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Abstract  

 

Process capability analysis has been widely applied in the field of quality control to monitor the performance of 

industrial processes. Hence, lifetime performance index CL is used to measure the potential and performance of a 

process. In the present study, we construct a maximum likelihood estimator of CL under Burr type III distribution 

based on the progressive Type II censored sample. The maximum likelihood estimator of CL is then utilized to 

develop the hypothesis testing procedure in the condition of known L. Finally, one practical example and Monte 

Carlo simulation are given to assess the behavior of the lifetime performance index under given significance level. 
 

Key Words: Process capability index; Lifetime performance index; Burr Type III distribution, Progressive Type 
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1. Introduction  

Burr (1942) has suggested twelve types of cumulative distribution functions, which yield a variety of density shapes. 

The principal aim in choosing one of these forms of distributions is to facilitate the mathematical analysis to which it 

is subjected, while attaining a reasonable approximation. Burr Type III (BIII) distribution is a very important lifetime 

model in the analysis of equipment failure data, vehicle and informational studies, as well as in models of stress and 

durability. The lifetime X of product has a two-parameter BIII distribution if its cumulative distribution function (cdf) 

and probability distribution function (pdf) defined respectively as  

                                                 
( ); , 1 x , 0  , , 0,F x x 

   −
−

 = +                                                       (1) 

and, 

                                                    

1
1( ; , ; 0) .1f x x x x

   
− −

− − − = +                                                     (2) 

where   and   are shape parameters. Altindag et al. (2017) proposed the estimation and prediction problems for the 

BIII distribution under type II censored data. Panahi (2017) developed the statistical inference of the unknown 

parameters of a BIII distribution based on the unified hybrid censored sample. The maximum likelihood (ML) 

estimates of the unknown parameters were obtained using the expectation–maximization algorithm. Gamchi et al. 

(2019) studied the estimation and prediction problems for the BIII distribution under progressive type II hybrid 

censored data. They obtained the ML estimates of unknown parameters using stochastic expectation maximization 

algorithm. 

    Process capability indices (PCIs) have been used in the manufacturing industry to provide quantitative measures of 

process potential and performance. High quality production provides advantages such as cost saving, reduced scrap 
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or remanufacturing, higher yield and increased customer satisfaction and market share. PCIs are extensively used in 

industry to evaluate the conformation of products (process yield) to their specifications. PCIs are utilized to assess 

whether product quality meets the required level. For manufacture industry PCI is an effective and convenient tool for 

quality assessment. There are several PCI in the literature that can be used to measure the capability of process. As a 

measure of quality for lifetime, Montgomery (1985) and Kane (1986) proposed the process capability index, CL
 
for 

evaluating the lifetime performance of electronic components, where L is the lower specification limit.  

    In life-testing and reliability experiments, units may be lost or removed during experimentation before failure. The 

removal may be unplanned, like in accidental breakage of an experimental unit, or if a unit drops out of the experiment. 

Most often, the removal is pre-planned in order to save time and cost. Progressive censoring is an efficient in 

exploitation of the available resources. In other words, when some of the surviving units in the experiment are removed 

early, they can be used for some other tests. Cohen (1965) discussed the importance of progressive censoring in life-

testing reliability experiments. There are several types of censoring schemes in survival analysis, one of these schemes 

is the type II censoring scheme. A generalization of type II censoring is the progressive type II censoring (PTIIC) 

which allows for units to be removed from the test at points other than the final termination point. 

    Here, we consider a PTIIC scheme which is a useful scheme in which a specific fraction of individuals at risk may 

be removed from the experiment at each of several ordered failure times. Therefore, progressive censoring scheme 

allows us the removals (before the termination of the experiment) to incorporate into analysis.   

    Statistical inferences for CL based on censored samples have been considered by several researchers. For instance, 

Lee et al. (2009) proposed a hypothesis testing procedure based on the ML estimator of CL to evaluate the product 

quality for two-parameter exponential under PTIIC samples.  Hong et al. (2012) applied the large-sample theory to 

construct a ML estimator of CL with the progressive first-failure-censored sampling plan under the Weibull 

distribution. The ML estimator of CL is then utilized to develop a new hypothesis testing procedure in the condition 

of known L. Ahmadi et al. (2013) constructed a ML estimator and lower bound of  CL for Weibull distribution with a 

known shape parameter. The ML estimator was obtained on the basis of progressive first-failure censored data. Wu et 

al. (2013) constructed statistical methods of assessing the lifetime performance of products with Rayleigh distribution 

under PTIIC samples. The ML estimator of CL was inferred by the technique of data transformation. Wu et al. (2014) 

constructed the ML estimator of CL for the two-parameter Burr XII distribution with PTIIC sample on the condition 

of known L. Gildeh and Nadi (2016) obtained the uniformly minimum variance unbiased estimator (UMVUE) of CL 

under the assumption of two-parameter exponential distribution based on a progressive first-failure censored sample. 

