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Abstract

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This
model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop-
erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were
obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution
to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson
distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.
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1. Introduction

Statistical distributions are widely used to explain different types of real life events. Because of their usefulness, sta-
tistical distribution theory is extensively researched and new distributions are being developed. The Topp Leone (TL)
distribution is among the distributions used within the theory and practice of statistics. It was proposed by Topp and
Leone (1955) as a lifetime model. Nadarajah and Kotz (2003) studied its properties and provided its moments and
the characteristic function. Numerous authors also studied the TL distribution. Ghitany et al. (2005) provided some
reliability measures of the TL distribution, while Vicaria et al. (2008) introduced a two-sided generalized version of
the TL distribution and Al-Zahrani (2012) derived the goodness-of-fit test for the TL distribution.

Al-Shomrani et al. (2016) proposed the Topp-Leone generated family of distributions with cumulative distribution
function (cdf), probability density function (pdf), and survival function given by

FT L−G(x;b,ψ) = [1− Ḡ(x;ψ)2]b, (1)
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fT L−G(x;b,ψ) = 2bg(x;ψ)Ḡ(x;ψ)[1− Ḡ(x;ψ)2]b−1, (2)

and

ST L−G(x;b,ψ) = 1−FT LG(x;b,ψ) = 1− [1− Ḡ(x;ψ)2]b, (3)

respectively, for b > 0, where G(x;ψ) is the baseline cdf depending on a parameter vector ψ , g(x;ψ) = dG(x;ψ)/dx,
and Ḡ(x;ψ) = 1−G(x;ψ) is the survival function.

Some generalizations of the Topp-Leone-G family of distributions include the Topp-Leone-Marshall-Olkin-G family
by Chipepa et al. (2020), Type II power Topp-Leone generated family by Bantan et al. (2020), Topp-Leone-Weibull
by Rezaei et al. (2016), Topp-Leone generalized exponential Sangsanit and Bodhisuwan (2016).

In this paper, we develop a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of dis-
tributions. We are motivated by the flexibility in data fitting obtained from the TL-GPS class of distributions and the
applicability of the new class of distributions to data sets that exhibit monotonic or non-monotonic hazard rate shapes.
Another motivation for developing the TL-GPS class of distributions is the applicability of the power series distribu-
tions in different fields such as finance, economics and actuarial sciences.

This paper is organized as follows. In Section 2 we introduce the new class of distributions and present its cdf and pdf.
We also discuss some sub-classes of the TL-GPS distribution and present some special cases when the baseline cdf
is specified. Some statistical properties of the TL-GPS distribution including moments, conditional moments, order
statistics, and Rényi entropy are presented in Section 3. Maximum likelihood estimates of the unknown parameters
are presented in Section 4. Monte Carlo simulations for special cases are conducted in Section 5. Applications are
given in Section 6, followed by some concluding remarks.

2. The Model

In this section, we develop the TL-GPS class of distributions and derive some statistical properties which include
series expansion of the pdf, quantile and hazard functions, sub-classes and some special cases.

Suppose that the random variable X has the Topp-Leone-G distribution with cdf defined by equation (1). Given
N, let X1, ...,XN be independent and identically distributed random variables from the Topp-Leone-G distribution. Let
N be a discrete random variable with a power series distribution (truncated at zero) and probability mass function
(pmf)

P(N = n) =
anθ n

C(θ)
, n = 1,2, ...,

where an ≥ 0 depends only on n, C(θ) = ∑
∞
n=1 anθ n and θ ∈ (0,s) (s can be ∞) is chosen such that C(θ) is finite

and its three derivatives with respect to θ are defined and given by C′(.),C′′(.) and C′′′(.), respectively. The power
series family of distributions includes Binomial, Poisson, Geometric and Logarithmic distributions. See Johnson et al.
(1994) for additional details. Let X=min(X1, ...,XN), then the conditional cdf of X |N = n is given by

FX |N=n(x) = 1− [ST L−G(x;b,ψ)]n, x > 0. (4)

The Topp-Leone-G Power Series class of distributions is defined by the marginal cdf of X . The general form of the
cdf and pdf of the Topp-Leone-G Power Series class of distributions are given by

FT L−GPS(x;θ ,b,ψ) = 1− C(θST L−G(x;b,ψ))

C(θ)
(5)

and

fT L−GPS(x;θ ,b,ψ) =
θ fT L−G(x;b,ψ)C

′
(θST L−G(x;b,ψ))

C(θ)
, (6)
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respectively.
On the other hand, if we consider X(n) = max(X1, . . . ,XN) and conditioning upon N = n, then the conditional distribu-
tion of X(n) given N = n is obtained as

GX(n)|N=n(x) = [1− Ḡ(x;ψ)2]nb,

which is also a Topp-Leone-G distribution. The marginal cdf of X(n), say FT L−GPS, is given by

FT L−GPS(x;θ ,b,ψ) =
C(θFT L−G(x;b,ψ))

C(θ)
.

The hazard rate function (hrf) is given by

hT L−GPS(x;θ ,b,ψ) = θ fT L−G(x;b,ψ)
C
′
(θST L−G(x;b,ψ))

C(θST L−G(x;b,ψ))
. (7)

Similarly, the reverse hazard rate function (rhrf) becomes

τT L−GPS(x;θ ,b,ψ) =
θ fT L−G(x;b,ψ)C

′
(θST L−G(x;b,ψ))

C(θ)−C(θST L−G(x;b,ψ))
. (8)

2.1. Quantile function

The quantile function of the TL-GPS class of distributions is easily obtained by inverting equation (5), FT L−GPS(x;θ ,b,ψ)
= u, 0≤ u≤ 1. Note that

1− C(θST L−G(x;b,ψ))

C(θ)
= u,

so that
C(θST L−G(x;b,ψ)) =C(θ)(1−u).

This is equivalent to
C−1(C(θ)(1−u)) = θST L−G(x;b,ψ),

Therefore, we obtain the quantile values from the TL-GPS class of distributions by solving the non-linear equation

C−1(C(θ)(1−u))−θST L−G(x;b,ψ) = 0, (9)

using iterative methods in R, SAS or MATLAB software.

