare-M is considered as the efficient model 

with its minimum MAPE value. Thus, the resulting model with the selected variables can be used to predict 

Moisture Ratio Removal (%) to determine seaweed drying behavior. 
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1. Introduction  

The Internet of Things (IoT) involves different types of software, electronics, sensors, and home 

appliances from which data can be connected and exchanged. Using these systems, the computer-based system 

can be designed to improve economic benefits, efficiency and results in the reduction of human exertions by 

Malavade and Akulwar (2017). Using IoT devices, data can be collected from the sensor to determine factors such 

as humidity, air speed, temperature, and water irrigation. The population is on the rise and there are nearly 797 

million people facing food insecurity problems, which are considered to be a major problem in the agricultural 
sector Ahmed et al.,(2017). Seaweed is the product used to manufacture food, the medical and manufacturing 

industries in the fields of agriculture. Seaweed appears to be a potential source for renewable energy, but it can 

also be converted to energy such as biofuel and gas. Dissa et al., (2011) considered the carrageenan to be the main 

cause of seaweed extraction.  

Ali et al., (2015) subsequently, in their study, carrageenan was examined as the main product used in 

cosmetics, per food, human food and non-food and meat binder, etc. Numerous forecasting models have been 

developed from the study of previous research using empiric or analytical solutions from Neitsch et al. (2011). 

One of the techniques for model selection is OLS (Ordinary Least Square), but do not perform well in case of 
certain conditions are violated Zuur et al.,(2009). Multiple regression was used by Rischbeck et al.,(2016) to study 

mildly drought-stressed field and had a multicollinearity problem due to many variables in the model. If there is 

multicollinearity among variables then the variance and covariance for the estimate of OLS increases, making the 

estimates as inaccurate Gujarati (2004). Mendelsohn and Dinar (2003) used linear and quadratic Regression 

analysis for agriculture, water and climate with interactions terms. One of the uses of the linear regression analysis 
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was the estimation of the structural economic model for the increase in agricultural productivity by Pender et al. 

(2004). To address the multicollinearity problem, Giacalone and Panarello (2017) introduced Lp norm estimation 

methods. One contribution is the use of analysis of variance (ANOVA) in the assessment of the yield factor used 

by Neitsch et al.,(2011). Also, Xu and Ying (2010) made variable selection using median regression with LASSO-

type penalty. Afterwards, Zhao et al., (2012) investigated wavelet-based LASSO for the purpose of regressing 
function scalars. The simulation data and the real dataset were used for the investigation of asymptotic 

convergence and for the performance of the finite sample. Zhang et al., (2016)  used  LASSO, Adaptive LASSO, 

Adaptive LASSO II, Multitask LASSO, reweighted LASSO for quantitative trait loci analysis (eQTL) in the study 

of human cancer-related factors. According to Shariff and Ferdaos (2017), the Ridge regression is one of the 

methods used in the case of multicollinearity, but its results are affected in the case of outliers. For data analysis, 

outliers may have a negative impact on the results. Gad and Qura (2016) reviewed different types of robust 

methods in the case of outliers. Some practical lower bound (LB) and some upper bound (UB) were proposed by 

Midi et al., (2011) in the case of high Leverage Collinearity Influential Measure (HLCIM) and are considered to 

be essential measure for the detection of multicollinear degrees. Model selection was also made by different 

researchers as Abdullah et al., (2008)  used 8Sc explained in Table 2 to obtain the best model among all possible 

models, similar to Yahaya et al.,(2013) presented a logistic regression model using 8SC. Later on, Javaid et al., 

(2019) conducted the study regarding the efficient model selection for the moisture ratio removal of seaweed 
using solar drier. For that purpose, multiple linear regression analysis was used up to four phases. The efficient 

model selection was made with the significant factors selected in the analysis. Total of 32 models were entertained 

in that study up to third level interaction term. While the hybrid models of the LASSO and robust regression 

analysis is presented in the current study. All possible models containing variables with their interaction terms is 

analyzed. Efficient model selection was made with 8SC and MAPE was used to predict the best model for moisture 

ratio removal by Javaid et al., (2019). While in this study, total of 192 models are entertained. The hybrid model 

selection is made by using LASSO and robust estimators up to fifth order interaction terms. The large dataset is 

used in the study so that the results can be more efficient in term of MSE.  

