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Abstract  

 

In recent years, researchers focused on introducing discrete type distributions which satisfy the necessary demand 

to model the complex performance of the real data sets. In this paper, a discrete inverted Kumaraswamy distribution, 

which is a discrete version of the continuous inverted Kumaraswamy distribution, is derived using the general 

approach of discretization of a continuous distribution. The new discrete inverted Kumaraswamy distribution can 

be applied efficiently in discrete lifetime and count data. Some important distributional and reliability properties of 

discrete inverted Kumaraswamy distribution such as hazard rate, moments, quantiles, order statistics and some 

transformations are obtained. Maximum likelihood and Bayesian approaches are applied under Type-II censored 

samples for estimating the parameters, survival, hazard rate and alternative hazard rate functions. Confidence and 
credible intervals for the parameters are obtained. A simulation study is carried out to illustrate the theoretical 

results of the maximum likelihood and Bayesian estimation. Finally, the performance of the new distribution is 

compared with some distributions using three real data sets to illustrate the suitability and flexibility of the proposed 

model. 
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1. Introduction 

     It is well known that the life length in the real world may be associated with continuous non-negative lifetime 

distributions; however, sometimes it is difficult to get samples from a continuous distribution in real life. The observed 

values are discrete because they are usually measured to only a finite number of decimal places and can't really 

constitute all points in a continuum. Even if the measures are taken on a continuous (ratio or interval) scale, the 

observations may be recorded in a way making discrete model more appropriate. Therefore, it is reasonable to consider 

the observations as coming from a discretized distribution generated from the continuous model. 

In many practical situations, the reliability data are measured in terms of the numbers of runs, cycles or shocks the 

device sustains before it fails. For example, the number of times that the devices are switched on/off, the lifetime of 
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the switch is a discrete random variable (DRV). Also, the number of voltages fluctuations, which an electrical or 

electronic item can withstand before its failure, is a DRV, the life of equipment is measured by the number of 

completed cycles or the number of times it operated before failure, or the life of weapon is measured by the number 

of rounds fired prior to failure. Similarly, in survival analysis the survival function (SF) may be a function of DRV 

that is considered as a discrete version of the analogue continuous random variable (CRV). Such as the length of stay 

in observation ward; when it is measured by the number of days, or the survival time that the leukemia patients 

survived since therapy may be counted by number of days or weeks. 

Many discrete distributions are available to model such mentioned situations, for example, the geometric and negative 

binomial distributions which are the discrete versions for the exponential and gamma distributions, respectively, but 

it is well known that they have monotonic hazard rate functions and thus they are unsuitable for some situations. 

On the other hand, there are few discrete distributions which can provide accurate models for both count and times. 

As Poisson distribution, is used to model counts but not times. Also, the binomial distribution is not considered to be 

popular model for reliability, failure times, count, etc. Beside that it can be approximated to Poisson distribution under 

suitable conditions. In addition to that, these discrete distributions only cater to positive integers along with zero, but 

in some analysis the variable of interest can take either zero, positive or negative values. In many situations the interest 

may be in the difference of two DRVs each having integer support (0, ∞). The resulting difference will be another 

DRV with integer support (−∞, ∞), see Chakraborty and Chakravorty (2016). Thus, there is a need to derive 

appropriate discrete distributions by discretizing the continuous distributions to fit various types of data. Therefore, 

the study of the discretization of continuous is meaningful. 

     There are several methods to construct discrete distributions from the continuous ones, for example discrete 

analogue of the Pearson system of continuous distributions, discretizing using the probability density function (PDF). 

The distribution generated using this method may not always have a compact form due to the normalizing constant. 

Also, discretizing can be by shifting the cumulative distribution function (CDF), discretizing using hazard rate 

function (HRF), discretizing using SF and two composite methods. For a comprehensive review on this topic, see 

Bracquemond and Gaudoin (2003) and Chakraborty (2015).  

 Many researchers studied the general approach of discretization of some known continuous distributions for use as 

lifetime distributions. For example, Nakagawa and Osaki (1975) proposed a discrete Weibull distribution. 

Khan et al. (1989) discussed two discrete Weibull distributions and they presented a simple method to estimate the 

parameters for one of them. They compared this method with the method of moments, and they concluded that the 

estimates appear to have almost similar properties.  

Roy (2003) derived a discrete normal distribution and elaborated its application for evaluating the reliability of 

complex systems as an alternative to simulation method. Roy (2004) proposed a discrete Rayleigh distribution as a 

particular case of the discrete Weibull.  

Inusah and Kozubowski (2006) obtained a discrete version of the Laplace (double exponential) distribution and 

discussed some of its statistical properties and statistical issues of estimation under the discrete Laplace model.  

Krishna and Pundir (2009) presented the discrete Burr XII distribution and applied it to fit the reliability in series 

system and a set of real data. Also, they derived the discrete Pareto distribution as a special case of the discrete Burr 

distribution. 

Jazi et al. (2010) introduced discrete inverse Weibull (DIW) distribution and they studied four methods of estimation 

(the heuristic algorithm, the inverse Weibull probability paper plot, the method of moments and the method of 

proportions).  

Gomez-Deniz and Calderin-Ojeda (2011) constructed the discrete version of Lindley distribution and used it as an 

alternative to Poisson distribution to model automobile claim frequency data. Nekoukhou and et al. (2012) presented 

a new version of the discrete generalized exponential distribution, which can be viewed as different generalization of 

the geometric distribution, some of its distributional and moment properties were discussed. AL-Huniti and AL-
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Dayian (2012) proposed the discrete Burr Type III distribution, they discussed some important properties and 

estimated the parameters based on the maximum likelihood and Bayesian approaches.  

Lekshmi and Sebastian (2014) introduced the skewed generalized discrete Laplace distribution which arises as the 

difference of two independently distributed count variables; they discussed some properties of the distribution and 

illustrated a real data set. Para and Jan (2014) presented a discrete generalized Burr Type XII distribution. Hussain 

and Ahmad (2014) proposed the discrete inverse Rayleigh distribution. Hussain et al. (2016) obtained the two-

parameter discrete Lindley (TDL) distribution. Alamatsaz et al. (2016) derived the discrete generalized Rayleigh 

distribution. Para and Jan (2016) obtained the discrete three parameter of Burr Type XII and discrete Lomax 

distributions. Chakraborty and Chakravorty (2016) proposed the discrete logistic distribution and applied it to model 

real life count data. 

Sarhan (2017) introduced the two-parameter discrete distribution with bathtub hazard shape; he discussed some 

statistical properties of the distribution. Also, he used three different methods to estimate the parameters and used the 

bootstrap method to estimate the distributions of these point estimators. Borah and Hazarika (2017) presented the 

discrete Shanker distribution. Hegazy et al. (2018) introduced the discrete Gompertz distribution. 

Migdadi (2014) used Bayesian inference to estimate the scale parameter of discrete Rayleigh distribution based on 

squared error (SE) and general entropy loss functions. This study also involved prediction for the future ordered 

observation. Kamari et al. (2015)  studied Bayesian analysis of discrete Burr distribution; they used the Metropolis-

Hastings method for numerical parameters estimate with two loss functions, SE and absolute error loss functions.  

     The rest of the paper is organized as follows: discrete inverted Kumaraswamy (DIKum) distribution is introduced, 

and some statistical properties are given in Section 2. Some relationships between DIKum distribution and other well-

known distributions are provided in Section 3. While, in Section 4, maximum likelihood (ML) and Bayesian estimation 

are derived. Simulation study and results are presented. In Section 5, a real data set is analyzed showing applicability 

and flexibility of DIKum distribution. 

2. Discretizing a Continuous Distribution 

     The general approach of discretizing a continuous variable can be used to construct a discrete model by introducing 

a grouping on the time axis see Roy (2003, 2004). If the CRV X has the SF, 𝑆(𝑥) = 𝑃(𝑋 ≥ 𝑥)and times are grouped 

into unit intervals so that the DRV of X denoted by𝑑𝑋 = ⌊𝑋⌋; which is the largest integer less than or equal to 𝑥, will 

have the probability mass function (PMF)  

𝑃(𝑑𝑋 = 𝑥) = 𝑃(𝑥) =   𝑃[𝑥 ≤ 𝑋 < 𝑥 + 1 ] 

                    =  𝑆(𝑥)– 𝑆(𝑥 + 1),      𝑥 =  0,1,2 …  .                                                                                  (1) 

The PMF of the DRV, 𝑑𝑋, can be viewed as discrete concentration of pdf of 𝑋. So, given any continuous distribution 

it is possible to construct corresponding discrete distribution using (1).  

One of the advantages of applying this approach of discretizing is that the SF for discrete distributions has the same 

functional form of the SF for the continuous distributions; as a result, many reliability characteristics and properties 

remain unchanged. Thus, discretization of a continuous lifetime model according to this approach is an interesting and 

simple approach to derive a discrete lifetime model corresponding to the continuous one. 

2.1 Construction of discrete inverted Kumaraswamy distribution 

          Gupta et al. (1998) introduced two-parameter distribution as a generalization of the standard Pareto of second 

kind, called the exponentiated Pareto (EP) distribution. Also, Abd AL-Fattah et al. (2017) derived IKum distribution 

using special transformation, which has the same PDF of EP distribution. This distribution is important in a wide 

range of applications; for example, engineering, medical research, stress-strength analysis and lifetime problems. Also, 

in reliability and biological studies, IKum distribution may be used to model failure rates. Gupta et al. (1998) proved 

that EP distribution is effective in analyzing many lifetime data. EP distribution has failure rates that take decreasing 
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and upside-down bathtub shapes depending on the value of the shape parameters similarly to exponentiated Weibull 

(EW) distribution presented by Mudholkar et al. (1995). They observed that exponential distribution, generalized 

exponential distribution, Weibull distribution, beta distribution, Gamma distribution, uniform distribution, 

exponentiated exponential distribution, exponentiated Gamma distribution and other distributions can be obtained as 

special cases of EP distribution. IKum distribution has several applications in different fields, due to its expected wide 

applicability. Many researchers studied a generalization and multivariate of this distribution (See Iqbal et al. (2017), 

AL-Dayian et al. (2020), Usman and Ahsan ul Haq (2020), Abdul Hammed et al. (2020) and Aly and Abuelamayem 

(2020)). The PDF of IKum distribution is given by 

𝑔(𝑥) = 𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1 ,       𝑥 > 0;   𝛼, 𝛽 > 0,                                                                               (2) 

where 𝛼 and 𝛽 are shape parameters and should be positive. 