2.2. Expansion of the Density Function

Expansion of the density function of the TL-GPS class of distributions is presented in this sub-section. Equation (6)
can be rewritten as

fT L−GPS(x;θ ,b,ψ) =
∞

∑
n=1

nanθ n

C(θ)
2bg(x;ψ)Ḡ(x;ψ)[1− Ḡ(x;ψ)2]b−1[1− (1− Ḡ(x;ψ)2)b]n−1.

Using the generalized binomial expansion

[1− (1− Ḡ(x;ψ)2)b]n−1 =
∞

∑
i=0

(−1)i
(

n−1
i

)
[1− Ḡ(x;ψ)2]bi,

the pdf of the TL-GPS class of distribution is given by

fT L−GPS(x;θ ,b,ψ) =
∞

∑
i=0

∞

∑
n=1

(−1)i
(

n−1
1

)
nanθ n

C(θ)
2b

×g(x;ψ)Ḡ(x;ψ)[1− Ḡ(x;ψ)2]b(i+1)−1.
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Also, applying the generalized binomial expansion

[1− Ḡ(x;ψ)2]b(i+1)−1 =
∞

∑
j=0

(−1) j
(

b(i+1)−1
j

)
Ḡ(x;ψ)2 j

we get

fT L−GPS(x;θ ,b,ψ) =
∞

∑
i, j=0

∞

∑
n=1

(−1)i+ j
(

n−1
i

)(
b(i+1)−1

j

)
nanθ n

C(θ)
2b

×g(x;ψ)Ḡ(x;ψ)2 j+1.

Furthermore, using the binomial expansion

Ḡ(x;ψ)2 j+1 = [1−G(x;ψ)]2 j+1 =
∞

∑
k=0

(−1)k
(

2 j+1
k

)
G(x;ψ)k

yields

fT L−GPS(x;θ ,b,ψ) =
∞

∑
i, j,k=0

∞

∑
n=1

(−1)i+ j+k
(

n−1
i

)(
b(i+1)−1

j

)(
2 j+1

k

)
nanθ n

C(θ)
2b

× g(x;ψ)G(x;ψ)k

=
∞

∑
i, j,k=0

∞

∑
n=1

(−1)i+ j+k
(

n−1
i

)(
b(i+1)−1

j

)(
2 j+1

k

)
nanθ n

C(θ)
2b

×
(k+1

k+1

)
g(x;ψ)G(x;ψ)k

=
∞

∑
k=0

ηk+1gk+1(x;ψ), (10)

where
gk+1(x;ψ) = (k+1)g(x;ψ)G(x;ψ)k

is the exponentiated-G (Exp-G) distribution with power parameter (k+1), and

ηk+1 =
∞

∑
i, j=0

∞

∑
n=1

(−1)i+ j+k
(

n−1
i

)(
b(i+1)−1

j

)(
2 j+1

k

)
nanθ n

C(θ)

2b
k+1

. (11)

It follows that the TL-GPS distribution can be expressed as an infinite linear combination of Exp-G densities.

2.3. Sub-classes of the TL-GPS Distribution

We derive expressions for cdfs of sub-classes of the TL-GPS class of distributions and these are presented in Table 1.

2.4. Some Special Cases of the TL-GPS Class of Distributions

In this section, we present some special cases of the TL-GPS class of distributions. We consider cases when the
baseline distribution are Weibull and log-logistic distributions.

2.4.1. Topp-Leone-Weibull-Poisson Distribution

The cdf and pdf of the Topp-Leone-Weibull Poisson (TL-WP) distribution are given by

FT L−WP(x;θ ,b,α,β ) = 1− eθ(1−(1−e−2αxβ
)b)−1

eθ −1
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Table 1: Sub-Classes of the TL-GPS Distribution
Distribution an C(θ) cdf

Topp-Leone G Poisson (n!)−1 eθ −1 1 - eθ

(
1−[1−Ḡ(x;ψ)2 ]b

)
−1

eθ−1

Topp-Leone G Geometric 1 θ(1−θ)−1 1 -
(

1−[1−Ḡ(x;ψ)2]b
)
(1−θ)

1−θ

(
1−[1−Ḡ(x;ψ)2]b

)
Topp-Leone G Logarithmic n−1 − log(1−θ ) 1 -

log
(

1−θ

(
1−[1−Ḡ(x;ψ)2]b

))
log(1−θ)

Topp-Leone G Binomial
(m

n

)
(1+θ)m−1 1 -

(
1+θ

(
1−[1−Ḡ(x;ψ)2]b

))m
−1

(1+θ)m−1

and

fT L−WP(x;θ ,b,α,β ) =
2bθαβxβ−1e−2αxβ

(1− e−2αxβ

)b−1eθ(1−(1−e−2αxβ
)b)

eθ −1
,

respectively, for α,β ,b,θ > 0 and x > 0. The hrf and rhrf are given by

hT L−WP(x;θ ,b,α,β ) = 2bθαβxβ−1e−2αxβ

(1− e−2αxβ

)b−1 eθ(1−(1−e−2αβxβ
)b)

eθ(1−(1−e−2αxβ
)b)−1

and

τT L−WP(x;θ ,b,α,β ) = 2bθαxβ−1e−2αxβ

(1− e−2αxβ

)b−1 eθ(1−(1−e−2αxβ
))

eθ − eθ(1−(1−e−2αxβ
))
,

respectively. Figure 1 shows the plots of the pdfs and hrfs for the TL-WP distribution for selected parameter values.

Figure 1: Pdfs and hrfs plots for the TL-WP distribution

Plots of the TL-WP pdf exhibit different shapes including almost symmetric, left-skewed, right-skewed, and reverse-J
shapes. Plots of the hrf of the TL-WP distribution shows different shapes including increasing, decreasing, upside-
down bathtub followed by bathtub and uni-modal shapes.
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The quantile function of the TL-WP distribution is obtained by solving the non-linear equation

log[(eθ −1)(1−u)+1]−θ(1− [1− e−2αxβ

]b) = 0. (12)

As such, random numbers can be generated from the TL-WP distribution by numerically solving the non-linear equa-
tion (12). Quantile values of the TL-WP distribution are given in Table 2.