Then the UMVUE of CL was utilized to develop the new hypothesis testing procedure. Hassanein (2018) devoted to 

evaluate CL for the three- parameter power Lomax distribution under progressive first-failure  censoring samples with 

respect to a lower specification limit L. Wijekularathna and Subedi (2019) constructed the ML estimator of CL based 

on PTIIC sample. The ML estimator of CL was utilized to develop the hypothesis testing procedure. 

    Due to the importance of BIII distribution in practical framework and PTIIC scheme, so our objective here is to 

construct an ML estimator of CL for BIII distribution under PTIIC sample. The ML estimator of CL is then utilized to 

develop a new hypothesis testing procedure under the condition of a known lower specification limit L. The new 

testing procedure can be employed to assess whether the lifetime of products (or items) adheres to the required level 

in the condition of known L. The rest of this paper is organized as follows: Section 2 introduces some properties of 

the lifetime performance index for lifetime of product (or item) with the transformation of BIII distribution based on 

the PTIIC sample and discusses the relationship between the lifetime performance index and conforming rate. Section 

3 presents the ML estimator of the CL and its statistical properties in view of theoretical and practical framework. 

Section 4 develops a new hypothesis testing procedure for lifetime performance index for PTIIC samples, the power 

function of test statistics is provided. Further, a simulation study of power function is conducted and confidence 

interval for CL is derived. Application to real data is discussed in Section 5. The article encloses with some concluding 

remarks.  

 

2. The Lifetime Performance Index and Conforming Rate 

Suppose that the lifetime X of product has a two-parameter BIII distribution with the cdf and pdf defined in (1) and 

(2) respectively. To obtain CL for the BIII distribution, the following transformation will be used, 
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log (1 )ey x −= +                                                                               (3) 

Hence, the pdf of Y is given by 

( )1 1) J , J 1 ,( ; ) ( ; ,f dx dy xf x xy     − − += = +=  
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Also, it is known that the mean and variance of Y are1   and 2
1  respectively. The failure rate function ( ; )r y  is 
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So, the lifetime performance index CL is obtained by substituting mean and variance as follows 

                                               ,  ( )   1 ,       1   L LC L L C  − = − − =                                                                         (6) 

where the process mean 1 = , the process standard deviation 1 = , and L is the lower specification limit. 

When the mean lifetime of products 1 ,L   then CL > 0. From (5) and (6), it can be seen that the larger value of 

the mean, the smaller value of failure rate and the lager value of CL. Therefore, CL reasonably and accurately represents 

the lifetime performance of products. 

     If the lifetime of a product Y, which ,Y L  and β > 0 exceeds L, then the product is defined as a conforming 

product. The ratio of conforming products is known as the conforming rate (Pr ) and can be defined as 

( ) ( )  .y L

r

L L

P P Y L f y dy e dy e 
 

− −=  = = =   

From Equation (6), 1 ,LL C = −  then Pr is as follows 

                                               
( )1

,         1.LC

r LP e C
−

= −  
                     

                                                      (7)       

    Obviously, a strictly increasing relationship exists between Pr and CL. Thus, the larger value of CL, the larger value 

of Pr. Table 1 lists various CL values and the corresponding Pr. For the CL values which are not listed in Table1, the 

Pr  can be obtained through interpolation.  Utilizing the one-to-one relationship between Pr and CL,  so the lifetime 

performance index can be a flexible and effective tool, not only for evaluating product quality, but also for estimating 

Pr .  