The corresponding CDF and SF are, respectively, given by 

𝐺(𝑥) = (1 − (1 + 𝑥)−𝛼)𝛽  ,                                      𝑥 > 0;  𝛼, 𝛽 > 0,                                                                         (3)   

and 

𝑆(𝑥) = 1 − (1 − (1 + 𝑥)−𝛼)𝛽  ,                                𝑥 > 0;  𝛼, 𝛽 > 0.                                                                             (4) 

IKum distribution has a long right tail; compared with other commonly used distributions. Thus, it will affect long 

term reliability predictions, producing optimistic predictions of rare events occurring in the right tail of the distribution 

compared with other distributions. Also, IKum distribution provides a good fit to several data in literature. 

Using (1) discrete X (DX) can be viewed as the discrete analogue to the continuous IKum variable X, and is commonly 

said to have DIKum distribution with two parameters 𝛼 and 𝛽, denoted by DIKum (𝛼, 𝛽) distribution, where the 

corresponding PMF of DX can be written as  

 

𝑝(𝑥) = (1 − (2 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽 ,     𝑥 = 0,1,2, … ,    𝛼, 𝛽 > 0,                                                               (5) 

and the CDF, SF and HRF are as follows: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 1 −  𝑆(𝑥) + 𝑃(𝑋 = 𝑥) = (1 − (2 + 𝑥)−𝛼)𝛽 ,  𝑥 = 0,1,2, …,                                                        (6) 

 

𝑆(𝑥) = 𝑃(𝑋 ≥ 𝑥) = 1 −  𝐹(𝑥) + 𝑃(𝑋 = 𝑥) = 1 − (1 − (1 + 𝑥)−𝛼)𝛽 ,  

                                                                                                          𝑥 = 0,1,2 …,                                                            (7) 

and 

ℎ(𝑥) =
𝑃(𝑥)

𝑆(𝑥)
=

(1−(2+𝑥)−𝛼)𝛽−(1−(1+𝑥)−𝛼)𝛽

1−(1−(1+𝑥)−𝛼)𝛽  ,            𝑥 = 0,1,2, … ,    𝛼, 𝛽 > 0.                                                                       (8) 

There are some problems associated with the definition of ℎ(𝑥), three of the more notable ones are given below: 

 
a. ℎ(𝑥) is not additive for series system. 

b. The cumulative HRF,  𝐻(𝑥) = ∑ ℎ(𝑥) ≠ − ln 𝑆(𝑥). 

c. ℎ(𝑥) ≤ 1 and it has the interpretation of a probability. [For more details, see Xie et al. (2002) and Lai 

(2013) and (2014)]. 

Therefore, it was necessary to find an alternative definition that is consistent with its continuous counterpart. Roy and 

Gupta (1992) provide an excellent alternative definition of a discrete HRF denoted by 𝑎ℎ(𝑥): 

 

𝑎ℎ(𝑥) =  𝑙𝑛 [
𝑆(𝑥)

𝑆(𝑥+1)
] =  𝑙𝑛 [

1−(1−(1+𝑥)−𝛼)𝛽

=1−(1−(2+𝑥)−𝛼)𝛽
],       𝑥 = 0,1,2, … , 𝛼, 𝛽 > 0.                                                                    (9) 
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There is a relationship between 𝑎ℎ(𝑥) and ℎ(𝑥), given by: 

ℎ(𝑥) = 1 − 𝑒−𝑎ℎ(𝑥).                                                                                                                                                      (10)     

The two concepts ℎ(𝑥) and 𝑎ℎ(𝑥) have the same monotonic property, i.e., 𝑎ℎ(𝑥) is increasing (decreasing) if and only 

if ℎ(𝑥) is increasing (decreasing). 

Plots of PMF, HRF and alternative HRF (AHRF) of DIKum distribution are presented, respectively, in Figures 1-3, 

for some selected values of the parameters.  

            

   

                         

Figure: 1 

Plots of the probability mass function 

                            
   Figure: 2  

Plots of the hazard rate function 
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Figure: 3 

Plots of the alternative hazard rate function 

Figure 1 shows that the PMF of DIKum distribution can be unimodal and right skewed according to the selected values 

of the parameters. For some values of parameters, the PMF is decreasing over  (0,∞) and the mode is at zero. While 

for other values of the parameters, it indicates that the PMF is increasing on (0, 𝑥𝑚𝑜𝑑𝑒) and reaches the maximum at 

𝑥𝑚𝑜𝑑𝑒, then decreases to the zero on (𝑥𝑚𝑜𝑑𝑒 ,∞); in this case, 𝑥𝑚𝑜𝑑𝑒 = ⌊(
𝛼+1

𝛼𝛽+1
)

−
1

𝛼
− 1⌋. Plots of PMF, HRF and AHRF 

show that DIKum distribution exhibits a long right tail compared with other commonly used distributions. Thus, it 

will affect long term reliability predictions, producing optimistic predictions of rare events occurring in the right tail 

of the distribution compared with other distributions. 

Figures 2 and 3 indicate that although the HRF and AHRF of DIKum distribution are decreasing and upside-down 

bathtub shapes depending on the value of the shape parameters. One can observe that the HRF is less than 1.    

2.2 Some properties of discrete inverted Kumaraswamy distribution 

     This subsection is devoted to obtaining some important distributional properties of DIKum (𝛼, 𝛽 ) distribution, 

such as the mode, quantiles, 𝑟𝑡ℎ moments and order statistics.  

2.2.1 Mode of discrete inverted Kumaraswamy distribution  

      The mode of DIKum distribution is at 𝑥𝑚𝑜𝑑𝑒 = ⌊(
𝛼+1

𝛼𝛽+1
)

−
1

𝛼
− 1⌋,  𝛼, 𝛽 > 0.  

This can be easily verified with PMF plots given in Figure 1. 

2.2.2 Quantiles of discrete inverted Kumaraswamy distribution 

  The 𝑢𝑡ℎ quantile of a DRV  𝑋, 𝑥𝑢, satisfies 

 𝑃(𝑋 ≤ 𝑥𝑢) ≥ 𝑢 and 𝑃(𝑋 ≥ 𝑥𝑢) ≥ 1 − 𝑢, i.e., 𝐹(𝑥𝑢 − 1) < 𝑢 ≤ 𝐹(𝑥𝑢). [For more details see Rohatgi and Saleh 

(2001)]. 

The 𝑢𝑡ℎquantile 𝑥𝑢  , of DIKum (𝛼, 𝛽 ) distribution is given by  

                  𝑥𝑢 = ⌈{(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 2 ⌉,            0 < 𝑢 < 1.                                                                                    (11) 

where ⌈𝑥⌉ denotes the smallest integer greater than or equal to x and 0 < 𝑢 < 1.  
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Proof                       

𝑃(𝑋 ≤ 𝑥𝑢) ≥ 𝑢,   from (6)  

(1 − (2 + 𝑥)−𝛼)𝛽 ≥ 𝑢, hence 

𝑥𝑢 ≥ {(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 2.                                                                                                                                       (12) 

Similarly, if  𝑃(𝑋 ≥ 𝑥𝑢) ≥ 1 − 𝑢, one obtains  

𝑥𝑢 ≤ {(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 1.                                                                                                                                  (13) 

Combining (12) and (13), one gets, 

{(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 2 ≤ 𝑥𝑢 ≤ {(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 1.                            

 Hence, 𝑥𝑢is an integer value given by  

  𝑥𝑢 = ⌈{(1 − (𝑢)
1

𝛽)
−

1

𝛼

− 1} − 2 ⌉.                                                                                                                            (14) 

Thus, the median of DIKum (𝛼, 𝛽) distribution can be computed from (14) as follows: 

𝑥0.5 = ⌈{(1 − (0.5)
1

𝛽)
−

1

𝛼

− 1} − 2  ⌉.                                                                                                                          (15) 

 

2.2.3 The moments of discrete inverted Kumaraswamy distribution 

     a. The non-central moments of discrete inverted Kumaraswamy distribution  

     The non-central moments of DIKum distribution can be obtained using (5) as given below  

𝜇𝑟
, = 𝐸(𝑋𝑟) = ∑ 𝑥𝑟∞

𝑥=0 𝑝(𝑥)                                                                                                                                      (16) 

     = ∑ 𝑥𝑟∞
𝑥=0 [(1 − (2 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽],    𝑟 = 1, 2, …   .                                                                 (17) 

In particular, the mean (𝜇) of DIKum distribution is given by 

𝜇1̀ = 𝜇 = ∑ 𝑥∞
𝑥=0 [(1 − (2 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽].                                                                                        (18) 

     b. The central moments of discrete inverted Kumaraswamy distribution 

     The central moments can be derived using the relation between the central and non-central moments as given below 

  𝜇𝑟 = ∑ (
𝑟
𝑗) (−1𝑗)𝜇 𝑗𝜇̀𝑟−𝑗

𝑟
𝑗=0 , 𝑟 = 1,2, ….,                                                                                                              (19) 

thus, the variance  )𝑣𝑎𝑟) of DIKum distribution is  

𝜇2 = ∑ 𝑋2∞
𝑥=0 [(1 − (2 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽]  

     − [∑ 𝑋∞
𝑥=0 [(1 − (2 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽]]

2

.                                                                                        (20) 
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     c. The standard moments of discrete inverted Kumaraswamy distribution 

     The 𝑟𝑡ℎ standard moments can be obtained as follows: 

𝛼𝑟 = 𝐸 (
𝑋−𝜇

𝜎
)

𝑟

.                                                                                                                                                                      (21) 

The skewness and kurtosis of DIKum distribution are given by, respectively, 

 𝛼3 =
𝜇3

𝜇2

3
2

  and 𝛼4 =
𝜇4

𝜇2
2 , where   μ

r
= E(X − μ)r,    𝑟 = 1,2, …  . 