2. Methodology 

 

Multiple Regression 

Stuart (2011) explained the regression analysis as a widely used technique with x as an independent variable, y as 

a dependent variable and ε as an error term. The design matrix X can then be defined as the vector Y and ε as 

follows. 

X = (
𝑥11.  .   .𝑥1𝑝

...
𝑥𝑛1 .     .   𝑥𝑛𝑝

)   = (

𝑥1
𝑇

....
𝑥𝑛
𝑇
), Y = (

𝑦1
𝑦2
....
𝑦𝑛
)  and ε = (

ε1
ε2....
ε𝑛
) 

Thus, the classic linear model is considered as Y = Xβ + ε where the aim for the least square estimation is to 

minimize of (1) for getting the estimates for β. 

 

                                                         ∑ 𝜀𝑖
2𝑛

𝑖=1   = 𝜀𝑇𝜀                              (1) 

                                             = ( Y – Xβ)T(y – Xβ) 

                                                      = YTY – YTXβ- βTXTY + βTXTXβ 

            
𝜕

𝜕𝛽
 (∑ 𝜀𝑖

2𝑛
𝑖=1 ) = 

𝜕

𝜕𝛽
(YTY – YTXβ- βTXTY + βTXTXβ) 

                                                             = 0 - XTY - XTY + 2(XTX)β  

Thus, the estimate of least square �̂� is solution to 

                                                                  XTX�̂� = XTY 

As it minimizes 𝜀̂𝑇𝜀 ̂= ∑ 𝑟𝑖
2𝑛

𝑖=1    so in case of XTX as nonsingular, the estimates of the least square can be directly 

estimated from the data. 

�̂� = (XTX)-1 XTY 
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Ridge Regression 

Ridge Regression is used in the case of a Multicollinearity problem as according to Miller (2002), a biased 

estimator b(d) can be obtained by using all variables as follows. 

         

           b(d) =(X՛X + dI)−1X՛y 

where d can be considered as scalar of the positive values range and the predictors should be standardised with 

zero means and sum of squares for any columns of X elements as one. This means that the correlation matrix 

should be replaced instead of the X՛X and afterwards, a plot of b can obtain (d) against d called the ridge trace. 

According to them, ridge regression justification may be the same as for subset selection in case of bias variance 

trade off and the bias amount may be small in case of small d and the variance reduction may be substantial. 

Typically, this type of application occurs in the case of ill-conditioned matrix. The singular-value decomposition 

(s.v.d) can be seen for X having n rows and k columns when viewing the ridge regression situation. 

                           Xn ×k = U n ×k   Λ k×k  Vk×k 

With U and V column as normalized and orthogonal as U՛U = I and  also V՛V = I where Λ as diagonal matrix 

having a diagonal as a singular value. Then, with λi as i = 1, 2,…,k as the singular values with a smaller value as 

variance but with an addition of d, the contribution can be significantly reduced. 

   X՛X = V՛Λ2V 

s.v.d with a biased estimates of regression coefficients as  

                b(d)= V՛(Λ2 + dI)−1ΛU՛y 

with λi as i = 1, 2,…,k as the singular values with a smaller value as variance but with an addition of d, the 

contribution can be significantly reduced 

 

LASSO Regression  

Tibshirani (1996) first introduced LASSO which can select coefficients β which can be minimized,  

              (y – Xβ)(y – Xβ)՛ + λ∑ │𝛽𝑗│
𝑝
𝑗=1                  (2) 

  =  (y – Xβ)(y – Xβ)՛    subject to       ∑ │𝛽𝑗│
𝑝
𝑗=1 ≤ s 

where s and λ are non-negative regularization parameters. In LASSO, L1 constraints explain coordinates vertices 

and the edge polo type where some of the coordinate values are zero. Solutions for LASSO are commonly found 

on the polo type vertex or on the edges of the polo type, so that LASSO can be called a variable selection method 

where the coefficient of shrinkage to zero can remove variables from the model. Later on Hastie et al., (2009) 

defined the LASSO as the shrinkage method like the ridge regression, with subtle but with important differences. 

They defined the LASSO estimates as  

    �̂�𝑙𝑎𝑠𝑠𝑜  = arg𝑚𝑖𝑛𝛽
 ∑ ( 𝑦𝑖
𝑁
𝑖=1

 - 𝛽0
 - ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗)

2 

    Subject to ∑ │𝛽𝑗
𝑝
𝑗=1 │ ≤ t. 