Table 2: Table of Quantiles for TL-WP Distribution
(θ ,α ,β ,b)

u (0.8,2.1,0.9,1.0) (1.5,1.2,1.8,2.1) (3.5,1.2,5.5,0.6) (0.5,1.0,0.3,0.1) (2.0,3.0,0.4,1.5)
0.1 0.0112 0.3069 0.7432 0.2066 0.0011
0.2 0.0261 0.3877 0.7814 0.2806 0.0041
0.3 0.0446 0.4529 0.8082 0.3412 0.0100
0.4 0.0971 0.5751 0.8520 0.4552 0.0379
0.6 0.1357 0.6417 0.8732 0.5170 0.0688
0.7 0.1891 0.7193 0.8964 0.5885 0.1264
0.8 0.2704 0.8196 0.9245 0.6804 0.2494
0.9 0.4226 0.9764 0.9666 0.8245 0.6031

2.4.2. Topp-Leone-Weibull-Binomial Distribution

The cdf and pdf of the Topp-Leone-Weibull Binomial (TL-WB) distribution are given by

FT L−WB(x;θ ,b,α,β ,m) = 1− (1+θ(1− [1− e−2αxβ

]b))m−1
(1+θ)m−1

and

fT L−WB(x;θ ,b,α,β ,m) = 2bθαβxβ−1e−2αxβ

(1− e−2αxβ

)b−1

× m(1+θ(1− [1− e−2αxβ

]b))m−1

(1+θ)m−1
,

respectively for α,β ,b,θ > 0 and x > 0. The hrf and rhrf are given by

hT L−WB(x;θ ,b,α,β ,m) = 2bθαβxβ−1e−2αxβ

(1− e−2αxβ

)b−1

× m(1+θ(1− [1− e−2αxβ

]b))m−1

(1+θ(1− [1− e−2αxβ
]b))m−1

and

τT L−WB(x;θ ,b,α,β ,m) = 2bθαβxβ−1e−2αxβ

(1− e−2αxβ

)b−1

× m(1+θ(1− [1− e−2αxβ

]b))m−1

(1+θ)m− (1+θ(1− [1− e−2αxβ
]b))m

,

respectively. Figure 2 shows the plots of the pdfs and hrfs for the TL-WB distribution for selected parameters values.
Plots of the TL-WB pdf exhibit different shapes including symmetric, skewed to the right, skewed to the left and
reverse-J shapes. Plots of the hrf of the TL-WB distribution shows different shapes including increasing, decreasing,
bathtub and uni-modal shapes.

The quantile function of the TL-WB distribution can be obtained by solving the non-linear equation

[((1+θ)m−1)(1−u)+1]
1
m −1−θ(1− [1− e−2αxβ

]b) = 0. (13)
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Figure 2: Pdfs and hrfs plots for the TL-WB distribution

As such, random numbers can be generated from the TL-WB power series distribution by numerically solving the
non-linear equation (13). Quantile values of the TL-WB distribution are given in Table 3.

Table 3: Table of Quantiles for TL-WB Distribution
(θ ,α ,β ,b,m)

u (0.8,2.1,0.9,1.0,1.5) (1.2,1.8,2.1,3.5,1.2) (5.5,0.6,0.5,1.0,0.3) (0.1,1.2,1.8,0.4,0.7) (1.5,0.9,0.5,0.3,1.1)
0.1 0.0167 0.5307 0.0219 0.0069 0.0000
0.2 0.0382 0.5999 0.0819 0.0230 0.0001
0.3 0.0639 0.6504 0.1755 0.0500 0.0001
0.4 0.0947 0.6938 0.3022 0.0925 0.0004
0.5 0.1323 0.7346 0.4653 0.1586 0.0019
0.6 0.1795 0.7756 0.6730 0.2635 0.0082
0.7 0.2420 0.8197 0.9435 0.4393 0.0329
0.8 0.3323 0.8714 1.3200 0.7695 0.1350
0.9 0.4908 0.9435 1.9431 1.5783 0.7004

2.4.3. Topp-Leone-Log-Logistic-Poisson Distribution

The cdf and pdf of the Topp-Leone-Log-Logistic-Poisson (TL-LLP) distribution are given by

FT L−LLP(x;θ ,b,c) = 1− eθ(1−[1−(1+xc)−2]b)−1
eθ −1

and

fT L−LLP(x;θ ,b,c) =
2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1eθ(1−[1−(1+xc)−2]b)

eθ −1
,

respectively for θ ,b,c > 0 and x > 0. The hrf and rhrf are given by

hT L−LLP(x;θ ,b,c) = 2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1 eθ(1−[1−(1+xc)−2]b)

eθ(1−[1−(1+xc)−2]b)−1

and

τT L−LLP(x;θ ,b,c) =
2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1eθ(1−[1−(1+xc)−2]b)

eθ − eθ(1−[1−(1+xc)−2]b)
,

respectively. Figure 3 shows the plots of the hrf for the TL-LLP distribution for selected parameters values. The plots
shows different shapes including reverse-J, decreasing, bathtub followed by an upside-down bathtub and upside-down
bathtub shapes.
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Figure 3: Pdfs and hrfs plots for the TL-LLP distribution

The quantile function of the TL-LLP distribution obtained by solving the non-linear equation

ln[(eθ −1)(1−u)+1]−θ(1− [1− (1+ xc)−2]b) = 0. (14)

Therefore, random numbers can be generated from the TL-LLP distribution by numerically solving the non-linear
equation (14). Quantile values of the TL-LLP distribution are given in Table 4.

Table 4: Table of Quantiles for the TL-LLP Distribution
(θ ,b,c)

u (0.8,2.1,0.9) (1.0,1.5,1.2 (1.8,2.1,3.5) (1.2,5.5,0.6 (0.5,1.0,0.3)
0.1 0.1500 0.1375 0.5753 0.4053 0.0000
0.2 0.2535 0.2229 0.6551 0.6659 0.0004
0.3 0.3646 0.3085 0.7161 0.9585 0.0021
0.4 0.4950 0.4029 0.7715 1.3202 0.0078
0.5 0.6583 0.5143 0.8268 1.8012 0.0259
0.6 0.8776 0.6552 0.8867 2.4944 0.0820
0.7 1.2010 0.8496 0.9572 3.6101 0.2722
0.8 1.7550 1.1574 1.0511 5.7606 1.0841
0.9 3.0603 1.8061 1.2090 11.8717 7.3663

2.4.4. Topp-Leone-Log-Logistic Binomial Distribution

The cdf and the pdf of the Topp-Leone-Log-Logistic Binomial (TL-LLB) distribution are given by