Table 1: The lifetime performance index versus the conforming rate 

Z
 

Pr CL
 

Pr 

−∞ 0.00000 0.15 0.42741 

−9.00 0.00004 0.20 0.44933 

−8.00 0.00012 0.25 0.47237 

−7.00 0.00033 0.30 0.49659 

−6.00 0.00091 0.35 0.52205 

−5.00 0.00248 0.40 0.54881 

−4.50 0.00409  0.45 0.57695 

−4.00 0.00673 0.50 0.60653 

−3.50 0.01111 0.55 0.63763 

−3.00 0.01832 0.60 0.67032 

−2.50 0.03019 0.65 0.70469 

−2.00 0.04979 0.70 0.74082   
−1.50 0.08208 0.75 0.77880 

−1.00 0.13534 0.80 0.81873 

−0.50 0.22313 0.85 0.86071 

0.00 0.36788 0.90 0.90484 

0.05 0.38674 0.95 0.95123 

0.10 0.40657 1.00 1.00000 

 

3. ML Estimator of Lifetime Performance Index 
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In this section, ML of CL under BIII is obtained in presence of PTIIC sample. Based on transformation (3) we obtain 

the ML estimator of exponential distribution. Let Y denote the lifetime Y has a one-parameter exponential distribution 

with the pdf (4). The joint likelihood function of y(1) , y(2) ,…, y(m), based on PTII censoring is given as 

         

( ) ( ) ( ) ( )

( )

( ) ( )

( )

1

 
 

2 ( ) (

1 1

1

2

) 2

,

   , 1       ( ) 1 1     

 

i
i i i

m

i i

i

m m
y y R

i i

i i

R y

R

m

L C f y F y C e e

eC

 



  

 =

− −

= =

− +

  = − = − −
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
=

 
                                        (8)   

where, C2=(n−R1−1)…(n−R1−R2−…−Rm-1−m+1). The ML estimator ̂   of   can be obtained as  

                                   
( ) ( )

1

,ˆ

1
m

i i

i

m

R y



=

=

+
                                                                                                              (9)                          

where Ri’s denote the number of items removed at the time of the ith failure, m be the number of failures observed 

before termination. By using the invariance property of ML estimator, hence the ML estimator of CL, say ˆ
LC  can be 

written as 

                                  ( ) ( )1

ˆ 1 1 .ˆ

1
L m

i ii

mL
C L

R y


=

= − = −
+

                                                                                  (10) 

Let ( ) ( )

1

1
m

i i

i

W R y
=

= + , then the ML estimator ˆ
LC of LC  can be rewritten as ˆ 1LC mL W= − . To prove that

( )
2

2
2 ~ χ

m
W , the normalized spacing D(i) between y(1), y(2),…,y(m) is defined as follows 

( )
1

( )   ( 1) (1)  

1

1 ( 1) ,, 1,...,
i

j i i

j

iD mn Rny D y y i
−

−

=

 
= − + − = 
 

=    (11) 

Hence, ( )

1 1

(1 )
m m

i i i

i i

W R y D
= =

= + =  . 

    It is known that the normalized spacing D1, D2, …, Dm constitute an independent random sample from one-

parameter exponential distribution (see Viveros and Balakrishnan(1994)), hence  

( )2
1

22 2 ~ χ
m

i

i
m

DW 
=

=    

Furthermore, the expectation of ˆ
LC can be derived as follows  

       

( )
( ) ,1

1
1 1   1 2 ,ˆ

21
m

i i

L

ni

mL mL
E

W
E E

W
C mLE

R y



=

     = − = − = −   
   +   

 
where ( )1 2 W has the inverted chi-square distribution with mean1 (2 2).m−  Here, the expected value of ˆ

LC is as 

follows 

                                                            
( ) ,ˆ 1

1
L

mL
E C

m


= −

−
                                                                         (12) 

but ( )ˆ
L LE C C  where   1 , LC L= −  the ML estimator ˆ

LC  is not an unbiased estimator of CL.  But when m   ,→

( )ˆ
L LE C C→ , so the ML estimator ˆ

LC  is asymptotically unbiased estimator. Moreover, the mean square error (MSE) 

is defined as  

          ( ) ( ) ( )

2 2 2 2 2
2

2 2
ˆ ˆ MSE     .

1 2 1
( )L L L

m L L
C E C C

m m m

 
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−
=

  − −
                                                                        (13)                                              
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In the following algorithm the numerical study is carried out to obtain the ML estimate of CL and their MSE for 

different sampling schemes. The simulation procedure is utilizing for 1000 random samples via R 3.5.3. The following 

steps are created as follows  

Algorithm (1) 

Step 1: Generate a random sample u1 , u2 ,…, um of size m  from a uniform (0,1), then the uniform random numbers 

can be transformed to BIII random numbers by using inversion method 

Step 2: The generated data for log (1 )i e iy x −= + , i = 1,..., m, where ( x1 , x2 ,…, xm ) is a random sample from the 

BIII distribution. 
Step 3: Set (y(1) , y(2) ,…, y(m)) is the PTC sample from a one-parameter exponential distribution with pdf (4). 