Just like the ridge regression, the constant β0 can be parameterized by doing standardization to the predictors. �̂�0 

solution is �̅�. According to them, the LASSO problem can also be written in an equivalent lagrangian form.  

�̂�𝑙𝑎𝑠𝑠𝑜 = argminβ
 {∑ (𝑦𝑖

𝑁
𝑖=1  - 𝛽0 - ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗)

2 + λ∑ │𝛽𝑗
𝑝
𝑗=1 │} 

It can be noted that like the ridge regression problem, penalty L2 is only replaced by LASSO penalty L1. LASSO 

penalty does not make a linear solution in 𝑦𝑖 and there will be no closed form solution as in ridge regression. 

LASSO computing solution is a quadratic programming issue. There are different efficient algorithm paths that 

can be used for the computation of the entire solution path as for the variation of λ containing the same 
computational cost as for the ridge regression. Because of this constraint’s nature, since t will be sufficiently 

small, some of the coefficients will be exactly zero.so Therefore, LASSO can make a continuous selection of 
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subsets. If t is selected as larger than t0 = ∑ │�̂�𝑗
𝑝
1 │ where �̂�𝑗  = �̂�𝑗

ls, then estimates of LASSO are �̂�𝑗’s.  On the 

other hand, for t = 
𝑡0
2⁄  say then, in that case, the coefficients of the least square are reduced by about 50% on 

average. Like the size of the subset in the selection of the variable subset or in the ridge regression of the penalty 

parameter, t should be chosen in an adaptive way to minimization the expected prediction error estimation. 

Robust Regression 

Robust regression involves different kinds of estimation. The most used are M estimators. 

Draper and Smith (1998) state that minimizing ∑ 𝜌(
𝜖𝑖

𝑆

𝑛
𝑖=1 ) for finding an estimation of M, a partial 

differentiation is required with respect to each parameter p resulting in a system of p equations where x is a 

dependent variable, ψ is an error term and s is a standard deviation.  

                        ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 ψ(

𝑦𝑖− 𝑥𝑖
𝑇𝛽

𝑠
) = ∑ 𝑥𝑖𝑗

𝑛
𝑖=1 ψ(

𝜀𝑖

𝑆
) = 0,     j = 1,2,…,p                            (3) 

Where ψ(u) = 
𝜕𝜌

𝜕𝑢
 called as a score function and the weight function can be defined as,   

w(u) = 
𝜓(𝑢)

𝑢
 

results from wi = w(
𝜀𝑖

𝑆
) for i = 1, 2, …, n, with wi = 1 if εi = 0, substituting into (3) the results are  

∑ 𝑥𝑖𝑗
𝑛
𝑖=1  𝑤𝑖𝑗 

𝜀𝑖

𝑆
   = ∑ 𝑥𝑖𝑗

𝑛
𝑖=1 𝑤𝑖 (𝑦𝑖 - 𝑥𝑖

𝑇β)
1

𝑆
  = 0    j = 1,2,…,p 

∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 - 𝑥𝑖

𝑇β)   = 0,                                 j = 1,2,…,p 

                              ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖𝑥𝑖

𝑇β  =∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖𝑦𝑖                           j = 1,2,…,p              (4) 

Since s ≠0, defining the weight matrix W = diag({wi: i = 1, 2, …,n}) as follows 

W =(

𝑤1 . 0

𝑤2
0 . 𝑤𝑛

) 

yields the following matrix form of (4) 

 𝑋𝑇WXβ = 𝑋𝑇WY 

                                       �̂� = (𝑋𝑇WX)-1𝑋𝑇WY                                                       (5) 

It is very similar to the solution of the least square estimator, but with the introduction of a weight matrix 

to reduce the  outlier’s influence. Usually, in contrast to the least squares, equation (4) is not possible to calculate 

the M-estimation directly from the dataset, W depends on the residuals, that depend on the estimation. In fact, an 

initial estimate and iterations are required, to finally converge on W and M-estimate for β. Iterative procedure 
IRLS is used to identify the  M-estimates of regression. Stuart (2011) defined the functions for the least square 

and M estimators as follows. 
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Table 1: Weight Function Used for Different Regression Methods 

 

Value for typical tunning constant of Huber is 𝑎 = 1.345 for 95% relative efficiency, For Hampel is a = 2, b = 4 and c = 8 and for Tukey’s Bisquare is a= 

4.685 results in 95% relative efficiency Stuart (2011). 