2.2.4 The order statistic of discrete inverted Kumaraswamy distribution 

Let 𝐹𝑖(𝑥; 𝛼, 𝛽 ); the cdf of the ith order statistic for a random sample 𝑋1, 𝑋2, … , 𝑋𝑛, from DIKum (𝛼, 𝛽 ), is given by 

  𝐹𝑖(𝑥; 𝛼, 𝛽) = ∑ (
𝑛
𝑟

) 𝑛
𝑟=𝑖 [𝐹(𝑥; 𝛼, 𝛽)]𝑟 [1 − 𝐹(𝑥; 𝛼, 𝛽)]𝑛−𝑟 .                                                                                     (22) 

Using the binomial expansion for [1 − 𝐹𝑖(𝑥; 𝛼, 𝛽)]𝑛−𝑟 and substituting (6) in (22),  

where 

𝐹𝑖(𝑥; 𝛼, 𝛽) = ∑ (
𝑛
𝑟

) 
𝑛

𝑟=𝑖
[𝐹(𝑥; 𝛼, 𝛽)]𝑟 ∑ (

𝑛 − 𝑟
𝑗 ) (−1)𝑗[𝐹(𝑥; 𝛼, 𝛽)]𝑗 .

𝑛−𝑟

𝑗=0
  

                 = ∑ (
𝑛
𝑟

) ∑ (
𝑛 − 𝑟

𝑗 ) (−1)𝑗[(1 − (2 + 𝑥)−𝛼)𝛽]
𝑟+𝑗

.  𝑛−𝑟
𝑗=0  𝑛

𝑟=𝑖                                                                           (23) 

Special cases 

Case I: If  𝑖 = 1 in (23), one can obtain the distribution function of the first order statistic, as given below  

 𝐹1(𝑥; 𝛼, 𝛽) = 1 − [1 − 𝐹(𝑥; 𝛼, 𝛽)]𝑛 = 1 − [1 − (1 − (2 + 𝑥)−𝛼)𝛽]
𝑛

,                                                                          (24)                     

Case II: If  𝑖 = 𝑛 in (23), then the distribution function of the largest order statistic, is as follows:  

𝐹𝑛(𝑥; 𝛼, 𝛽) = [𝐹(𝑥; 𝛼, 𝛽)]𝑛 = [(1 − (2 + 𝑥)−𝛼)𝛽]
𝑛

 .                                                                                                 (25) 

which is the CDF of DIKum (𝛼, 𝑛𝛽), and the SF of DIKum (𝛼, 𝑛𝛽 ) is  

𝑆(𝑥) = 1 − (1 − (1 + 𝑥)−𝛼)𝑛𝛽 .                                                                                                                                (26)  

      

     Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from DIKum (𝛼, 𝛽) distribution. Let  𝑋1:𝑛 , 𝑋2:𝑛 , … , 𝑋𝑛:𝑛 denote the 

corresponding order statistics. Then, the PMF of 

𝑋𝑖:𝑛, is defined by 

𝑃(𝑋𝑖:𝑛 = 𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
 ∫ 𝑣𝑖−1(1 − 𝑣)𝑛−𝑖𝑑𝑣

𝐹(𝑥)

𝐹(𝑥−1)
.                                                                                               (27) 

Using the binomial expansion for (1 − 𝑣)𝑛−𝑖, then, the PMF in (27) is 

𝑃(𝑋𝑖:𝑛 = 𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
 ∑ (

𝑛 − 𝑖
𝑗

) (−1)𝑗   𝑛−𝑖
𝑗=0 ∫ 𝑣𝑖+𝑗−1𝑑𝑣

𝐹(𝑥)

𝐹(𝑥−1)
 

                      =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
 ∑ (

𝑛 − 𝑖
𝑗

) (−1)𝑗   (𝑛−𝑖
𝑗=0

1

𝑖+𝑗
 ) 

                       × [[(1 − (2 + 𝑥)−𝛼)𝛽]
𝑖+𝑗

− [(1 − (1 + 𝑥)−𝛼)𝛽]
𝑖+𝑗

].                                                                       (28) 

The PMF of the smallest order statistic is obtained by substituting  𝑖 = 1 in (28) as follows: 
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𝑃(𝑋1:𝑛 = 𝑥) =  𝑛 ∑ (
𝑛 − 1

𝑗
) (−1)𝑗   (

𝑛−𝑖

𝑗=0

1

1 + 𝑗
) 

                              × [[(1 − (2 + 𝑥)−𝛼)𝛽]
1+𝑗

− [(1 − (1 + 𝑥)−𝛼)𝛽]
1+𝑗

],                                                                (29) 

and the PMF of the largest order statistic is obtained by substituting  𝑖 = 𝑛  in (28) as follows: 

 𝑃(𝑋𝑛:𝑛 = 𝑥) =
𝑛

𝑛+𝑗
 [[(1 − (2 + 𝑥)−𝛼)𝛽]

𝑛+𝑗
− [(1 − (1 + 𝑥)−𝛼)𝛽]

𝑛+𝑗
] .                                                                (30) 

Also, (23) can be used to obtain the PMF of DIKum (𝛼, 𝛽) distribution, (see Arnold et al. (2008)). 

3. Some Transformations Applied to Discrete Inverted Kumaraswamy Distribution  

In this section relationships between DIKum distribution and other well-known distributions are provided through 

using appropriate transformations, which are displayed in Table 1.  

Table 1: Summary of some transformations applied to inverted Kumaraswamy distribution  

and DIKum distribution and the resulting distributions 
Distribution Transformation Result PMF 

Inverted 
Kumaraswamy 

𝑋~𝐼𝐾𝑢𝑚(𝛼, 𝛽) 
𝑌1 = ⌊𝑋⌋ 

𝑌1~𝐷𝐼𝐾𝑢𝑚(𝛼, 𝛽) 
 

𝑝(𝑦1) = 

  (1 − (2 + 𝑦1)−𝛼)𝛽−(1 − (1 + 𝑦1)−𝛼)𝛽, 
𝑦1 = 0,1,2, … , 𝛼, 𝛽 > 0.   

Discrete inverted 

Kumaraswamy 

𝑋𝑖
′𝑠~𝐷𝐼𝐾𝑢𝑚(𝛼, 𝛽) 

𝑋𝑖
′𝑠 

(𝑖 = 1,2,3, … 𝑛) be 
iid 

 

𝑌2 = max1≤i≤n 𝑋𝑖 𝑌2~𝐷𝐼𝐾~(𝛼, 𝑛𝛽) 

𝑝(𝑦2) = 

(1 − (2 + 𝑦2)−𝛼)𝑛𝛽−(1 − (1 + 𝑦2)−𝛼)𝑛𝛽 , 
 

𝑦2 = 0,1,2, … , 𝛼, 𝛽 > 0.   

Discrete inverted 
Kumaraswamy 

𝑋𝑖
′𝑠~𝐷𝐼𝐾𝑢𝑚(𝛼, 𝛽𝑖) 

𝑋𝑖
′𝑠 are independent  

 

𝑌3 = max1≤i≤n 𝑋𝑖 

𝑌3~𝐷𝐼𝐾𝑢𝑚(𝛼, 𝛽), 
 

𝛽 = ∏ 𝛽i.
n

i=1
 

𝑝(𝑦3) = 

(1 − (2 + 𝑦3)−𝛼)𝛽  −(1 − (1 + 𝑦3)−𝛼)𝛽 , 
 

𝑦3 = 0,1,2, … , 𝛼, 𝛽 > 0. 

Discrete inverted 
Kumaraswamy 

𝑋~ 𝐷𝐼𝐾𝑢𝑚(𝜃, 1), 
where 𝜃=𝑒−𝛼 

𝑌4 = ln (2 + 𝑥) 

𝑌4~ geometric 
distribution with 

 𝜃 = 𝑒−𝛼 . 
 

𝑝(𝑦4) = 𝜃𝑦4(1 − 𝜃), 
 

𝑦4 = 0,1,2, …,                           0 < 𝜃 < 1. 
 

Discrete inverted 
Kumaraswamy 

𝑋~ 𝐷𝐼𝐾𝑢𝑚(𝜃, 𝛽), 
where 𝜃=𝑒−𝛼 

𝑌5 = 

(ln (2 + 𝑥))
1
2

− 1 

𝑌5~dicrete  
generalized Raleigh 

(𝜃, 𝛽), 
𝜃 = 𝑒−𝛼. 

𝑝(𝑦5) = 

(1 − 𝜃(1+𝑦5)2
)

𝛽
− (1 − 𝜃𝑦5

2
)

𝛽
, 

𝑦5 = 0,1,2, …, 
 0 < 𝜃 < 1, 𝛽 > 0. 

Discrete inverted 
Kumaraswamy 

𝑋~ 𝐷𝐼𝐾𝑢𝑚(𝜃, 1), 
where 𝜃=𝑒−𝛼 

𝑌6 = (ln (2 +

𝑥))
1

2 − 1  
 
 

𝑌6~discrete Raleigh 
(𝜃), where 𝜃 = 𝑒−𝛼 .   

 

𝑝(𝑦6) = 

(1 − 𝜃(1+𝑦6)2
) − (1 − 𝜃𝑦6

2
), 

𝑦6 = 0,1,2, …, 
 0 < 𝜃 < 1. 

Discrete inverted 
Kumaraswamy 

𝑋~ 𝐷𝐼𝐾𝑢𝑚(𝜃, 1), 
where 𝜃=𝑒−𝛼 

𝑌7 = 𝑥 𝑌7~discrete Pareto(𝜃) 

𝑝(𝑦7) = 

(𝜃(1+𝑦7)) − (𝜃(2+𝑦7)), 

𝑦7 = 0,1,2, …, 
 0 < 𝜃 < 1. 

Exponential 
distribution 

𝑋~𝑒𝑥𝑝(𝛼) 
𝑌8 = 𝑒𝑥 − 2 

𝑌8~𝐷𝐼𝐾𝑢𝑚(𝜃, 1), 
 𝜃 = 𝑒−𝛼 

𝑝(𝑦8) = 
 

(1 − (2 + 𝑦8)−𝛼)-(1 − (1 + 𝑦8)−𝛼), 
𝑦8 = 0,1,2, … , 𝛼 > 0.   