Step 4: Given   = (0.5, 1 and 1.5), 1.7 = and 3.5, L=0.5, the selected value of (n, m) are  (n, m) = (10,5), (20,10), 

(30,5), (30,10), (50,5), (50,10) and R= (R1 , R2 ,…, Rm) has different samples schemes. Three sample values are used 

for each case, for example (n, m) = (10, 5) the schemes are R= (3,0,0,0,2), (1,1,1,1,1), (1,0,2,0,2).   

Step 5: The value of ˆ
LC is calculated by using ( ) ( )

1

ˆ 1 1 .
m

L i i

i

C mL R y
=

 
= − + 

 
  

Step 6: The MSE ( ˆ
LC ) =

2
ˆ    L LE C C −

 
 , where   1 , LC L= − is calculated. Numerical results are listed in Tables 2 

and 3.  

Table 2: ML estimator and MSEs under PTIIC schemes for   =0.5, 1, 1.5 and  =1.7 

)n, m) Scheme   ˆ
LC  MSE 

  0.5 0.70447 0 .09848 

(10,5) (1,1,1,1,1) 1 0.58870 0.02994 
  1.5 0.40663 0.03468 
  0.5 0.69602 0.23974 

(20,5) (3,3,3,3,3) 1 0.51405 0.05983 

  1.5 0.40906 0.11195 

  0.5 0.77243 0.01317 

(30,5) (5,5,5,5,5) 1 0.51622 0.17160 
  1.5 0.38998 0.07352 
  0.5 0.75174 0.04122 

(50,5) (9,9,9,9,9) 1 0.53072 0.03828 
  1.5 0.46297 0.03530 

 

Table 3: ML estimator and MSEs under PTIIC schemes for   =0.5, 1, 1.5 and  =3.5 

)n, m) Scheme   ˆ
LC  MSE 

  
0.5 0.93076 0.00049 

(10,5) (1,1,1,1,1) 1 0.84412 0.00443 
  1.5 0.78342 0.00555 

  
0.5 0.92954 0.00049 

(20,5) (3,3,3,3,3) 1 0.84476 0.00259 

  1.5 0.77620 0.00720 

  0.5 0.92509 0.00106 

(30,5) (5,5,5,5,5) 1 0.84812 0.00164 
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)n, m) Scheme   ˆ
LC  MSE 

  
1.5 0.78081 0.00719 

  
0.5 0.92190 0.00114 

(50,5) (9,9,9,9,9) 1 0.84351 0.00500 
  

1.5 
0.77793 0.00526 

 

From these tables, the following observations can be detected about the performance of ML estimate CL, 

➢ The MSEs of the ˆ
LC  estimates decrease as the sample sizes increase for different selected set of parameters 

for different samples schemes.   

➢ At 1.7 =  and as the value of   increases, the ML estimates of CL decrease.  

➢ At 1 = , the values of ˆ
LC

 
are increasing as value of   increases for different values of (n, m). 

➢ All  results of Tables 2 and 3 show that the MSE are enough small and the scope of MSE is between 

0.000and0.240.  

➢ The estimated values(5,5,5,5,5), R= and  MSE varies depending on the values schemes for example ˆ
LC   

(10,0,5,0,10), (0,0,5,0,20) for (n,m)=(30,5). The estimated values(0.77243, 0.70431, 0.64693) and = ˆ
LC   

MSE= (0.0131, 0.04056, 0.1128) respectively at 𝜆=1.7, 0.5 = . 

➢ Hence, these results from the simulation studies illustrate that the performance of our proposed method is 

acceptable. 

 

4. Testing Procedure for the Lifetime Performance Index 

     In this section, a statistical testing procedure is considered to assess whether the lifetime performance index adheres 

to the required level. The one-sided hypothesis testing and the power of test are discussed under PTII censoring. 