 Objective Function ρ(u) Score function 𝝍(𝒖) Weight Function 𝒘(𝒖) =  
𝝍(𝒖)

𝒖
 

a)Least Squares 1

2
𝑢2     -∞≤u≤∞          u                       1 

b)Huber (1973) 

a>0 
{

1

2
 𝑢2   𝑖𝑓 │𝑢│ < 𝑎

𝑎 │𝑢│ − 
1

2
 𝑎2 𝑖𝑓 │𝑢│ ≥ 𝑎

 
{

𝑢    𝑖𝑓 │𝑢│ < 𝑎

𝑎 𝑠𝑖𝑔𝑛 𝑢  𝑖𝑓 │𝑢│ ≥ 𝑎
 

{
1      𝑖𝑓 │𝑢│ < 𝑎
𝑎

│𝑢
          𝑖𝑓 │𝑢│ ≥ 𝑎

 

c)Hampel, 

a,b,c>0 

{
 
 
 

 
 
 

1

2
 𝑢2       𝑖𝑓     │𝑢│ < 𝑎 

𝑎 │𝑢 │ − 
1

2
 𝑎2   𝑖𝑓 𝑎 ≤   │𝑢│ < 𝑏

𝑎
𝑐│𝑢│ −

1
2𝑢

2

𝑐 − 𝑏
−
7𝑎2

6
    𝑖𝑓 𝑏 ≤ │𝑢│ ≤ 𝑐

 𝑎(𝑏 + 𝑐 − 𝑎)                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

{
 
 

 
 𝑢        𝑖𝑓     │𝑢│ < 𝑎 

𝑎 𝑠𝑖𝑔𝑛 𝑢     𝑖𝑓 𝑎 ≤   │𝑢│ < 𝑏

𝑎
𝑐𝑠𝑖𝑔𝑛 𝑢 − 𝑢

𝑐 − 𝑏
     𝑖𝑓 𝑏 ≤ │𝑢│ ≤ 𝑐

0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

{
 

 1      𝑖𝑓     │𝑢│ < 𝑎 
𝑎

│𝑢│
     𝑖𝑓 𝑎 ≤   │𝑢│ < 𝑏

0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

d)Tukey 

Bisquare, 

a>0 

{
 

 
𝑎2

6
( 1 − (1 −

𝑢

𝑎
)
2

)
3

)

1

6
 𝑎2            𝑖𝑓 │𝑢│ > 𝑎

 𝑖𝑓 │𝑢│ ≤ 𝑎 {
𝑢 ( 1 − (

𝑢

𝑎
)
2

)
2

    

   0         𝑖𝑓  │𝑢│ > 𝑎

𝑖𝑓 │𝑢│ < 𝑎 {
(1 − (

𝑢

𝑎
)
2

)
2

0          𝑖𝑓 │𝑢│ > 𝑎

  𝑖𝑓 │𝑢│ ≤ 𝑎 
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To data analysis, the following phases are performed in order to obtain efficient model selection using different 

regression analysis techniques.  

Phase I – All Possible Models 

According to Khuneswari et al., (2008), all possible models are a prerequisite for determining the best model and can 

be derived using the following formula,  

                                          N = ∑ 𝑗 (𝑘
𝑗
)𝑘

𝑗=1                                                       (6) 

where N is considered to be the number of all possible models, k represents the total number of independent variables 

and j=1,2, .…k.  

All possible models will be used and OLS, LASSO and Ridge will be applied to them after the procedure will be moved 

to next phase.  

There was no missing value on the dataset. For all six independent variables, 5% of the data was randomly 

selected. Mean Absolute Percentage Error (MAPE) was calculated using the dataset to be used in Phase 3. for the 
forecasting of the best model for the selected model, two tests will be performed for OLS, i.e. the multicollinearity 

test and the coefficient test.  