 

4. Estimation of the Parameters of Discrete Inverted Kumaraswamy Distribution 

In this section, ML and Bayesian methods are used to derive the estimators of the parameters for DIKum distribution. 
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4.1 Method of maximum likelihood  

       This subsection is devoted to estimate the vector of two parameters, 𝜑 = (𝛼, 𝛽), SF, HRF and AHRF of DIKum 

(𝛼, 𝛽) distribution, based on Type II censored samples, also confidence interval of the parameters 𝛼, 𝛽,  SF, HRF and 

AHRF are derived.  

   
     Suppose that 𝑋1, 𝑋2, … , 𝑋𝑟 is a Type II censored sample of size r obtained from a life-test on n items whose lifetimes 

have DIKum (𝛼, 𝛽) distribution. Then the likelihood function is  

𝐿 (𝜑; 𝑥) ∝ {∏ 𝑝(𝑥(𝑖))𝑟
𝑖=1 }[𝑆(𝑥(𝑟))]

𝑛−𝑟
,                                                                                                                     (31)                                                      

where  𝑝(𝑥) and  𝑆(𝑥) are given, respectively, by (5) and (7). The 𝑥(𝑖)′s are ordered times for 𝑖 =  1,2, … 𝑟.    

𝐿 (𝜑; 𝑥) ∝ {∏ (1 − (2 + 𝑥𝑖)
−𝛼)𝛽 − (1 − (1 + 𝑥𝑖)

−𝛼)𝛽𝑟
𝑖=1 }  

                × [1 − (1 − (1 + 𝑥𝑟)−𝛼)𝛽]
𝑛−𝑟

 .                                                                                                                (32)                                                 

The natural logarithm of the likelihood function is given by  

ℓ ≡ 𝑙𝑛𝐿 (𝜑; 𝑥) ∝  𝑙𝑛 ∏ [(1 − (2 + 𝑥𝑖)
−𝛼)𝛽 − (1 − (1 + 𝑥𝑖)

−𝛼)𝛽]
𝑟

𝑖=1
   

                                      +(𝑛 − 𝑟) ln[1 − (1 − (1 + 𝑥𝑟)−𝛼)𝛽].                                                                                 (33) 

                                =  ∑ 𝑙𝑛
𝑟

𝑖=
[(1 − (2 + 𝑥𝑖)

−𝛼)𝛽 − (1 − (1 + 𝑥𝑖)
−𝛼)𝛽] 

                                             +(𝑛 − 𝑟) ln[1 − (1 − (1 + 𝑥𝑟)−𝛼)𝛽].                                                                             (34) 

Considering the two parameters, 𝛼 and 𝛽 are unknown and differentiating the log likelihood function in (34), with 

respect to 𝛼 and 𝛽, one obtains 

  
𝜕ℓ

𝜕𝛼
= ∑ {

[𝛽(1−(2+𝑥𝑖)−𝛼)𝛽−1(2+𝑥𝑖)−𝛼 𝑙𝑛(2+𝑥𝑖)]+[𝛽(1−(1+𝑥𝑖)−𝛼)𝛽−1(1+𝑥𝑖)−𝛼 𝑙𝑛(1+𝑥𝑖)]

[(1−(2+𝑥𝑖)−𝛼)𝛽−(1−(1+𝑥𝑖)−𝛼)𝛽]
}𝑟

𝑖=1  

        +(𝑛 − 𝑟)
𝛽(1−(1+𝑥𝑟)−𝛼)𝛽−1   (1+𝑥𝑟)−𝛼𝑙𝑛 (1+𝑥𝑟)

[1−(1−(1+𝑥𝑟)−𝛼)𝛽]
,                                                                                                      (35) 

and  

𝜕ℓ

𝜕𝛽
= ∑ {

[1−(2+𝑥𝑖)−𝛼]𝛽 ln[1−(2+𝑥𝑖)−𝛼]−[1−(1+𝑥𝑖)−𝛼]𝛽 ln[1−(1+𝑥𝑖)−𝛼]

[(1−(2+𝑥𝑖)−𝛼)𝛽−(1−(1+𝑥𝑖)−𝛼)𝛽]
}𝑟

𝑖=1   

      −(𝑛 − 𝑟)
{1−(1+𝑥𝑟)−𝛼}𝛽 ln{1−(1+𝑥𝑟)−𝛼}

[1−{1−(1+𝑥𝑟)−𝛼}𝛽]
.                                                                                                                   (36) 

Then the ML estimators of the parameters, denoted by 𝛼̂ and 𝛽̂ are derived by equating the two nonlinear likelihood 

(35) and (36) to zeros and solving numerically.  

Depending on the invariance property, the ML estimators of 𝑆(𝑥), ℎ(𝑥) and 𝑎ℎ(𝑥) can be obtained by replacing 𝛼 and 

𝛽 with their corresponding ML estimators 𝛼̂ and 𝛽̂, respectively, in (7), (8) and (9), as given below 

𝑆̂𝑀𝐿(𝑥) = 1 − (1 − (1 + 𝑥)−𝛼̂)
𝛽̂

  ,                          𝑥 = 1,2,3, …   ,                                                      (37) 

ℎ̂𝑀𝐿(𝑥) =
(1−(2+𝑥)−𝛼̂)

𝛽̂
−(1−(1+𝑥)−𝛼̂)

𝛽̂

1−(1−(1+𝑥)−𝛼̂)
𝛽̂

 ,                         𝑥 = 0,1,2, …    ,                                                                                (38) 
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and 

𝑎ℎ̂𝑀𝐿(𝑥) = 𝑙𝑛 [
1−(1−(1+𝑥)−𝛼̂)

𝛽̂

1−(1−(2+𝑥)−𝛼̂)
𝛽̂

] ,                                  𝑥 = 0,1,2, …     .                                                                        (39)                  

When the sample size is large and the regularity conditions are satisfied, see Lehmann and Casella (1998), the 

asymptotic distribution of the ML estimators is  

𝜑̂~𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜑, 𝐼−1
𝑥 (𝜑)), where 𝜑 = (𝛼, 𝛽),     𝜑̂ = (𝛼̂, 𝛽̂),  and  𝐼−1(𝜑) is the asymptotic variance 

covariance matrix of the ML estimators 𝛼 and 𝛽, which is the inverse of the observed Fisher information matrix. The 

asymptotic observed Fisher information matrix can be obtained as follows: 

                           𝐼𝑥(𝜑̂) ≈ [
− (

𝜕2ℓ

𝑑𝛼2)     − (
𝜕2ℓ

𝜕𝛼𝜕𝛽
)

− (
𝜕2ℓ

𝜕𝛼𝜕𝛽
)       − (

𝜕2ℓ

𝑑𝛽2)
]|

(𝛼̂,𝛽̂)

 .                                                                                        (40) 

The asymptotic 100(1 − 𝛼)% confidence interval for 𝛼, 𝛽, 𝑆𝑀𝐿(𝑥), ℎ𝑀𝐿(𝑥) and 𝑎ℎ𝑀𝐿(𝑥) are given, respectively, by 

𝐿𝜔 = 𝜔̂ − 𝑍𝛼

2
 𝜎𝜔̂,        and                𝑈𝜔 = 𝜔̂ + 𝑍𝛼

2
 𝜎𝜔̂,                                                                                              (41) 

where 𝐿𝜔 and 𝑈𝜔 are the lower and upper bound respectively,  

𝜔̂  𝑖𝑠  𝛼̂, 𝛽̂, 𝑆̂(𝑥), ℎ̂(𝑥) 𝑜𝑟 ℎ̂1(𝑥), where  Z is the100% (1 −
𝛼

2
)th standard normal percentile, (1 − 𝛼) is confidence 

coefficient and  𝜎𝜔̂ is the standard deviation.   

4.2 Bayesian Estimation 

     The Bayesian approach is considered, under two types of loss functions, SE and linear exponential (LINEX) loss 

functions, to estimate the parameters, SF, HRF and AHRF of DIKum (𝛼, 𝛽) distribution. Bayesian estimators are 

obtained based on Type II censored samples, using informative prior. Also, credible intervals for the parameters, SF, 

HRF and AHRF are obtained.  

𝐿 (𝜑; 𝑥) in (31) can be written as follows: 

𝐿(𝛼, 𝛽|𝑥) ∝ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟 ,                                                                                                                                   (42) 

where  

𝑤𝑖1 = (1 − (1 + 𝑥𝑖)
−𝛼)𝛽 , 𝑤𝑖2 = (1 − (2 + 𝑥𝑖)

−𝛼)𝛽   

and                                       

𝑤𝑟 = 1 − (1 − (1 + 𝑥𝑟)−𝛼)𝛽 .                                 (43) 

                                                                               

Assuming that the parameters 𝛼 and 𝛽 of DIKum distribution are random variables with a joint bivariate prior density 

function that was used by AL-Hussaini and Jaheen (1992) as 

𝜋(𝛼, 𝛽) = 𝑔1(𝛼|𝛽)𝑔2(𝛽)  ,                        𝛼, 𝛽 > 0,                                                                                                      (44) 

where       

 𝑔1(𝛼|𝛽) =
𝛽𝑎

Γ(𝑎)
𝛼𝑎−1𝑒−𝛽𝛼 ,                         𝑎, 𝛼, 𝛽 > 0,                                                                                                     (45) 

and 

𝑔2(𝛽) =
𝑏𝑐

Γ(𝑐)
 𝛽𝑐−1 𝑒−𝑏𝛽 ,                         𝛽, 𝑏, 𝑐 > 0.                                                                                                    (46) 
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The joint prior density of 𝛼 and 𝛽 will be obtained by substituting (45) and (46) in (44) and it’s given by  

𝜋(𝛼, 𝛽) ∝ 𝛼𝑎−1  𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏),         𝛼, 𝛽, 𝑎, 𝑏, 𝑐 > 0.                                                                                              (47) 

 The joint posterior distribution for 𝛼 and 𝛽 can be derived using (31) and (47) as follows: 

𝜋(𝛼, 𝛽|𝑥) ∝ 𝐿(𝛼, 𝛽|𝑥) 𝜋(𝛼, 𝛽)                                                                                                                                  (48) 

                = 𝑘1𝛼𝑎−1  𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏){∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟 ,                                                                                   (49) 

where 

  𝑘1
−1 = ∫ 𝛽𝑎+𝑐−1 ∫ 𝛼𝑎−1  {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }
∞

0

∞

0
𝑤𝑟

𝑛−𝑟𝑒−𝛽(𝛼+𝑏)𝑑𝛼 𝑑𝛽,                                                                   (50) 

which is a normalizing constant.  