Assuming that the required index value of lifetime performance index is larger than c , where c denotes the target 

value is constructed. The aim is to test the null hypothesis 

𝐻0: LC  ≤ c  (the product is unreliable), 

the alternative hypothesis 

𝐻1: LC  >  c  (the product is reliable), 

are constructed.  The ML estimator ˆ
LC of LC is used as the test statistic, so the rejection region can be expressed as 

{ ˆ
LC |

LC  >  0C  } .Given the specified significance level  , the critical value 0C   can be calculated as follows 

0 0
ˆ(       ) (1     )L L L

mL
P C C C c P C C c

W
       → −     

                             

( )
0    c    

0

2 12
(1       ) 2  

2 1  L

L

L C

m CmL
P C C c sup P W

W C


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


 



− 
−    →  = 

− 
                            (14)                  

( )
0

2 1
2 1   ,

1  

m c
P W

C
 





 −
  = −
 −
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( )
0

2 1
  2      

1  
L

m c
Since P W asC c

C








  −
   

  −
  

where 2

(2 )2 ~ mW  . From (14), utilizing inverse-chi-square (INVCHI) 

(1- , 2m ) function which represents the lower 1−  percentile of ( )
2

2
χ

m
 , then 

( )
0

)
2 1

 INVCHI 1 ,  2
1  

(
m c

m
C







−
= −

−
 is 

obtained. Thus, the critical value can be derived as; 
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( )
( )

0

2 1
1 ,

INVCHI 1 ,  2m

m c
C






−

= −
−

 (15) 

where c ,   and m denote the target value, the specified significance level and the number of observed failures before 

termination, respectively. Moreover, it can be found that 0C 
 is independent of n and Ri ,  i=1,2,...,m. 

4.1 Power Function of the Test  

   The power of this statistical test is the probability of correctly rejecting a false null hypothesis. The null hypothesis 

𝐻0: 
LC ≤ c , and the alternative hypothesis 𝐻1: 

LC > c ,are constructed.  The power of this statistical test is derived 

as follows:  

Under PTIIC scheme, we get a size   test with the rejection region
( )
( )

*2 1
ˆ ˆ   1 

INVCHI 1 ,  2
L L

m c
C C

m

 − 
 − 

−  

, for the number 

of observed failures before termination m and sample size n (m ≤ n). The power ( )LP C  of the test at this point 
LC  >

c  defined as;    
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       (16)

 

where 2 W ~ ( )
2

2
χ .

m
 

Algorithm (2) 

The numerical study is designed to obtain the critical values of the power test. The simulated procedures are done via 

R 3.5.3 and described as follows 

Step 1: 

    (a) Generation of data(y1, y2 ,…, ym)  is done as give in Algorithm 1.  

    (b) Set (y(1) , y(2) ,…, y(m)) as the PTIIC from a one-parameter exponential distribution with pdf (4). 
    (c) Given c* =0.1, CL = 0.1, 0.2, 0.3... 0.9,  =1.7 and 3.5,  L= 0.5, the indicated significance levels of  = 0.01 

and 0.05. The selected values of (n,m) are (n,m)=(10,5), (20,5), (30,5), (50,5), where  c*< CL <1 and m < n and 

R=( R1,R2,…Rm) different samples schemes    

 (d)The value of ˆ
LC is calculated by 

( ) (

1

)

ˆ 1 .

1
L

i i

m

i

mL
C

R y
=

= −

+
    

(e) If 0
ˆ

LC C  , the critical value is obtained by using  

( )
( )

*

*

0

2 1
1 .

INVCHI  1 ,  2

m c
C

m

−
= −

−
 

Step2: (a) The Step1 is repeated1000 times.  

             (b)The estimation of the power ( ),LP C is
TotalCountˆ ( ) .

1000
LP C =  

Step3: (a) The Step 2, based on 100 estimations of the power ( ),LP C can be obtained as follows:    

1 2 100
ˆ ˆ ˆ( ), ( ),....., ( ).L L LP C P C P C  

             (b)The mean ˆ )(  LP C  of 1 2 100
ˆ ˆ ˆ( ), ( ),....., ( )L L LP C P C P C , that is 
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100

1

ˆ )
ˆ )

100

(

(   i

L

i LP C

P C ==


, is calculated. 

            (c)The MSE of 1 2 100
ˆ ˆ ˆ( ), ( ),....., ( )L L LP C P C P C  is obtained as follows 

100
2

1

ˆ( ( ) ( ))

MSE
100

i L L

i

P C P C
=

−

=


, where ( ),LP C can be calculated from (16). 

The results of simulated data are listed in Tables 4 to 7. 