Phase 2- Selected Models 

For the forecasting of the best model from the selected model, two tests will be performed for OLS, i.e. the 

multicollinearity test and the coefficient test. For the coefficient test, 5% of the significance level is used. After these 

tests have been carried out, a list of selected models will be obtained in the OLS regression analysis, while only 

significant variables will be retained for the selected models in ridge and LASSO regression. 

Multicollinearity test 

Multicollinearity occurs when the model contains collinear predictors. In this case, results may not be valid Joseph 

(2009). Thus, it is important to handle this type of problem in data analysis before proceeding.  

Coefficient test 

Ramanathan (2002) defined the coefficient test, a test used for each independent variable to check whether it differs 

significantly from zero or not. That is, the following hypothesis is made for it.  

H0: βj = 0 

H1: βj ≠ 0 

Where βj denotes the coefficient of variable in the model for j = 1,2,…,k and the t test will be used for testing at a 5% 

level of significance. 

Phase 3- The Best Model 

After the selected models have been obtained, the best selection of the models is made between the selected models. 

Eight selection criteria were identified for this purpose by Ali et al., (2017). In this study, the eight selection criteria 

is used for the best model selection. The list of formulas for 8SC can be shown as in Table 2. 

Table 2:  List of 8SC 
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 where  

n = total number of observations 

k +1 = estimated parameters numbers (including constant) 

 SSE = sum of squares error.  

Phase 4-Goodness of Fit  

Gujarati (2004) has defined some assumptions for the least square estimate as no perfect multicollinearity or correct 

identification of the model. The goodness of fitness test was defined in Ramanathan (2002) as ensuring that the model 

fits well into the dataset. For this phase, the 5% dataset maintained will be used for model efficiency calculation using 
the MAPE value and then the residuals will be calculated using the difference between the actual and observed values 

using the best model obtained in Phase 2 so that the residual test is analyzed using the randomness and normality test. 

Also, a nonparametric test like a run test will be used to check the random pattern of observations. For normality check 

assumptions, some supporting documents such as Sharpio Wilk test and Kolmogrov Smirnov test used for this 

purpose. Afterwards, scatter plot, histogram, and box plot for residuals for supporting evidence are obtained.   

3. Result and Discussion 

 

Data Collection and Procedure  
The data used in this study was taken from a seaweed dryer for four days using V-groove hybrid solar dryers. Seven 

variables are used in this study as Moisture Ratio content (%) as the dependent variable with six independent variables 

as Ambient Temperature (𝑥1), Chamber Temperature (𝑥2), Collector Temperature (𝑥3), Chamber Relative Humidity 

(𝑥4), Ambient Relative Humidity (𝑥5) and Solar radiation (𝑥6) variables of Temperature from solar drier. The data for 

four days consisted of a total of 1924 observations. Where 1826 observations were taken for the purpose of the analysis 

and 98 observations were kept for the purpose of calculating the MAPE value to forecast. From 16 March 2017 to 19 

March 2017, the data was taken for each minute from 9 am to 5 pm as solar radiation better works at that time. Total 

of 8 hours dataset is taken per day. So, overall, it was 32 hours dataset used in the study. For, the minutes, it was thus 

total of 1924 observations were obtained. The list of all possible models are kept in Table 3 for six variables taken in 

the analysis.  

 

AIC: 

(
𝐒𝐒𝐄

𝐧
) (𝐞)𝟐(𝐤+𝟏) 𝐧⁄  

(Akaike, 1969) 

RICE: 

(
𝐒𝐒𝐄

𝐧
) [𝟏 − (

𝟐(𝐤 + 𝟏)

𝐧
)]
−𝟏

 

(Rice, 1984) 

FPE: 

(
𝐒𝐒𝐄𝟐

𝐧
)
𝐧 + (𝐤 + 𝟏)

𝐧 − (𝐤 + 𝟏)
 

(Akaike, 1974) 

SCHWARZ: 

(
SSE

n
)n(k+1)/n 

(Schwarz, 1978) 

GCV:    

(
𝐒𝐒𝐄

𝐧
) [𝟏 − (

𝐤 + 𝟏

𝐧
)]
−𝟐

 

(Golub et al., 1979) 

SGMASQ: 

(
SSE

n
) [1 − (

k + 1

n
)]
−1

 

(Ramanathan, 2002) 

HQ: 

(
𝐒𝐒𝐄

𝐧
) (𝐥𝐧𝐧)𝟐(𝐤+𝟏) 𝐧⁄  

(Hannan and Quinn, 1979) 