The marginal posterior distributions  𝜋(𝛼|𝑥) and 𝜋(𝛽|𝑥)  are given, respectively, by 

𝜋(𝛼|𝑥) = 𝑘1  𝛼
𝑎−1  ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }  
∞

0
𝑤𝑟

𝑛−𝑟𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏)𝑑𝛽,                                                                    (51) 

and 

𝜋(𝛽|𝑥) = 𝑘1 𝛽
𝑎+𝑐−1 ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }  
∞

0
𝑤𝑟

𝑛−𝑟   𝑒−𝛽(𝛼+𝑏)𝑑𝛼,                                                                           (52) 

where  𝑘1
−1 is a normalizing constant given in (50) and  𝑤𝑖1, 𝑤𝑖2 and 𝑤𝑟 are defined in (43). 

a. Point estimation  

The Bayes point estimators of the parameters, SF, HRF and AHRF are considered based on informative prior and two 

different loss functions: SE and LINEX loss functions. 

I. Bayesian estimation under squared error loss function 

Under SE loss function the Bayes estimators of the parameters 𝛼 and 𝛽 are given by their marginal posterior 

expectations using (51) and (52), respectively, as shown below 

𝛼(𝑆𝐸)
∗ = 𝐸(𝛼│ 𝑥) 

          = 𝑘1 ∫   𝛼𝑎    ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }  

∞

0
𝑤𝑟

𝑛−𝑟𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏)𝑑𝛽𝑑𝛼,
∞

0
                                                             (53) 

and  

𝛽(𝑆𝐸)
∗ = 𝐸(𝛽|𝑥) = 𝑘1 ∫ 𝛽𝑎+𝑐 ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }  
∞

0
𝑤𝑟

𝑛−𝑟   𝑒−𝛽(𝛼+𝑏)𝑑𝛼𝑑𝛽.
1

0
                                                         (54)                                 

Also, the Bayes estimators of the SF, HRF and AHRF under SE loss function can be obtained using (7)-(9) and (49) 

as follows: 

𝑆(𝑆𝐸)
∗ (𝑥) = 𝐸(𝑆(𝑥)|𝑥) 

         = 1 − 𝑘1
−1 ∫ 𝛽𝑎+𝑐−1 ∫ (1 − (1 + 𝑥)−𝛼)𝛽∞

0

∞

0
 𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

         × {∏ (𝑤𝑖1 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟𝑑𝛼𝑑𝛽,                                                                                                             (55) 

 

                                                                                                                                                         

ℎ(𝑆𝐸)
∗ (𝑥) = 𝐸(ℎ(𝑥)|𝑥) 

         = 𝑘1
−1 ∫ 𝛽𝑎+𝑐−1 ∫

(1−(2+𝑥)−𝛼)𝛽−(1−(1+𝑥)−𝛼)𝛽

1−(1−(1+𝑥)−𝛼)𝛽

∞

0

∞

0
𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

          × {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟𝑑𝛼𝑑𝛽,                                                                                                             (56) 
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and  

𝑎ℎ(𝑆𝐸)
∗ (𝑥) = 𝐸(𝑎ℎ(𝑥)|𝑥) 

                 = 𝑘1
−1 ∫ 𝛽𝑎+𝑐−1 ∫ 𝑙𝑛 [

1−(1−(1+𝑥)−𝛼)𝛽

1−(1−(2+𝑥)−𝛼)𝛽
]

∞

0

∞

0
𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

          × {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟𝑑𝛼𝑑𝛽.                                                                                                            (57) 

 

II. Bayesian estimation under linear exponential loss function 

 

Under the LINEX loss function, the Bayes estimators for the parameters 𝛼 and 𝛽 are given, respectively, by 

𝛼(𝐿𝑁𝑋)
∗ =

−1

𝜗
ln 𝐸(𝑒−𝜗𝛼|𝑥)                                                                                     

             = 𝑘1 
−1

𝜗
 𝑙𝑛[∫ 𝛼𝑎−1   𝑒−𝜗𝛼 ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }  
∞

0
𝑤𝑟

𝑛−𝑟𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏)𝑑𝛽𝑑𝛼
∞

0
],                                      (58) 

  and                                                                                                                                                                       

                                                                                                                                                                                     

  𝛽(𝐿𝑁𝑋)
∗ =

−1

𝜗
ln 𝐸(𝑒−𝜗𝛽 |𝑥)                                                                                           

                 = 𝑘1 
−1

𝜗
𝑙𝑛[∫ 𝛽𝑎+𝑐−1𝑒−𝜗𝛽 ∫ 𝛼𝑎−1  {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟

𝑖=1 }  
∞

0
𝑤𝑟

𝑛−𝑟   𝑒−𝛽(𝛼+𝑏)𝑑𝛼𝑑𝛽
∞

0
,                                   (59) 

                                                                                                                                                                                     

where  𝜗 ≠ 0. 

Similarly, the Bayes estimators of the SF, HRF and AHRF under LINEX loss function can be obtained from (7)-(9) 

and (49) as follows: 

𝑆(𝐿𝑁𝑋)
∗ (𝑥) =

−1

𝜗
ln 𝐸(𝑒−𝜗𝑆(𝑥)|𝑥) 

                  = 1 +
𝑘1

−1

𝜗
𝑙𝑛 [∫ 𝛽𝑎+𝑐−1 ∫ 𝑒−𝜗(1−(1+𝑥)−𝛼)𝛽∞

0

∞

0
 𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

                                              × {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟]𝑑𝛼𝑑𝛽,                                                                                 (60)                                                         

ℎ(𝐿𝑁𝑋)
∗ (𝑥) =

−1

𝜗
ln 𝐸(𝑒−𝜗ℎ(𝑥)|𝑥) 

                   =
−1

𝜗
𝑘1

−1𝑙𝑛 [∫ 𝛽𝑎+𝑐−1 ∫ 𝑒−𝜗(1−(1+𝑥)−𝛼)𝛽∞

0

∞

0
 𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

                 × {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟]𝑑𝛼 𝑑𝛽,                                                                                                          (61)                                                               

                                             

and  

𝑎ℎ(𝐿𝑁𝑋)
∗ (𝑥) =

−1

𝜗
ln 𝐸(𝑒−𝜗𝑎ℎ(𝑥)|𝑥) 

                   =
−1

𝜗
𝑘1

−1𝑙𝑛 [∫ 𝛽𝑎+𝑐−1 ∫ [
1−(1−(1+𝑥)−𝛼)𝛽

1−(1−(2+𝑥)−𝛼)𝛽
]

−𝜗
∞

0

∞

0
𝛼𝑎−1  𝑒−𝛽(𝛼+𝑏) 

                  × {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }𝑤𝑟

𝑛−𝑟]𝑑𝛼 𝑑𝛽.                                                                                                         (62) 

 

To obtain the Bayes estimates of the parameters, SF, HRF and AHRF (53) - (62) should be evaluated numerically.  

 

b. Credible interval for the parameters 

In general, a two-sided 100(1- 𝜔) % credible interval of 𝜑 is given by 

𝑃[𝐿(𝑥) < 𝜑 <  𝑈(𝑥)|𝑥] = ∫ 𝜋(𝜑|𝑥
𝑈(𝑥)

𝐿(𝑥)
) 𝑑𝜑 = 1 − 𝜔 , 

where 𝐿(𝑥) and 𝑈(𝑥), are the lower limit (LL) and upper limit (UL). 
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Since, the marginal posterior distributions are given by (51) and (52), then a 100 (1 − 𝜔) % credible interval for 

𝛼; (𝐿(𝑥), 𝑈(𝑥)), are given by 

 

𝑃[𝛼 > 𝐿(𝑥)|𝑥 ]         

    =  𝑘1 ∫ 𝛼𝑎−1  ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }  

∞

0
𝑤𝑟

𝑛−𝑟𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏)𝑑𝛽 𝑑𝛼 = 1 −
𝜔

2

∞

𝐿(𝑥)
,        

                                                                                                                                                                                    (63)                           

and 

 

𝑃[𝛼 >  𝑈(𝑥)|𝑥 ] 

 = 𝑘1 ∫ 𝛼𝑎−1  ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }  

∞

0
𝑤𝑟

𝑛−𝑟𝛽𝑎+𝑐−1𝑒−𝛽(𝛼+𝑏)𝑑𝛽 𝑑𝛼 
∞

𝑈(𝑥)
=  

𝜔

2
 ,                                                      (64)   

Also, a 100 (1- 𝜔) % credible interval for  𝛽 is (𝐿(𝑥), 𝑈(𝑥)) and can be obtained as follows: 

  

𝑃[ 𝛽 >  𝐿(𝑥)|𝑥 ] 

 = 𝑘1 ∫  𝛽𝑎+𝑐−1 ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }  

∞

0
𝑤𝑟

𝑛−𝑟   𝑒−𝛽(𝛼+𝑏)𝑑𝛼𝑑𝛽 
∞

𝐿(𝑥)
= 1 −

𝜔

2
,                                                            (65) 

                                       

 and  

      

𝑃[ 𝛽 >  𝑈(𝑥)|𝑥 ] 

 = 𝑘1 ∫ 𝛽𝑎+𝑐−1 ∫ {∏ (𝑤𝑖2 − 𝑤𝑖1)𝑟
𝑖=1 }  

∞

0
𝑤𝑟

𝑛−𝑟   𝑒−𝛽(𝛼+𝑏)𝑑𝛼𝑑𝛽
∞

𝑈(𝑥)
=

𝜔

2
 .                                                                    (66)  

Furthermore, a 100 (1- 𝜔) % credible interval for 𝑆(𝑥) is (𝐿(𝑥), 𝑈(𝑥)), where 

𝑃[𝐿(𝑥) < 𝑆(𝑥) <  𝑈(𝑥)|𝑥] = ∫ 𝜋(𝑆|𝑥
𝑈(𝑥)

𝐿(𝑥)
) 𝑑𝑆 = 1 − 𝜔,                                                                                        (67)                                                             

where  𝜋(𝑆|𝑥) is the posterior distribution of SF and 𝜋(𝑆|𝑥) = ∫ 𝜋(𝑆, z|𝑥
∞

0
) 𝑑z. 