Table 4: The values of ( ),LP C  ( )ˆ  LP C and MSE for test of hypothesis when  =1.7, m=5 and 0.01 =  under 

PTIIC schemes 

Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

(1,1,1,1,1) 

 0.1 0.058 0.07654 0.00007 

 0.2 0.108 0.13321 0.00012 

 0.3 0.212 0.21836 0.00014 

 0.4 0.341 0.33785 0.00016 

10 0.5 0.488 0.48727 0.00025 

 0.6 0.641 0.65523 0.00021 

 0.7 0.804 0.80467 0.00014 

 0.8 0.918 0.91568 0.00006 

 0.9 0.982 0.9762 0.00002 

(3,3,3,3,3) 

 0.1 0.091 0.07635 0.00007 

 0.2 0.152 0.13279 0.00010 

 0.3 0.238 0.2152 0.00016 

 0.4 0.341 0.33446 0.00020 

20 0.5 0.473 0.48963 0.00030 

 0.6 0.68 0.65652 0.00024 

 0.7 0.781 0.80792 0.00013 

 0.8 0.919 0.91628 0.00008 

 0.9 0.985 0.97724 0.00001 

(5,5,5,5,5) 

 0.1 0.077 0.07847 0.00008 

 0.2 0.122 0.13236 0.00011 

 0.3 0.22 0.21631 0.00017 

 0.4 0.347 0.33632 0.00022 

30 0.5 0.506 0.48863 0.00016 

 0.6 0.674 0.65341 0.00020 

 0.7 0.814 0.808 0.00014 

 0.8 0.905 0.91751 0.00007 

 0.9 0.975 0.97696 0.00002 

(9,9,9,9,9) 
 0.1 0.089 0.07711 0.00008 

 0.2 0.153 0.1315 0.00009 

 0.3 0.209 0.21716 0.00015 
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Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

 0.4 0.348 0.33829 0.00023 

50 0.5 0.492 0.49053 0.00026 

 0.6 0.655 0.65403 0.00028 

 0.7 0.79 0.80662 0.00019 

 0.8 0.915 0.91729 0.00009 

 0.9 0.98 0.97674 0.00002 

 

Table 5: The values of ( ),LP C  ( )ˆ  LP C and MSE for test of hypothesis when  =3.5, m=5 and 0.01 =  under 

PTIIC schemes 

Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

(1,1,1,1,1) 

 0.1 0.915 0.90585 0.00008 

 0.2 0.951 0.9444 0.00005 

 0.3 0.959 0.96884 0.00003 

 0.4 0.979 0.98421 0.00001 

10 0.5 0.994 0.99249 0.00000 

 0.6 0.996 0.99709 0.00000 

 0.7 0.999 0.99911 0.00000 

 0.8 0.998 0.99965 0.00000 

 0.9 1 0.99997 0.00000 

(3,3,3,3,3) 

 0.1 0.89 0.90656 0.00005 

 0.2 0.944 0.94484 0.00004 

 0.3 0.979 0.96909 0.00003 

 0.4 0.991 0.98398 0.00001 

20 0.5 0.993 0.99282 0.00000 

 0.6 0.996 0.99701 0.00000 

 0.7 1 0.99898 0.00000 

 0.8 1 0.99973 0.00000 

 0.9 0.999 0.99993 0.00000 

(5,5,5,5,5) 

 0.1 0.917 0.90679 0.00008 

 0.2 0.949 0.94386 0.00004 

 0.3 0.976 0.96847 0.00003 

 0.4 0.981 0.98356 0.00001 

30 0.5 0.995 0.99311 0.00000 

 0.6 0.995 0.99707 0.00000 

 0.7 0.998 0.99901 0.00000 

 0.8 0.999 0.99975 0.00000 

 0.9 1 0.99992 0.00000 

(9,9,9,9,9) 

 0.1 0.909 0.90746 0.00007 

 0.2 0.943 0.94317 0.00005 

 0.3 0.971 0.96884 0.00003 
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Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

 0.4 0.982 0.98419 0.00001 

50 0.5 0.995 0.99223 0.00000 

 0.6 0.998 0.99732 0.00000 

 0.7 0.999 0.99915 0.00000 

 0.8 1 0.99979 0.00000 

 0.9 1 0.99998 0.00000 

Table 6: The values of ( ),LP C  ( )ˆ  LP C and MSE for test of hypothesis when  =1.7, m=5 and 0.05 =  under 

PTIIC schemes 

Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

(1,1,1,1,1) 

 0.1 0.215 0.23066 0.00019 

 0.2 0.306 0.32235 0.00016 

 0.3 0.435 0.43078 0.00022 

 0.4 0.563 0.55682 0.00026 

10 0.5 0.656 0.68056 0.00024 

 0.6 0.788 0.79711 0.00015 

 0.7 0.889 0.88896 0.00010 

 0.8 0.945 0.94949 0.00003 

 0.9 0.99 0.98341 0.00001 

(3,3,3,3,3) 