FT L−LLB(x;θ ,b,c,m) = 1− (1+θ(1− [1− (1+ xc)−2]b))m−1
(1+θ)m−1

and

fT L−LLB(x;θ ,b,c,m) = 2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1

× m(1+θ(1− [1− (1+ xc)−2]b))m−1

(1+θ)m−1
,

The Topp-Leone-G Power Series Class of Distributions with Applications 834



Pak.j.stat.oper.res. Vol.17 No.4 2021 pp 827-846 DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3636

respectively for θ ,b,c > 0 and x > 0. The hrf and rhrf are given by

hT L−LLB(x;θ ,b,c,m) = 2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1

× m(1+θ(1− [1− (1+ xc)−2]b))m−1

(1+θ(1− [1− (1+ xc)−2]b))m−1

and

τT L−LLB(x;θ ,b,c,m) = 2θbcxc−1(1+ xc)−3(1− (1+ xc)−2)b−1

× m(1+θ(1− [1− (1+ xc)−2]b))m−1

(1+θ)m− (1+θ(1− [1− (1+ xc)−2]b))m ,

respectively. Figure 4 shows the plots of the pdfs and hrfs for the TL-WP distribution for selected parameters values.

Figure 4: Pdfs and hrfs plots for the TL-LLB distribution

Plots of the TL-LLB pdf exhibit different shapes skewed to the right, skewed to the left, reverse-J and almost symmet-
ric shapes. Plots of the hrf of the TL-LLB distribution shows different shapes including reverse-J, decreasing, bathtub
followed by an upside-down bathtub and uni-modal shapes.

The quantile function obtained by solving the non-linear equation

[((1+θ)m−1)(1−u)+1]
1
m −1+θ(1− [1− (1+ xc)−2]b) = 0. (15)

Therefore, random numbers can be generated from the TL-LLB distribution by numerically solving the non-linear
equation (15). Quantile values of the TL-LLB distribution are given in Table 5.

Table 5: Table of Quantiles for the TL-LLB Distribution
(θ ,b,c,m)

u (0.8,2.1,0.9,1.0 (1.5,1.2,1.8,2.1) (3.5,1.2,5.5,0.6) (0.5,1.0,0.3,2.5) (3.0,4.5,1.8,2.9)
0.1 3.4643 1.6754 19.8517 1.3128 1.9504
0.2 2.1130 1.3088 9.3969 1.0455 1.6754
0.3 1.5031 1.0995 5.7043 0.8869 1.5145
0.4 1.1310 0.9473 3.8018 0.7685 1.3955
0.5 0.8695 0.8223 2.6371 0.6695 1.2965
0.6 0.6689 0.7108 1.8467 0.5799 1.2070
0.7 0.5041 0.6039 1.2700 0.4933 1.1196
0.8 0.3599 0.4926 0.8222 0.4025 1.0262
0.9 0.2213 0.3598 0.4466 0.2940 0.9084
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3. Moments, Conditional Moments and Mean Deviations

In this section, the rth moment, conditional moments, mean deviations, Lorenz and Bonferroni curves of the TL-GPS
class of distributions are presented.

3.1. Moments and Generating Function

If X follows the TL-GPS distribution and Y ∼ Exp-G(k+1), then using equation (10), the rth moment of the TL-GPS
class of distributions is obtained as follows

µ
′
r = E(X r) =

∫
∞

0
xr · fT L−GPS(x;θ ,b,ψ)dx =

∞

∑
k=0

ηk+1E(Y r),

where E[Y r] is the rth moment of the Exp-G distribution with power parameter (k+1) and ηk+1 is given by equation
(11). The moment generating function (mgf) of the TL-GPS class of distributions is given by

MX (t) = E(etX ) =
∞

∑
r=0

tr

r!
E(X r) =

∞

∑
k=0

ηk+1MY (t),

where MY (t) is the mgf of the Exp-G distribution and ηk+1 is given by equation (11).

3.2. Conditional Moments

It is also of interest to obtain the rth conditional moments. The conditional rth moment of the TL-GPS distribution is
given by

E(X r|X > t) =
1

F̄T L−GPS(t;θ ,b,ψ)

∫
∞

t
xr · fT L−GPS(x;θ ,b,ψ)dx

=
∞

∑
k=0

ηk+1E(Y rIY r>t),

where
E(Y rIY r>t) =

∫
∞

t
yr ·gk+1(y;ψ)dy.

3.3. Mean Deviations, Lorenz and Bonferroni Curves

The mean deviation about the mean and mean deviation about the median as well as Lorenz and Bonferroni curves for
the TL-GPS class of distributions are presented in this subsection.

3.3.1. Mean Deviations

If X has the TL-GPS distribution, then we can derive the mean deviation about the mean D(µ) and the median deviation
about the median D(M) as follows

D(µ) =
∫

∞

0
|x−µ| fT L−GPS(x;θ ,b,ψ)dx = 2µ fT L−GPS(x;θ ,b,ψ)−2µ +2T (µ)

and

D(M) =
∫

∞

0
|x−M| fT L−GPS(x;θ ,b,ψ)dx =−µ +2T (M),

respectively, where µ = E(X) and M = Median(X) is the median of FT L−GPS(x;θ ,b,ψ). Note that

T (µ) =
∫

∞

µ

x · fT L−GPS(x;θ ,b,ψ)dx =
∞

∑
k=0

ηk+1

∫
∞

µ

y ·gk+1(y;ψ)dy
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and

T (M) =
∫

∞

M
x · fT L−GPS(x;θ ,b,ψ)dx =

∞

∑
k=0

ηk+1

∫
∞

M
y ·gk+1(y;ψ)dy.

3.3.2. Bonferroni and Lorenz Curves

In this subsection, we present Bonferroni and Lorenz curves for TL-GPS class of distributions. The Bonferroni and
Lorenz curves are given by

B(p) =
1

pµ

∫ q

0
x · fT L−GPS(x;θ ,b,ψ)dx =

1
pµ

∞

∑
k=0

ηk+1

∫ q

0
x ·gk+1(x;ψ)dx

and

L(p) =
1
µ

∫ q

0
x · fT L−GPS(x;θ ,b,ψ)dx =

1
µ

∞

∑
k=0

ηk+1

∫ q

0
x ·gk+1(x;ψ)dx,

respectively, where
∫ q

0 x · gk(x;ψ)dx is the first incomplete moment of the Exp-G distribution with power parameter
(k+1) and ηk+1 is given by equation (11).