 

Let 𝑆 ≡ 𝑆(𝑥) = 1 − (1 − (1 + 𝑥)−𝛼)𝛽 and 𝛼=z, 

𝛽 = (
𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−z)
), so that |

𝜕𝛼

𝜕𝑧

𝜕𝛽

𝜕𝑧
𝜕𝛼

𝜕𝑆

𝜕𝛽

𝜕𝑆

| =
1

(1−𝑆)𝑙𝑛(1−(1+𝑥)−z)
.                                                                          

The joint posterior distribution of 𝑆 and z is  

𝜋(𝑆, z|𝑥) =
𝑘1𝑧𝑎−1  

(1−𝑆)𝑙𝑛(1−(1+𝑥)−z)
(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−z)
)

𝑎+𝑐−1

𝑒
−(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−z)
)(z+𝑏)

    

                × {∏ (𝑤𝑖2∗ − 𝑤𝑖1∗)𝑟
𝑖=1 } 𝑤𝑟∗

𝑛−𝑟 ,             0 < 𝑆 < 1, z > 0,                                                                          (68)                                                  

where    

𝑤𝑖2∗ = (1 − (2 + 𝑥𝑖)
−𝑧)

(
𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥𝑖)
−𝑧

)
)

, 𝑤𝑖1∗ = (1 − (1 + 𝑥𝑖)
−𝑧)

(
𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥𝑖)
−𝑧

)
)

   

and 

  𝑤𝑟∗ = 1 − (1 − (1 + 𝑥𝑟)−z)
(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥𝑟)−z)
)
.                                                                                                             (69)                                                                     

Hence, the posterior density function for SF is given by  

𝜋(𝑆|𝑥) = 𝑘1 ∫
𝑘1𝑧𝑎−1  

(1 − 𝑆)𝑙𝑛(1 − (1 + 𝑥)−𝑍)
(

𝑙𝑛(1 − 𝑆)

𝑙𝑛(1 − (1 + 𝑥)−𝑧)
)

𝑎+𝑐−1

𝑒
−(

𝑙𝑛(1−𝑆)
𝑙𝑛(1−(1+𝑥)−𝑧)

)(𝑧+𝑏)
 

∞

0

 

                                           × {∏ (𝑤𝑖2∗ − 𝑤𝑖1∗)𝑟
𝑖=1 }𝑤𝑟∗

𝑛−𝑟𝑑𝑧,                          0 < 𝑆 < 1.                                            (70)                                                 
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Then a 100 (1- 𝜔) % credible interval for 𝑆 is (𝐿(𝑥), 𝑈(𝑥)), 

𝑃[𝑆 >  𝐿(𝑥)|𝑥 ] 

                = 𝑘1 ∫ ∫
𝑘1𝑧𝑎−1  

(1−𝑆)𝑙𝑛(1−(1+𝑥)−𝑍)
(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−𝑧)
)

𝑎+𝑐−1

𝑒
−(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−𝑧)
)(𝑧+𝑏)

 
∞

0

1

𝐿(𝑥)
  

                 × {∏ (𝑤𝑖2∗ − 𝑤𝑖1∗)𝑟
𝑖=1 }𝑤𝑟∗

𝑛−𝑟𝑑𝑧𝑑𝑆 = 1 −
𝜔

2
,                                                                                                       (71)                                                                                  

and 

𝑃[ 𝑆 >  𝑈(𝑥)|𝑥 ] 

               = 𝑘1 ∫ ∫
𝑘1𝑧𝑎−1  

(1−𝑆)𝑙𝑛(1−(1+𝑥)−𝑍)
(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−𝑧)
)

𝑎+𝑐−1

𝑒
−(

𝑙𝑛(1−𝑆)

𝑙𝑛(1−(1+𝑥)−𝑧)
)(𝑧+𝑏)

 
∞

0

1

𝐿(𝑥)
  

                                                   × {∏ (𝑤𝑖2∗ − 𝑤𝑖1∗)𝑟
𝑖=1 }𝑤𝑟∗

𝑛−𝑟𝑑𝑧𝑑𝑆 =
𝜔

2
.                                                                                     (72)                                                                        

 

5. Numerical Results 

     This section aims to investigate the precision of the theoretical results based on simulated and real data, by 

evaluating relative absolute biases (RABs) and relative errors (REs). 

5.1 Simulation study 

  

     In this subsection, a simulation study is conducted to illustrate the performance of the presented ML and Bayes 

estimates based on generated data from DIKum distribution. ML and Bayes averages of the estimates of the 

parameters, SF, HRF and AHRF based on Type II censoring are computed. Moreover, confidence and credible 

intervals for the parameters, SF, HRF and AHR are calculated. All simulation studies are performed using 

Mathematica 9 and R programming language. The numerical procedures are performed according to the following 

algorithm. 

Step 1: a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 of sizes (n=30, 60,120) are generated from DIKum distribution using the 

following transformation: 

𝑥𝑖 = ⌈{(1 − (𝑢𝑖)
1

𝛽)
−

1

𝛼

− 1} − 2 ⌉, 𝑖 = 1,2, . . , 𝑛 and 𝑢𝑖 are random samples from uniform (0,1) and then taking 

the ceiling.  

Step 2: Two different set values of the parameters are selected as, 

Set 1 (𝛼 = 3, 𝛽 = 5) and Set 2 (𝛼 = 5, 𝛽 = 50). 

Step 3: For each model parameters and for each sample size, the ML estimates are computed. 

Step 4: Steps from 1 to 3 are repeated 5000 times for each sample size and for selected sets of the parameters. 

Then the averages, RABs, REs and variances of the estimates of the unknown parameters are computed. The 

RABs, REs, variances of ML and Bayes estimates of the parameters, SF, HRF and AHRF are computed as 

follows: 

1) Averages = 
∑ estimatesNR

i=1

NR
 

2) RABs (estimates) = 
|bias (estimate)|

true value
 , 

3) REs =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑖𝑠𝑘 (ER)(estimate)

true value
 , 

4) Variances (estimate) = ER(estimate) − bias2 (estimate), 
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Table 2 shows the ML averages, RABs, REs, variances, SF, HRF and AHRF estimates, also 95% confidence intervals 

where the population parameters values for    𝛼 = 3, 𝛽 = 5 under three levels of   
𝑟

𝑛
× 100 percentage of uncensored 

observations Type II censoring 60%, 80% and 100%. Table 3 displays the same computational results, but for different 

population parameters values 𝛼 = 5 , 𝛽 = 50 , from DIKum distribution for different sample sizes where (n=30, 60 

and 120) and level of Type II censoring 60%, 80% and 100% and number of replications (NR) = 5000. 

Tables 4 and 5 present the Bayes averages of the estimates for the parameters and their RABs, REs and credible 

intervals under three levels of  
𝑟

𝑛
× 100 percentage of uncensored observations Type II censoring 60%, 80% and 100% 

for different population parameters values for  𝛼 = (3, 5), 𝛽 = (5,50) and NR = 10000. 

Table 6 displays the Bayes averages of the estimates and 95% confidence intervals of the SF, HRF and AHRF at 

 𝑡0 = 1, from DIKum distribution based on Type II censoring for different sample sizes and NR = 10000. 

Tables 7-10 present the ML, Bayes estimates and standard errors (SE) for the  𝛼, 𝛽, 𝑆(𝑡0), ℎ(𝑡0)  and  𝑎ℎ(𝑡0) 

  of DIKum based on Type II censoring for the three real data sets.  

5.2 Applications  

     This subsection aims to demonstrate how the proposed DIKum distribution can be used in practice through 

analyzing three real lifetime data sets.  

Application 1 

This real data set is obtained from Hinkley (1977). It consists of thirty successive values of March precipitation (in 

inches) in Minneapolis/St Paul.  

The data is: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, and 2.05. 

Application 2 

The second application is given by Murthy et al. (2004). The data refers to the time between failures for a repairable 
item 

The data is: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 

0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86 and 1.17. 

 

Application 3 

     The data of this application is considered by Mubarak and Almetwally (2021). This data represents a COVID-19 

data which belong to the United Kingdom of 76 days, from 15 April to 30 June 2020. These data formed of drought 

mortality rate. The data is: 0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079 0.2395 0.2751 0.2845 0.2992 

0.3188 0.3317 0.3446 0.3553 0.3622 0.3926 0.3926 0.4110 0.4633 0.4690 0.4954 0.5139 0.5696 0.5837 0.6197 

0.6365 0.7096 0.7193 0.7444 0.8590 1.0438 1.0602 1.1305 1.1468 1.1533 1.2260 1.2707 1.3423 1.4149 1.5709 

1.6017 1.6083 1.6324 1.6998 1.8164 1.8392 1.8721 1.9844 2.1360 2.3987 2.4153 2.5225 2.7087 2.7946 3.3609 

3.3715 3.7840 3.9042 4.1969 4.3451 4.4627 4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456 8.2307 9.6315 

10.1870 11.1429 11.2019 11.4584. 

To check the validity of the fitted model, Kolmogorov-Smirnov (K-S) goodness of fit test is performed for 

the three data sets. The p values are 0.799, 0.239 and 0.907, respectively. The p values show that DIKum fits the data 

very well. 

The real data sets are provided to illustrate the flexibility and applicability of DIKum distribution. DIKum 

distribution is compared to some distributions such as DIW distribution introduced by Jazi et al. (2010), discrete 

modified inverse Rayleigh (DMIR) distribution proposed by Shahid and Raheel (2019), exponentiated discrete inverse 
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Rayleigh (EDIR) presented by Mashhadzadeh and Mirmostafaee (2020), and TDL distribution considered by Hussain 

et al. (2016).  