SHIBATA: 

(
SSE

n
)
n + 2(k + 1)

n
 

(Shibata, 1981) 
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Table 3: All Possible Models for six independent variables 

 

By using ordinary least square, all possible models are calculated as shown in Phase I. After this, the selected models 
are obtained through a multicollinearity test and a coefficient test on all possible models to be moved to Phase II. The 

selected models have thus obtained their respective SSEs. M192.0.0 was the original model with all possible 

interaction terms included in it and 46 variables were removed from the original model after the multicollinearity test 

was carried out. Following this step, the model became M192.46.0 and after that coefficient test was conducted, then 

the final model was obtainable in the form of M192.46.3, which indicates that 3 variables were removed in the 

coefficient test. Grouping is carried out based on the same variables in the model, e.g., M144.7.0 and M175.10.0 have 

the same variables so that they are kept in the same group. There are now 145 models left out of 192 models after 

grouping. These final models have no problem with multicollinearity, and all the variables included are also 

significant. The procedure shall be applied to all possible models for obtaining the selected models. The best model is 

selected using eight selection criteria.  

For OLS, the minimum value was found for M183.36.3 and the MAPE value was obtained using the reserved data. It 

was determined to be MAPE = 9.781944. 

 Stuart (2011) explained that the least square estimates cannot perform well in the case of outliers or in the 

case of normality assumptions are not met. Therefore, the performance of ridge regression is better than OLS in the 

case of highly collinear predictors in the model. Estimates derived from the ridge regression are biased, but the mean 
square error of ridge estimator is smaller than the OLS estimators of Hoerl and Kennard (1970). Since the data used 

in this study also suffers from a multicollinearity problem so next technique applied is the ridge regression on all 

possible models for the purpose of comparison and the selected models were obtained. 

Ridge regression is a type of regularized regression analysis so that at least two variables should be included 

in the model starting with M5.0.0 containing two variables Hocking (1976) . Ridge regression has the ability to make 

the correlation coefficient as a reduction to zero but cannot make it exactly zero because it contains the L2 penalized 

least square penalty term Ogutu et al., (2012) so that the best model selection in Phase 2, 8SC has been used and the 

selection for the best model is obtained with a minimum value among all models. The best model selected with its 
coefficient was obtained.  

OLS and ridge regression do not have the ability to select the model as they contain all variables in the model so 

modified LASSO has been performed for handling outliers in the dataset for the purpose of selecting crucial variables 

among all variables including their interaction terms. Modified LASSO was performed using three robust M estimator 

methods, i.e., Huber’s M estimator, Hampel’s M estimator, and Bisquare’s M estimator.  

For the Sparse regression analysis, LASSO is performed on all possible models and the results have been analyzed. 

The list of 183 models were obtained by grouping the same models as in OLS. Robust methods are applied to these 

resultant 183 models to obtain the selected models in the modified LASSO. 151 models were obtained as selected 

models using the Huber M estimator method for the above 183 models obtained from LASSO. Coefficient test is 

performed at 0.05 a level of significance for removal the insignificant variables from the models in Huber’s M 

estimation. Thus, after performing the coefficients tests, only 151 models are left in the Huber’s M estimation method. 

Eight selection criteria for the best model selection were performed on these 151 models and results were observed. 

The best model M192.27.11 with SSE as 63759 was observed after using 8SC. The second method used is the 

Number of 

variables 

single                     Interact    

  1st 2nd  3rd  4th 5th Total 

1 6 - - - - - 6 

2 15 15 - - - - 30 

3 20 20 20 - - - 60 

4 15 15 15 15 - - 60 

5 6 6 6 6 6 - 30 

6 1 1 1 1 1 1 6 

Total Models 63 57 42 22 7 1 192 

Model ID M1-M63 M64-M120 M121-M163 M164-M185 M186-M191 M192  
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Hampel’s M estimator, which is applied to selected models of LASSO. The final selected model obtained from Hampel 

with LASSO was observed as M192.27.10 with SSE 63269.The third Robust method used in this study was the 

Tukey’s Bisquare method. 144 models were selected after grouping the model and the best model was observed as 

M192.27.13 with its SSE as 64743 

Table 4: MAPE for Final Selected Models from all Methods 

Selected 

Model 

Technique used No of Variables SSE MAPE 

M183.36.3 

 