3.4. Order Statistics and Rényi Entropy

In this section, we present the distribution of the order statistic and Rényi entropy of the TL-GPS class of distributions.

3.4.1. Distribution of Order Statistics

Let X1,X2, ...,Xn be a random sample from the TL-GPS distribution and let Xi:n be the corresponding ith order statistics.
The pdf of the ith order statistic, Xi:n is given by

fi:n(x) =
1

B(i,n− i+1)
f (x)

n−i

∑
k=0

(−1)k
(

n− i
k

)
[F(x)]k+i−1, (16)

where B(.,.) is the beta function. Substituting the pdf and cdf of the TL-GPS family of distributions, we write

f (x)[F(x)]k+i−1 =
∞

∑
n=1

nanθ n

C(θ)
[1− (1− Ḡ(x;ψ)2)b]n−12bg(x;ψ)Ḡ(x;ψ)

× [1− Ḡ(x;ψ)2]b−1
[

1− C(θ(1− (1− Ḡ(x;ψ)2)b))

C(θ)

]k+i−1

.

Using the generalized binomial expansion[
1− C(θ(1− (1− Ḡ(x;ψ)2)b))

C(θ)

]k+i−1
=

∞

∑
j=0

(−1) j
(

k+ i−1
j

)[
C(θ(1− (1− Ḡ(x;ψ)2)b))

C(θ)

] j
,

and applying the result on power series raised to a positive integer, we get

f (x)[F(x)]k+i−1 =
∞

∑
j=0

∞

∑
n=1

(
k+ i−1

j

)
(−1) j nanθ n+m

C j+1(θ)
bm, j2bg(x;ψ)Ḡ(x;ψ)

× [1− (1− Ḡ(x;ψ)2)b]m+n−1[1− Ḡ(x;ψ)2]b−1,

where bm, j = (ma0)
−1

∑
m
l=1(l( j+1)−m)albm−l and b0, j = a j

0 (Gradshetyn (2000)). Also, using the following gener-
alized binomial expansion

[1− (1− Ḡ(x;ψ)2)b]m+n−1 =
∞

∑
p=0

(−1)p
(

m+n−1
p

)
[1− Ḡ(x;ψ)2]bp,
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we obtain

f (x)[F(x)]k+i−1 =
∞

∑
j,p=0

∞

∑
n=1

(
k+ i−1

j

)(
m+n−1

p

)
(−1) j+p nanθ n+m

C j+1(θ)
bm, j

× [1− Ḡ(x;ψ)2]b(p+1)−12bg(x;ψ)Ḡ(x;ψ).

Furthermore, applying the generalized binomial expansion

[1− Ḡ(x;ψ)2]b(p+1)−1 =
∞

∑
q=0

(−1)q
(

b(p+1)−1
q

)
Ḡ(x;ψ)2q

yields

f (x)[F(x)]k+i−1 =
∞

∑
j,p,q=0

∞

∑
n=1

(
k+ i−1

j

)(
m+n−1

p

)(
b(p+1)−1

q

)
× (−1) j+p+q 2bnanθ n+m

C j+1(θ)
bm, jg(x;ψ)Ḡ(x;ψ)2q+1.

Also, applying the binomial expansion

Ḡ(x;ψ)2q+1 =
∞

∑
r=0

(−1)r
(

2q+1
r

)
G(x;ψ)r

yields

f (x)[F(x)]k+i−1 =
∞

∑
j,p,q,r=0

∞

∑
n=1

(
k+ i−1

j

)(
m+n+−1

p

)(
b(p+1)−1

q

)(
2q+1

r

)
× (−1) j+p+q+r 2bnanθ n+m

C j+1(θ)
bm, j

(
r+1
r+1

)
g(x;ψ)G(x;ψ)r

=
∞

∑
r=0

ar+1gr+1(x;ψ),

(17)

where gr+1(x;ψ) = (r+1)g(x;ψ)G(x;ψ)r is the Exp-G distribution with power parameter (r+1), and

ar+1 =
∞

∑
j,p,q=0

∞

∑
n=1

(
k+ i−1

j

)(
m+n+−1

p

)(
b(p+1)−1

q

)(
2q+1

r

)
× (−1) j+p+q+r 2bnanθ n+m

C j+1(θ)(r+1)
bm, j.

Therefore, substituting equation (17) in (16) we obtain

fi:n(x) =
1

B(i,n− i+1)

∞

∑
r=0

n−i

∑
k=0

(−1)k
(

n− i
k

)
ar+1gr+1(x;ψ). (18)

It follows that the distribution of the ith order statistic from the TL-GPS class of distributions can be obtained directly
from the distribution of the ith order statistic from the Exp-G distribution.

3.4.2. Rényi Entropy

In this subsection, Rényi entropy of the TL-GPS class of distributions is derived. Entropy measures the uncertainty
or variation of a random variable. Rényi entropy (Rényi (1960)) is a generalization of Shannon entropy (Shannon
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(1951)). Rényi entropy of the TL-GPS class of distributions is defined as

IR(ν) =
1

1−ν
log

(∫
∞

0
( fT L−GPS(x;θ ,b,ψ))ν dx

)
, ν 6= 1, ν > 0. (19)

Note that f ν
T L−GPS(x;θ ,b,ψ) can be written as

f ν
T L−GPS(x;θ ,b,ψ) =

[
θ2bg(x;ψ)Ḡ(x;ψ)[1− Ḡ(x;ψ)2](b−1)

× C′(θ(1− [1− Ḡ(x;ψ)2]b))

C(θ)

]ν

.

Considering the following series expansions

[
C′(θ(1− [1− Ḡ(x;ψ)2]b))

]ν
=

∞

∑
k=0

dk,ν θ
k(1− [1− Ḡ(x;ψ)2]b)k,

where dk,ν = (kb0)
−1

∑
k
l=1[ν(l +1)− k]bldk−l,ν and d0,ν = bν

0 ,

(1− [1− Ḡ(x;ψ)2]b)k =
∞

∑
m=0

(−1)m
(

k
m

)
[1− Ḡ(x;ψ)2]bm,

[1− Ḡ(x;ψ)2]b(m+ν)−ν =
∞

∑
n=0

(−1)n
(

b(m+ν)−ν

n

)
Ḡ(x;ψ)2n,

and

Ḡ(x;ψ)2n+ν =
∞

∑
q=0

(−1)q
(

2n+ν

q

)
G(x;ψ)q,

we get

f ν
T L−GPS(x;θ ,b,ψ) =

∞

∑
k,m,n,q=0

[
2b

C(θ)

]ν

(−1)m+n+q
(

k
m

)(
b(m+ν)−ν

n

)
×

(
2n+ν

q

)
dk,ν θ

ν+kgν(x;ψ)Gq(x;ψ).