The comparison is done by using K-S statistic, the corresponding p-value and other criteria for the purpose 

of model selection including Akaike information criterion (AIC), Akaike information criterion with correction (AICC) 

and Bayesian information criterion (BIC), where 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔(𝐿), 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 + 2
𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
, 

and 

𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔(𝐿), 

where k denotes the number of the estimated parameters, 𝐿  is the maximized value of the likelihood function for the 

estimated model, and n is the sample size. The distribution which has the lowest values of AIC, AICC, BIC and the 

highest p-value, fits better to the real data set. 

The comparison was applicable for the second and third real data only. The p-values show that DIW, DMIR 

and TDL do not fit the first real data which ensures that DIKum distribution is the best to model the first real data. 

  

              

           PP-plot for the first data set                                                 QQ-plot for the first data set 

 

                                       

                      Plot of the fitted PMF                                                       TTT-plot for the first data set 

 

Figure 4: The PP-plot, QQ-plot, fitted PMF and TTT-plot of 

DIKum distribution for the first data set 
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            PP-plot for the second data set                                    QQ-plot for the second data set               

 

                    Plot of the fitted PMF                                                TTT-plot for the second data set 

 Figure 5: The PP-plot, QQ-plot, fitted PMF and TTT-plot of 

DIKum distribution for the second data set 
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             PP-plot for the third data set                                     QQ-plot for the third data set   

                   

               Plot of the fitted PMF                                                       TTT-plot for the third data set 

Figure 6: The PP-plot, QQ-plot, fitted PMF and TTT-plot of 

DIKum distribution for the third data set 

 

4.7.3 Concluding remarks 

I. From Tables 2, 3 and 7 the RABs, variances and REs of the ML averages of the estimates for the 

parameters 𝛼 and 𝛽 decrease when the sample size n increases. Also, it is observed that as the level of 

censoring decreases the RABs, variances and REs of the ML estimates of the parameters, SF, HRF and 

the AHRF estimates decrease. The lengths of the confidence intervals become narrower as the sample 

size increases.  

II.  It is noticed, from Tables 4-6, 8 and 9 that the RABs, REs for the estimates of the parameters, SF, HRF, 

AHRF and the credible interval lengths of the parameters, SF, HRF and AHRF under LINEX loss 

function have less values than the corresponding RABs, REs and the credible interval lengths under the 

SE loss function.  

III. It is observed that less RABs and REs, obtained for complete sample sizes, are less than the 

corresponding results for censored samples. Also, the results perform better when n and r get larger.  

IV. The Bayes intervals include the estimates (between the LL and UL).  
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V. Table 9 and 10 conclude the ML estimates and corresponding standard error (SE), K-S statistic with its 

corresponding p-value, -2LL, AIC, BIC and CAIC. The results in these tables indicate DIKum 

distribution has the smallest values of -2LL, AIC, BIC, CAIC, K–S and highest p-value. That means that 

DIKum distribution is better fit for this data compared with other distributions used here.  

 

VI. The total time test (TTT) plot can be used to get information about the shape of the HRF of a given data 

set, which helps in selecting a particular model to fit a provided data set. Figures 4-6 show the TTT plots 

of the three real data sets which ensure that the HRF is decreasing. Moreover, the fitted PMF, PP and 

QQ plots indicate that DIKum distribution fit for the three real data sets. 
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Table 2: ML averages relative absolute biases, relative errors, variances of the ML estimates, 95%confidence 

intervals of the parameters, survival, hazard rate and alternative hazard rate functions from DIKum 

distribution for different sample sizes n, censoring size r and NR= 5000 (𝜶 = 𝟑, 𝜷 = 𝟓) 
n r Parameters Averages RABs REs Variance UL LL Length 

30 

18 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4058
5.3932
0.6675
0.5129
0.7275

 

0.1980
0.0849
0.3703
0.2072
0.3012

 

0.2090
0.2755
0.4109
0.2315
0.3241

 

0.0401
0.7954
0.0075
0.0045
0.0155

 

2.7984
7.1413
0.8374
0.6437
0.9714

 

2.0132
3.6451
0.4976
0.3821
0.4837

 

0.7852
3.4962
0.3398
0.2617
0.4877

 

24 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4147
5.1902
0.6575
0.5158
0.7334

 

0.1951
0.0786
0.3500
0.2026
0.2955

 

0.2049
0.1949
0.3859
0.2276
0.3180

 

0.0351
0.7182
0.0062
0.0045
0.0149

 

2.7819
6.6346
0.8128
0.6473
0.9731

 

2.0475
3.7459
0.5023
0.3924
0.4937

 

0.7343
2.8886
0.3105
0.2531
0.4793

 

30 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.5302
5.4246
0.6337
0.5446
0.7875

 

0.1589
0.0380
0.3011
0.1580
0.2435

 

0.1593
0.1522
0.3300
0.1607
0.2466

 

0.0020
0.5430
0.0043
0.0003
0.0016

 

2.6198
6.9938
0.7626
0.5815
0.8666

 

2.4406
4.8553
0.5049
0.5078
0.7084

 

0.1791
2.1384
0.2576
0.0736
0.1581

 

60 

36 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4268
5.2371
0.6561
0.5205
0.7411

 

0.1911
0.0474
0.347

0.1955
0.2882

 

0.1983
0.1952
0.3771
0.2150
0.3057

 

0.0252
0.483

0.0052
0.0019
0.0113

 

2.7380
6.2950
0.7970
0.6339
0.9491

 

2.1156
4.1792
0.5152
0.4070
0.5330

 

0.6223
2.1158
0.2818
0.2269
0.4162

 

48 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4386
5.0661
0.6425
0.5286
0.7558

 

0.1871
0.0247
0.3191
0.1829
0.2741

 

0.1920
0.1179
0.3381
0.1955
0.2852

 

0.0166
0.2913
0.0029
0.0009
0.0067

 

2.6915
5.7275
0.7492
0.6162
0.9164

 

2.1857
4.4048
0.5358

0.44105
0.5951

 

0.5057
1.3227
0.2134
0.1751
0.3212

 

60 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.5232
5.0658
0.6147
0.5506
0.8004

 

0.1602
0.0131
0.2620
0.1489
0.2312

 

0.1604
0.0688
0.2809
0.1505
0.2331

 

0.0010
0.1138
0.0024
0.0002
0.0009

 

2.5879
5.9745
0.7114
0.5788
0.8610

 

2.4583
5.1571
0.5180
0.5223
0.7396

 

0.1296
0.8173
0.1934
0.0564
0.1214

 

120 

72 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4542
5.1233
0.6426
0.5315
0.7608

 

0.1819
0.0322
0.3193
0.1784
0.2693

 

0.1852
0.1202
0.3326
0.1872
0.2770

 

0.0107
0.0915
0.0021
0.0013
0.0046

 

2.6566
5.7162
0.7316
0.6033
0.8933

 

2.2517
4.5304
0.5537
0.4597
0.6283

 

0.4049
1.1858
0.1779
0.1436
0.2651

 

96 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.4543
5.0272
0.6365
0.5346
0.7658

 

0.1819
0.0132
0.3068
0.1736
0.2645

 

0.1832
0.0653
0.3122
0.1766
0.2674

 

0.0041
0.0335
0.0008
0.0004
0.0016

 

2.5799
5.3436
0.6919
0.5755
0.8453

 

2.3287
4.7107
0.5751
0.4937
0.6862

 

0.2512
0.6330
0.1168
0.0818
0.1590

 

120 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

2.5193
5.8389
0.6025
0.5545
0.8088

 

0.1565
0.0054
0.2369
0.1429
0.2232

 

0.1573
0.0327
0.2447
0.1436
0.2240

 

0.0005
0.0261
0.0008

8.32 × 10−5

0.0004

 

2.5625
5.9742
0.6609
0.5724
0.8474

 

2.4761
5.7036
0.5502
0.5366
0.7701

 

0.0865
0.2706
0.1107
0.0358
0.0773
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Table 3: ML averages relative absolute biases, relative errors, variances of ML estimates, 95%confidence 

intervals of the parameters, survival, hazard rate and the alternative hazard rate functions from DIKum 

distribution for different sample sizes n, censoring size r and NR= 5000 (𝜶 = 𝟓, 𝜷 = 𝟓𝟎) 
n r Parameters Averages RABs REs Variance UL LL Length 

30 

 

18 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3601
51.5789
0.9228
0.6202
0.9717

 

0.1320
0.0316
0.1613
0.1934
0.3363

 

0.1329
0.0210
0.1617
0.1966
0.3386

 

0.0100
0.9232
0.0001
0.0013
0.0060

 

4.5564
52.4621
0.9461
0.6908
1.1238

 

4.1638
49.6957
0.8994
0.5497
0.8195

 

0.3925
2.7664
0.0467
0.1412
0.3044

 

24 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3934
51.4992
0.9181
0.6300
0.9967

 

0.1280
0.0300
0.1599
0.1901
0.3306

 

0.1295
0.0370
0.1606
0.1958
0.3349

 

0.0071
0.7023
0.0001
0.0009
0.0043

 

4.5586
52.1417
0.9387
0.6881
1.1246

 

4.2281
49.8566
0.8974
0.5719
0.8689

 

0.3305
2.2852
0.0414
0.1163
0.2557

 

30 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3401
51.0067
0.9239
0.6177
0.9634

 

0.1213
0.0201
0.1540
0.1773
0.3134

 

0.1225
0.0343
0.1546
0.1815
0.3166

 

0.0062
0.0930

7.21 × 10−5

0.0007
0.0033

 

4.4944
51.6046
0.9405
0.6705
1.0755

 

4.1858
50.4089
0.9073
0.5648
0.8512

 

0.3086
1.1957
0.0333
0.1057
0.2242

 

60 

36 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3838
51.4433
0.9198
0.6282
0.9900

 

0.1278
0.0289
0.1579
0.1849
0.3255

 