 0.1 0.242 0.23456 0.00014 

 0.2 0.306 0.32361 0.00014 

 0.3 0.426 0.43249 0.00024 

 0.4 0.561 0.55938 0.00023 

20 0.5 0.688 0.68303 0.00021 

 0.6 0.798 0.79969 0.00015 

 0.7 0.893 0.88776 0.00009 

 0.8 0.948 0.95141 0.00003 

 0.9 0.983 0.98352 0.00001 

(5,5,5,5,5) 

 0.1 0.218 0.23352 0.00013 

 0.2 0.313 0.32305 0.00022 

 0.3 0.437 0.43378 0.00026 

 0.4 0.573 0.55671 0.00027 

30 0.5 0.676 0.68274 0.00026 

 0.6 0.802 0.79774 0.00014 

 0.7 0.888 0.88973 0.00008 

 0.8 0.952 0.94994 0.00004 

 0.9 0.978 0.98422 0.00001 

(9,9,9,9,9) 

 0.1 0.201 0.23435 0.00017 

 0.2 0.342 0.32295 0.00023 

 0.3 0.415 0.43544 0.00025 

 0.4 0.552 0.55546 0.00024 

50 0.5 0.679 0.68289 0.00020 

 0.6 0.797 0.79875 0.00012 
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Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

 0.7 0.897 0.89056 0.00008 

 0.8 0.953 0.95005 0.00003 

 0.9 0.988 0.98402 0.00001 

Table 7: The values of ( ),LP C  ( )ˆ  LP C and MSE for test of hypothesis when  =3.5, m=5 and 0.05 =  under 

PTIIC schemes 

Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

(1,1,1,1,1) 

 0.1 0.974 0.97088 0.00002 

 0.2 0.985 0.98354 0.00001 

 0.3 0.992 0.99036 0.00000 

 0.4 0.994 0.995 0.00000 

10 0.5 0.997 0.99749 0.00000 

 0.6 1 0.99906 0.00000 

 0.7 0.999 0.99962 0.00000 

 0.8 1 0.99986 0.00000 

 0.9 1 0.99997 0.00000 

(3,3,3,3,3) 

 0.1 0.973 0.97135 0.00002 

 0.2 0.983 0.98202 0.00001 

 0.3 0.989 0.99014 0.00000 

 0.4 0.996 0.99506 0.00000 

20 0.5 0.997 0.99783 0.00000 

 0.6 0.998 0.99896 0.00000 

 0.7 1 0.99957 0.00000 

 0.8 1 0.99988 0.00000 

 0.9 1 0.99995 0.00000 

(5,5,5,5,5) 

 0.1 0.96 0.97049 0.00003 

 0.2 0.991 0.983 0.00001 

 0.3 0.991 0.99018 0.00000 

 0.4 0.999 0.99517 0.00000 

30 0.5 0.997 0.99729 0.00000 

 0.6 0.999 0.99905 0.00000 

 0.7 0.998 0.99956 0.00000 

 0.8 1 0.99991 0.00000 

 0.9 1 0.99995 0.00000 

(9,9,9,9,9) 

 0.1 0.967 0.97158 0.00002 

 0.2 0.987 0.98254 0.00001 

 0.3 0.991 0.99025 0.00001 

 0.4 0.996 0.9948 0.00000 

50 0.5 0.994 0.99749 0.00000 

 0.6 1 0.99899 0.00000 

 0.7 1 0.99957 0.00000 

 0.8 1 0.99989 0.00000 
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Scheme(R) n 
LC  ( )LP C  ( )ˆ  LP C  MSE 

 0.9 1 1 0.00000 

 

From Tables 4 to 7, the following observations can be detected as follows  

➢ For fixed CL, as the observed number before termination m increases the simulation power ( )ˆ  LP C  and the 

power ( ),LP C  increase (see for example Figure 1). 

 

 
Figure 1: The power function of test at 0.01 = ,    =1.7 under PTIIC scheme for, n=30, m=5 

 

➢ For fixed m, the simulation power ( )ˆ  LP C and the power ( ),LP C increase when CL is increasing, but 

independent of n and R= (R1, R2 ,…, Rm). 

➢ All of the simulation power ( )ˆ  LP C   close to the power ( ),LP C  for all value of CL. 