Therefore, the Rényi entropy of the TL-GPS class of distributions is given by

IR(ν) =
1

1−ν
log

(
∞

∑
q=0

η
∗
q+1e(1−ν)IREG

)
, (20)

where

η
∗
q+1 =

∞

∑
k,m,n=0

[
2b

C(θ)

]ν

(−1)m+n+q
(

k
m

)(
b(m+ν)−ν

n

)(
2n+ν

q

)
dk,ν

θ ν+k[ q
ν
+1]ν

. (21)

and

IREG =
1

1−ν

∫
∞

0

([
q
v
+1
]

g(x;ψ)G(x;ψ)
q
ν

)ν

dx

is the Rényi entropy of the Exp-G distribution with parameter
( q

υ
+ 1
)
. As such, we can directly derive the Rényi

entropy of the TL-GPS family of distributions from the Rényi entropy of the Exp-G distribution.
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4. Estimation

In this section, we derive the maximum likelihood estimates of the parameter vector (θ ,b,ψ)T of the TL-GPS class
of distributions. Let Xi ∼ TL-GPS(θ ,b,ψ) and ∆= (θ ,b,ψ)T be the parameter vector. The log-likelihood `= `(∆)
based on a random sample of size n is given by

`(∆) = n ln(2bθ)+(b−1)
n

∑
i=1

ln[1− Ḡ(xi;ψ)2]+
n

∑
i=1

ln[Ḡ(xi;ψ)]

+
n

∑
i=1

ln[g(xi;ψ)]−n ln(C(θ))+
n

∑
i=1

ln

(
C′
(

θ
(
1− [1− Ḡ(xi;ψ)2]b

)))
.

The elements of the score vector are given by

∂`

∂θ
=

n
θ
− nC′(θ)

C(θ)
+

n

∑
i=1

(
C′′
(

θ
(
1− [1− Ḡ(xi;ψ)2]b

)))(
1−
(

1− Ḡ(xi;ψ)2
)b
)

C′
(

θ
(
1− [1− Ḡ(xi;ψ)2]b

)) ,

∂`

∂b
=

n
b
+

n

∑
i=1

ln[1− Ḡ(xi;ψ)2]+
n

∑
i=1

θ

(
C′′
(

θ
(
1− [1− Ḡ(xi;ψ)2]b

)))

C′
(

θ
(
1− [1− Ḡ(xi;ψ)2]b

))
× [1− Ḡ(xi;ψ)2]b ln[1− Ḡ(xi;ψ)2],

and

∂`

∂ψk
= (b−1)

n

∑
i=1

1
(1− Ḡ(xi;ψ)2)

∂ [1− Ḡ(xi;ψ)2]

∂ψk
+

n

∑
i=1

∂ Ḡ(xi;ψ)
∂ψk

Ḡ(xi;ψ)
+

n

∑
i=1

∂g(xi;ψ)
∂ψk

g(xi;ψ)

+
n

∑
i=1

(
C′′
(

θ
(
1− (1− Ḡ(xi;ψ)2)b)))

C′
(

θ
(
1− (1− Ḡ(xi;ψ)2)b

)) 2bθ

[
1− Ḡ(xi;ψ)2

]b−1
Ḡ(xi;ψ)

∂ Ḡ(xi;ψ)

∂ψk
.

The equations obtained by setting the partial derivatives equal to zero are not in closed form. The maximum likelihood

estimates of the parameters denoted by ∆̂ are obtained by solving the non-linear equation
(

∂`
∂θ

, ∂`
∂b ,

∂`
∂ψk

)T

= 0 using

numerical methods such as the Newton-Raphson procedure. The multivariate normal distribution N(0,J−1(∆̂)), where
the mean vector 0 = (0,0,0)T and J−1(∆̂) is the observed Fisher information matrix evaluated at ∆̂ can be used to
construct confidence intervals and confidence regions for the individual model parameters and for the survival and
hazard rate functions.

5. Simulation Study

In this section, a simulation study was conducted to assess consistency of the maximum likelihood estimators. We
considered a special case of the TL-LLP distribution. We simulated for the sample sizes n= 25,50, 100, 200, 400, 800,
and 1000, for N=1000 for each sample. We estimate the mean, root mean square error (RMSE), and average bias. The
bias and RMSE for the estimated parameter, say, ∆̂ , are given by

Bias(∆̂) =
1
N

N

∑
i=1

(∆̂i−∆), and RMSE(∆̂) =

√
∑

N
i=1(∆̂i−∆)2

N
,

respectively. We consider simulations for the following sets of initial parameters values (I: θ = 0.5,b = 1.5,c = 1.0),
(II: θ = 1.5,b = 1.5,c = 0.5), (III: θ = 0.5,b = 1.0,c = 1.5), and (IV: θ = 1.0,b = 1.5,c = 0.5). If the model performs
better, we except the mean to approximate the true parameter values, the RMSE, and bias to decay toward zero for an
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increase in sample size. From the results in Table 6, the mean values approximate the true parameter values, RMSE
and bias decay towards zero for all the parameter values.

6. Applications

In this section, we present examples to illustrate the usefulness and applicability of the TL-GPS class of distributions.
This is achieved by applying the special case of Topp-Leone-Log-Logistic Poisson to two real data sets and compar-
ing it to several equal-parameter non-nested models. Model parameters were estimated via the maximum likelihood
estimation technique using the R software. The performance of the models were assessed using the following several
goodness-of-fit statistics; -2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Informa-
tion Criterion (CAIC), Bayesian Information Criterion (BIC), Cramer von Mises (W ∗) and Andersen-Darling (A∗) (as
described by Chen and Balakrishnan (1995)), Kolmogorov-Smirnov (K-S) statistic and its p-value. The model that has
smaller values of these above mentioned goodness-of-fit statistics and larger p-value of the K-S statistics is deemed as
the best model.