OLS 16 

 

75921 

 

9.782 

 

M183.0.0 Ridge Regression 52 

 

86405.7 

 

10.771 

 

M190.27.11 

 

LASSO with Huber M 25 

 
 

63886 

 
 

9.0208 

 
 

M190.27.10 

 

LASSO with Hampel 26 

 

63269 

 

9.118 

 

 

M190.27.13 

 

LASSO with Bisquare 23 

 

64743 

 

 

8.968 

 

 

 

Table 4 shows that LASSO with Bisquare’s M provides a good fit than other methods. From the methods used in 

Table 4, OLS uses equal weights 1 𝑛⁄  for all observations . Ridge regression MAPE is high as it can deal only with 

multicollinearity, not with outliers. If we compare with OLS, there is a 15.85% decrease in SSE in Huber’s M, there 

is a 16.66% decrease in Hampel’s M, a 14.72% decrease in LASSO with Bisquare’s M, while in ridge there is a 

12.13% increase in SSE compared to OLS. If the number of variables is observed, ridge regression contains more 

variables than others, but cannot perform well in the case of outliers. In the same way, OLS has a very small number 

of variables in the final model due to the performance of the multicollinearity and coefficient test. The SSE for OLS 
is higher than the technique proposed. The proposed technique has almost the same number of variables in the model 

with a slight difference between SSE and MAPE. Robust estimators can deal with outliers. The combination of LASSO 

and Bisquare provides good results from the above hybrid models as opposed to other techniques. Standardized 

residual plots are observed as supporting documents for this purpose. Standardized residual graph has been observed 

for each method and can be observed as in Figure 1-5. 

 

 
Figure 1. Standardized residual for OLS 
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Figure 2. Standardized Residual by using Ridge Regression 

 

 

 
 

Figure 3.Standardized Residual Using Huber’s M after LASSO 
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Figure 4. Standardized Residual by using Hampel’s M after LASSO 

 

 

Figure 5. Standardized Residual by Using Bisquare’s M after LASSO 

From the figures 1- 5 above, outliers pattern can be observed. OLS and ridge have more outliers than the technique 

being proposed. Although the OLS model is selected after multicollinearity and coefficient test, it still contains more 

outliers. It is because OLS cannot deal with outliers, while ridge can also deal with multicollinearity only, thus, 

compared to the proposed technique, there are more outliers. in real life dataset, it is not always a good option to 

remove outliers. the outliers outside the sigma limits are observed in Table 5. 

Table 5: Outliers outside the sigma limits 

Technique 𝝁 ± 𝝈 𝝁 ± 𝟐𝝈 𝝁 ± 𝟑𝝈 

OLS 30.668 4.326 0.712 

Ridge 28.423 6.024 0.602 

LASSO Huber M 13.801 5.531 1.2596 
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LASSO Hampel M 26.506 5.312 1.150 

LASSO Bisquare M 26.068 5.476 1.258 

 

For outliers, in standardized residuals plot, observations outside the sigma limits are observed in Table 5.  It is noted 

that although the ridge regression and OLS has a smaller number of outliers in three sigma limits, but the SSE value 

was very much high for ridge regression analysis. So, the ridge regression cannot be considered as a good technique. 

While LASSO with Bisquare M has some observations outside three sigma limits, but due to the use of robust 

regression analysis, outliers are not affected on its coefficients and the model. That is the advantage of the proposed 

technique that LASSO can have only significant variables in the model. While robust estimators can deal with outliers. 

Thus, the proposed model can deal with the multicollinearity and outliers’ issue in the real-life dataset. 

4. CONCLUSION 

Solar drier has its importance in the field of agriculture and aquaculture. There are many factors involved in solar drier 

efficiency, so it is important to identify those factors. Different variables affecting moisture ratio removal have been 

observed with their interaction effects by considering a large data.  Hybrid of LASSO and robust regression is proposed 

for identification of significant factors including the interaction terms. The results show that the combination of 

LASSO and Bisquare’s M provides better results compared to other methods. The value of SSE for the hybrid of 
LASSO and Bisquare’s M is found be 8.9689, that is less than 10%. Thus the resulting selected model is now ready 

to predict the moisture ratio removal of seaweed with its selected significant factors. 
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