➢ Values of the MSE are enough small and the scope of MSE is between 0.00000 and 0.00030. 

➢ The power values, ( ),LP C
 
increase when CL increases for different values of n and at m=5(see for example 

Figure 2). 

➢ The values of power function of test increase as the value of   increases (see for example Figure 3). 

 

  
Figure 2: The power function of test at 1.7, =

0.01 =  under different PTIIC schemes 

 

Figure 3: The power function of test at 1.7, =  

and 3.5, 0.01 =  under PTIIC scheme for n=30, 

m=5 
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Hence, these results from the simulation studies illustrate that the performance of our proposed method is acceptable 

4.2 Confidence Interval for CL 

     In this section, given the specified significance level  , the level (1−  ) one-sided confidence interval (CI) for 
LC  

can be derived as follows:  

Since the pivotal quantity 2𝛽W, where 2𝛽W ~ χ2
(2𝑚)

 and INVCHI (1−  , 2m) which represents the lower 1−  

percentile of  χ2
(2𝑚). So 

( )( )  2 INVCHI  1 ,  2 1 ,P W m   − = −  (17) 

where 1 ,LC L= −  𝐶𝐿 = 1 − 𝛽𝐿  and ˆ 1 ,LC mL W= − multiply in Equality (17) by ˆ 2m , then  

( )INVCHIˆˆ 1 ,  2m2
1 ,

2 2

LW L
P

m m

  


 −
 = − 

 
 

 
(18) 

But, ˆ m

W
 = , then 

( ) ( )ˆ1 INVCHI 1 ,  2m
1 1 .

2

L

L

C
P C

m




 − −
  − = −
 
 

 

(19) 

From Equation (19), then 

( ) ( )ˆ1 INVCHI 1 ,  2m
1  .

2

L

L

C
C

m

− −
 −  

(20) 

The level (1−  ) one-sided is CI for LC . Thus, the level (1−  ) lower confidence bound (LB) for LC  can be written 

as: 

( ) ( )ˆ1 INVCHI 1 ,  2m
1 ,

2

LC
LB

m

− −
= −  

(21) 

where ˆ
LC ,   and m denote the ML estimator of CL, the specified significance level and the number of observed failures 

before termination, respectively. 

5.  Application to Real Data 

   A real data set was given by Mann and Fertig (1973) and recently discussed by Altindag et al. (2017). The data set 

contains 10 failure times of airplane components of total 13 items. The observed failure times are given in Table 8. 

Table 8: The observed failure times of censoring scheme 

i 1 2 3 4 5 

ix  0.22 0.50 0.88 1.00 1.32 

i 6 7 8 9 10 

ix  1.33 1.54 1.76 2.50 3.00 

 

Then by using the transformed PTIIC samples with transformation log (1 )ey x −= +  is y(i)= (0.18, 0.23, 0.36, 0.42, 

0.50, 0.51, 0.69, 0.79, 1.34, 2.37), and let Ri= (0, 1, 0, 0, 1, 0, 0, 1, 0, 0), 0.05, =  L=0.1. The performance index 

value set at c


= 0.80. The testing hypothesis 0 : ,LH C c  versus 1 : ,LH C c  is constructed. 
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The value of test statistic is 0.888,ˆ
LC = the critical value 0C 

= 0.873 by using (21). Since ˆ
LC = 0.888 > 0C 

 = 0.873, 

so we reject the null hypothesis 
0 : .LH C c   Also, the lower confidence bound is (0.824,∞).  So, c 

= 0.80 don’t 

belong to lower bound, it is also concluded that the lifetime performance index of airplane components meets the 

required level. 

 

6. Conclusions Remarks 

          The lifetime performance index CL was utilized to evaluate the performance of a process. In this paper, we 

consider the estimation problem of CL on the basis of progressively Type II censored samples. Based on the Burr III 

distribution for lifetimes of products, the ML estimate of C is obtained. These estimators of CL is used to construct 

100(1 −  )% lower confidence bounds as well as a test of the null hypothesis  
0 : ,LH C c  versus

1 : ,LH C c   

based on maximum likelihood procedure. These hypothesis procedures may be used for assessing whether the product 

performance meets customer expectations or not. Simulation study is performed and a  real data set of airplane 

components is analyzed. Based on a numerical study, we notice that the MSEs of the ˆ
LC estimates decrease as the 

sample size increases for selected samples schemes. Also, the performance of our proposed method is acceptable. 
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