Tables 7 and 8 show the model parameters estimates (standard errors in parenthesis) and the goodness-of-fit-statistics
for the two data sets considered. Plots of the fitted densities, the histogram of the data and probability plots (Cham-
bers et al. (1983)) are also presented to show how well our model fits the observed data set compared to the selected
non-nested models.

The non-nested models considered are the Weibull-Poisson (Mahmoudi and Seahdar (2013)), Topp-Leone general-
ized exponential (TL-GE) (Sangsanit and Bodhisuwan (2016)), alpha power Weibull (APW) (Nassar et al. (2016)),
Marshall-Olkin Extended Weibull (MOEW) (Cordeiro and Lemonte (2013)) and Marshall-Olkin log-logistic (MOLL)
(Gui (2013)), Topp-Leone Weibull-Lomax (WLx) (Jamal et al. (2019)), Transmutted Weibull (TW) (Ahmad et al.
(2015)) distributions. The pdfs of the non-nested models are as follows:

fMOLL(x;α,β ,γ) = α
β

βγ
xβ−1

(xβ + γαβ )2 ,

for α,β ,γ > 0, and x > 0,

fWP(x;θ ,β ,γ) =
θγβ γ xγ−1 exp(−(βx)γ)exp(θ(1− exp(−(βx)γ)))

exp(θ)−1
,

for θ ,β ,γ > 0, and x > 0,

fT L−GE(x;α,β ,λ ) = 2αβλe−λx(1− (1− e−λx)β (1− e−λx)βα−1(2− (1− e−λx)β ))α−1,

for α,β ,λ > 0, and x > 0,

fAPW (x;α,β ,θ) =
log(α)

(α−1)
βθxβ−1e−θxβ

α
1−e−θxβ

,

for α,β ,θ > 0 and x > 0,

FMOEW (x;α,λ ,γ) =
αγλxγ−1e−λxγ

(1− (1−α)e−λxγ
)2 ,

for α,λ ,γ > 0, and x > 0,

fWLx(x;a,b,α) = αab(1+bx)aα−1(1− (1+bx)−a)α−1e
−
(

1−(1+bx)−a

(1+bx)−1

)α

,

and
FTW (x;λ ,β ,α) = αβxβ−1e−λxβ

(1−λ +2λe−λxβ

),

for λ ,β ,α > 0 and x > 0.
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Table 6: Monte Carlo Simulation Results for TL-LLP Distribution: Mean, RMSE and Average Bias
I: θ = 0.5,b = 1.5,c = 1.0 II: θ = 1.5,b = 1.5,c = 0.5

samplesize Mean RMSE Bias Mean RMSE Bias
25 1.5971 1.6131 1.0971 2.2845 1.9846 0.7845
50 1.4729 1.5153 0.9729 2.2459 1.6083 0.7459

100 1.2283 1.3343 0.7283 2.0671 1.3136 0.5671
θ 200 0.8945 0.8672 0.3945 1.9149 1.1782 0.4149

400 0.6985 0.4912 0.1985 1.8147 0.9015 0.3147
800 0.5767 0.3278 0.0767 1.7387 0.6583 0.2387
1000 0.5582 0.2816 0.0582 1.7169 0.3868 0.2169
25 2.1429 1.0851 0.6429 1.8348 0.9946 0.3348
50 2.0972 1.0600 0.5972 1.9127 0.9588 0.4127

100 1.9571 0.9382 0.4571 1.8495 0.8420 0.3495
b 200 1.7545 0.5979 0.2545 1.7862 0.7787 0.2862

400 1.6238 0.3148 0.1238 1.7139 0.5848 0.2139
800 1.5459 0.1938 0.0459 1.6514 0.4170 0.1514
1000 1.5336 0.1627 0.0336 1.6269 0.2284 0.1269
25 0.9534 0.2776 -0.0466 0.5475 0.2675 0.0475
50 0.9260 0.2255 -0.0740 0.4895 0.1456 -0.0105

100 0.9364 0.1784 -0.0636 0.4813 0.1069 -0.0187
c 200 0.9588 0.1296 -0.0412 0.4815 0.0950 -0.0185

400 0.9774 0.0818 -0.0226 0.4815 0.0714 -0.0185
800 0.9915 0.0570 -0.0085 0.4841 0.0506 -0.0159
1000 0.9946 0.0505 -0.0054 0.4856 0.0370 -0.0144

III: θ = 0.5,b = 1.0,c = 1.5 IV: θ = 1.0,b = 1.5,c = 0.5
25 1.7985 2.7021 1.2985 1.8872 1.7102 0.8872
50 1.3213 1.3605 0.8213 1.8396 1.5185 0.8396

100 1.0529 1.0967 0.5529 1.5930 1.2897 0.5930
θ 200 0.7617 0.6139 0.2617 1.3665 0.9905 0.3665

400 0.6205 0.3775 0.1205 1.2081 0.6073 0.2081
800 0.5378 0.2792 0.0378 1.1668 0.4165 0.1668
1000 0.5307 0.2437 0.0307 1.1387 0.3297 0.1387
25 1.5638 1.1103 0.5638 1.9438 0.9746 0.4438
50 1.3771 0.7673 0.3771 1.9898 1.0018 0.4898

100 1.2557 0.6358 0.2557 1.8732 0.8563 0.3732
b 200 1.1193 0.3231 0.1193 1.7573 0.6714 0.2573

400 1.0549 0.1742 0.0549 1.6424 0.3878 0.1424
800 1.0168 0.1206 0.0168 1.6062 0.2516 0.1062
1000 1.0126 0.1029 0.0126 1.5836 0.1891 0.0836
25 1.4752 0.6269 -0.0248 0.5130 0.1866 0.0130
50 1.4338 0.3859 -0.0662 0.4776 0.1297 -0.0224

100 1.4436 0.2663 -0.0564 0.4776 0.0965 -0.0224
c 200 1.4684 0.1842 -0.0316 0.4806 0.0768 -0.0194

400 1.4827 0.1224 -0.0173 0.4885 0.0535 -0.0115
800 1.4971 0.0884 -0.0029 0.4887 0.0372 -0.0113
1000 1.4989 0.0789 -0.0011 0.4930 0.0296 -0.0070
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6.1. Growth Hormone Data

The data consists of the estimated time since growth hormone medication until the children reached the targeted age.
This data was used by Alizadeh et al. (2017) and are as follows: 2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05,
3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16,
8.21, 8.72, 10.40, 13.20, 13.70. The estimated variance-covariance matrix for the TL-LLP model on growth hormone

Table 7: Parameter estimates and goodness-of-fit statistics for various fitted models for growth hormone data
set

Estimates Statistics
Model θ b c −2log L AIC AICC BIC W ∗ A∗ KS P− value

TL-LLP 6.5265×10−5 5.2422×10 1.3853 155.4571 161.4571 162.2313 166.1231 0.0382 0.2660 0.0849 0.9624
(0.1033) (17.693) (0.1549)

θ β γ

WP 8.8353 ×10−9 0.159 1.9932 165.0 170.9772 171.7514 175.6432 0.1639 1.0262 0.1454 0.4501
(0.0117) (0.0149) (0.2438)

α β λ

APW 6.4700×104 0.8444 0.7494 158.4884 164.4884 165.2626 169.1544 0.0710 0.4808 0.0924 0.9262
(1.4803×10−7) (0.1031) (0.1365)

α γ λ

MOEW 0.0280 3.4077 0.0002 158.1646 164.1646 164.9388 168.8307 0.0616 0.4330 0.0972 0.8953
(0.0430) (0.0026) (0.0002)

a b α

WLx 0.2548 2.4039 4.2177 162.1874 168.1874 168.9616 172.8535 0.1265 0.8062 0.1329 0.5663
(0.1825) (5.0117) (2.4857)

α β λ

TL-GE 2.3206×10−3 2.7741×103 0.4786 158.1108 164.1108 164.885 168.7769 0.0724 0.4876 0.1025 0.8561
(7.5165×10−4) (3.1617×10−7) (7.2079×10−2)

λ β α

TW 0.6092 2.1722 0.0140 163.4343 169.4343 170.2085 174.1004 0.1437 0.9030 0.1320 0.5758
( 0.3488) (0.2648) (0.0084)

α β γ

MOLL 3.3212 3.5219 3.0700 158.5828 164.5828 165.357 169.2488 0.0560 0.4061 0.0978 0.8911
(0.2844) (0.4909) (0.0874)

data is  0.0107 0.0001 −0.0013
0.0001 322.661 2.4121
−0.0013 2.4121 0.0240


and the 95% confidence intervals for the model parameters are given by θ ∈ [(6.5265×10−5)±0.2025], b ∈ [5.2422×
10±35.2075] and c ∈ [1.3853±0.3036]. Based on the results shown in Table 7, we observe that the TL-LLP model

Figure 5: Fitted Densities and Probability Plots for the Growth Hormone Data

has the smallest values of all the goodness-of-fit statistics and bigger value for the K-S p-value. We therefore conclude
that the TL-LLP distribution performs better than the several models considered in this paper. The fitted densities and
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probability plots in Figure 5 also shows that the TL-LLP model fit the growth hormone data set better than the selected
non-nested models.

6.2. Repair Lifetimes Data

The second data set represents maintenance on active repair times (in hours) for an airborne communication transceiver
reported by Leiva et al. (2009) and Chhikara and Folks (1977) and are as follows: 0.2, 0.3,0.5, 0.5, 0.5, 0.5, 0.6, 0.6,
0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5,
4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5. The estimated variance-covariance matrix for the TL-LLP model

Table 8: Parameter estimates and goodness of fit statistics for various fitted models for repair lifetimes data set
Estimates Statistics

Model θ b c −2log L AIC AICC BIC W ∗ A∗ KS P− value
TL-LLP 0.0001 4.4081 0.8102 200.1734 206.1734 206.7448 211.6593 0.0547 0.3276 0.0882 0.8667

(0.2035) (0.6894) (0.0905)
θ β γ

WP 3.9697 ×10−8 0.2953 0.8978 208.9395 214.9395 215.5110 220.4255 0.1297 0.9003 0.1209 0.5125
(0.0219) (0.0516) (0.0957)

a b α

WLx 0.2222 7.0310 2.1228 202.2696 208.2696 208.841 213.7555 0.0697 0.4745 0.1059 0.6802
(0.1093) (11.2084) ( 0.9099)

α β λ

APW 0.0295 1.1011 0.0924 204.9274 210.9274 211.4988 216.4133 0.0986 0.6520 0.1111 0.6209
(0.0566) (0.1201) (0.0521)

α γ λ

MOEW 0.0332 1.4861 0.0126 201.7121 207.7121 208.2836 213.1981 0.0700 0.4330 0.0922 0.8289
(0.0540) (0.2084) (0.0208)

TL-GE 2.1603×10−4 4.4317×103 0.2689 209.9544 215.9544 216.5258 221.4403 0.1455 1.0116 0.1520 0.2381
(4.2209×10−5) (2.8118×10−8) (5.2662×10−2)

λ β α

TW 0.6735 0.9792 0.1986 206.9540 212.954 213.5254 218.4399 0.1150 0.7817 0.1161 0.5650
( 0.3038) ( 0.1047) ( 0.0602)

α β γ

MOLL 0.9457 1.5439 2.8641 202.3421 208.3421 208.9135 213.828 0.0750 0.4519 0.0939 0.8122
(114.6974) (0.1858) (536.30783 )

on repair times data set is  0.0414 0.0459 −0.0030
0.0459 0.4753 −0.0073
−0.0030 −0.0073 0.0082


and the 95% confidence intervals for the model parameters are given by θ ∈ [0.0001±0.3988], b ∈ [4.4081±1.3512]
and c ∈ [0.8102±0.1773]. Based on the results shown in Table 8, we observe that the TL-LLP model has the smallest

Figure 6: Fitted Densities and Probability Plots for the Repair Lifetimes Data

values of all the goodness-of-fit statistics and bigger value for the K-S p-value. We therefore, conclude that the TL-
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LLP distribution performs better than the several models considered in this paper. The fitted densities and probability
plots in Figure 6 also shows that the TL-LLP model fit the repair times data set better than the selected models.

7. Concluding Remarks

We developed a new class of distributions, called the Topp-Leone-G Power Series (TL-GPS) class of distributions. We
presented some sub-classes and some special cases of the new proposed distribution. Structural properties were also
derived including moments, mean deviations, distribution of order statistics, Rényi entropy, and maximum likelihood
estimates. We also presented two real data examples to show the usefulness of the new class of distributions. The
proposed model performs better than the several models on the selected data sets.
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