0.1280
0.0191
0.1580
0.1854
0.3260

 

0.0022
0.2451

4.52 × 10−5

0.0002
0.0012

 

4.4751
52.4136
0.9329
0.6552
1.0587

 

4.2925
50.4730
0.9066
0.6012
0.9214

 

0.1827
1.9406
0.0263
0.0541
0.1372

 

48 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.4162
51.3599
0.9147
0.6373
1.0147

 

0.1232
0.0272
0.1561
0.1797
0.3180

 

0.1236
0.0305
0.1564
0.1806
0.3189

 

0.0016
0.0909

3.82 × 10−5

0.0001
0.0009

 

4.4948
51.9508
0.9269
0.6593
1.0741

 

4.3375
50.7690
0.9026
0.6154
0.9553

 

0.1573
1.1818
0.0242
0.0439
0.1188

 

60 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3611
50.9473
0.9212
0.6242
0.9791

 

0.1168
0.0189
0.1498
0.1678
0.3010

 

0.1170
0.0279
0.1500
0.1684
0.3017

 

0.0012
0.0129

1.92 × 10−5

0.0001
0.0006

 

4.4278
51.1703
0.9297
0.6446
1.0277

 

4.2944
50.7243
0.9126
0.6038
0.9304

 

0.13336
0.4460
0.0172
0.0408
0.0973

 

120 

72 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.3959
51.4420
0.9181
0.6316
0.9989

 

0.1259
0.0288
0.1561
0.1812
0.3205

 

0.1259
0.0301
0.1562
0.1813
0.3206

 

0.0009
0.1853

2.07 × 10−5

6.94 × 10−5

0.0005

 

4.4555
52.2857
0.9270
0.6480
1.0428

 

4.3364
50.5984
0.9092
0.6153
0.9550

 

0.1191
1.6873
0.0178
0.0327
0.0877

 

96 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.4303
51.3119
0.9125
0.6413
1.0255

 

0.1208
0.0262
0.1541
0.1752
0.3118

 

0.1210
0.0265
0.1542
0.1755
0.3122

 

0.0008
0.0396

1.95 × 10−5

5.92 × 10−5

0.0004

 

4.4854
51.7021
0.9212
0.6564
1.0670

 

4.3751
50.9218
0.9039
0.6262
0.9840

 

0.1103
0.7803
0.0173
0.0302
0.0830

 

120 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

 𝑎ℎ(𝑡0) 

4.371
50.9235
0.9198
0.6270
0.9863

 

0.1139
0.0185
0.1470
0.1626
0.2935

 

0.1141
0.0185
0.1471
0.1629
0.2939

 

0.0003
0.0032

6.4220 × 10−6

2.4319 × 10−5

0.0002

 

4.4060
51.0341
0.9247
0.6367
1.0120

 

4.3353
50.8128
0.9148
0.6174
0.9607

 

0.0707
0.2214
0.0099
0.0193
0.0513

 

 

 



Pak.j.stat.oper.res.  Vol.18  No. 1 2022 pp 297-328  DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3634 

 
A Discrete Analog of the Inverted Kumaraswamy Distribution: Properties and Estimation with Application to COVID-19 Data 321 

 

Table 4: Bayes averages, relative absolute biases, relative error of the Bayes estimates and 95% credible intervals of the parameters 𝛼 and 𝛽  

 

based on Type II censoring of DIKum (𝑵𝑹 = 𝟏𝟎𝟎𝟎𝟎, 𝒕𝟎 = 𝟏𝟎, 𝜶 = 𝟑, 𝜷 = 𝟓) 

 

 
 

 

n r Par 
SE LINEX(𝒗 = 𝟎. 𝟏) 

Averages RAB RE UL LL Length Averages RAB RE UL LL Length 

30 

 

60% 
18 

 

80% 

24 

 

 

100% 

30 

𝛼 

𝛽 

 

𝛼 

𝛽 

 

𝛼 

𝛽 

 

2.7699 
4.7736 

 

3.1271 
5.0582 

 
2.9883 
5.0119 

0.0767 
0.0452 

 

0.0424 
0.0116 

 
0.0039 
0.0024 

0.0114 

0.0064 
 

0.0036 
0.0015 

 

2.96× 10−5 

2.50× 10−5 
 

2.9931 
4.9676 

 

3.2451 
5.2373 

 
2.9988 
5.0278 

2.5890 
4.5504 

 

2.9532 
4.8931 

 
2.9750 
4.9935 

0.4041 
0.4171 

 

0.2919 
0.3442 

 
0.0238 
0.0343 

2.9710 
5.0615 

 

2.9842 
4.9219 

 
3.0041 
5.0064 

0.0097 
0.0156 

 

0.0053 
0.0123 

 
0.0014 
0.0013 

2.64× 10−4 
0.0017 

 

2.54× 10−4 

2.35× 10−4 
 

4.80 × 10−6 

4.89× 10−6 

3.0140 
5.2274 

 

3.0483 
5.0022 

 
3.0096 
5.0103 

2.8723 
4.8453 

 

2.9167 
4.7960 

 
2.9968 
4.9996 

0.1417 
0.3821 

 

0.1316 
0.2062 

 
0.0127 
0.0107 

60 

60% 

36 

 

80% 

48 

 

100% 

60 

𝛼 

𝛽 

 

𝛼 

𝛽 

 

 

𝛼 

𝛽 

 

2.9934 
4.9994 

 
3.0063 

4.9863 
 

3.0015 
4.9986 

0.0022 
0.0027 

 
0.0021 

3.17× 10−4 

 

5.12× 10−4 

2.84× 10−4 

1.36× 10−5 

3.34× 10−5 
 

9.97× 10−6 

1.72× 10−5 
 

7.63× 10−7 

2.37× 10−7 

3.0030 
5.0179 

 
3.0134 

5.0024 
 

3.0037 
4.9997 

2.9790 
4.9793 

 
2.9955 

4.9678 
 

2.9990 
4.9974 

0.0240 
0.0386 

 
0.0179 

0.0345 
 

0.0047 
0.0023 

3.0019 
4.9926 

 
3.0012 

4.9992 
 

3.0008 
4.9997 

6.65× 10−4 

0.0014 
 

3.96× 10−4 

1.59× 10−4 

 

2.80× 10−4 

6.66× 10−5 

3.88× 10−6 

7.38× 10−6 
 

1.48× 10−6 

1.22× 10−6 
 

1.56× 10−7 

2.16× 10−8 

3.0086 
5.0003 

 
3.0077 

5.0052 
 

3.0015 
5.0002 

2.9944 
4.9850 

 
2.9964 

4.9926 
 

3.0000 
4.9991 

0.0141 
0.0153 

 
0.0113 

0.0126 
 

0.0015 
0.0011 

120 

60% 

72 

 

80% 

96 

 

100% 

120 

𝛼 

𝛽 

 
 

𝛼 

𝛽 

 

𝛼 

𝛽 

 

2.9989 
5.0011 

 
3.0002 
5.0009 

 

3.0001 
4.9999 

3.76× 10−4 

2.27× 10−4 
 

6.12× 10−5 

1.84× 10−4 
 

4.39× 10−5 

2.05× 10−5 

3.46× 10−7 

3.46× 10−7 
 

4.66× 10−8 

1.32× 10−7 

 

3.80× 10−9 

1.38× 10−9 

2.9998 
5.0031 

 
3.0012 
5.0018 

 

3.0003 
5.0000 

2.9968 
4.9990 

 
2.9992 
4.9991 

 

3.0000 
4.9997 

0.0030 
0.0041 

 
0.0020 
0.0027 

 

0.0003 
0.0003 

2.9994 
4.9989 

 
2.9999 
4.9995 

 

3.0000 
5.0001 

1.91× 10−4 

2.23× 10−4 
 

4.90× 10−5 

1.04× 10−4 
 

2.60× 10−5 

1.68× 10−5 

8.40× 10−8 

1.57× 10−7 
 

1.64× 10−8 

4.98× 10−8 
 

1.15× 10−9 

1.16 × 10−9 

3.0001 
4.9998 

 
3.0003 
5.0003 

 

3.0000 
5.0002 

2.9986 
4.9974 

 
2.9993 
4.9986 

 

2.9999 
5.0000 

0.0014 
0.0024 

 
0.0010 
0.0017 

 

0.0001 
0.0002 
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Table 5: Bayes averages, relative absolute biases, relative error of the Bayes estimates and 95% credible intervals of the parameters 𝜶 and 𝜷 
 

based on Type II censoring of DIKum (𝑵𝑹 = 𝟏𝟎𝟎𝟎𝟎, 𝒕𝟎 = 𝟏𝟎, 𝜶 = 𝟓, 𝜷 = 𝟓𝟎) 

 

 

 

 
 

 

 

 

 

 

n r Par 
SE LINEX(𝒗 = 𝟎. 𝟏) 

Averages RAB RE UL LL Length Averages RAB RE UL LL Length 

30 

60% 
18 

 

80% 
24 

 

100% 
30 

𝛼 

𝛽 
 

𝛼 

𝛽 
 

𝛼 

𝛽 
 

3.7607 
45.7949 

 
4.9690 

50.1109 
 

5.0154 
49.9949 

0.2478 
0.0841 

 

6.20× 10−3 

2.21× 10−3 
 

3.08× 10−3 

1.02× 10−4 

0.1945 
0.2240 

 

5.48× 10−4 

1.76× 10−4 
 

2.99× 10−5 

4.14× 10−7 

4.7620 
49.9432 

 
5.0567 

50.2608 
 

5.0265 
50.0038 

2.5532 
42.4794 

 
4.7860 

49.9402 
 

4.9987 
49.9856 

2.2088 
7.4637 

 
0.2707 

0.3206 
 

0.0278 
0.0182 

5.5311 
48.8031 

 
5.0077 

49.9865 
 

4.9895 
50.0019 

0.1062 
0.0239 

 

3.53× 10−3 

2.70× 10−4 
 

2.09× 10−3 

3.75× 10−5 

0.0282 
0.01432 

 

5.93× 10−6 

1.83× 10−6 
 

1.09× 10−5 

5.64 × 10−8 

5.9715 
49.9723 

 
5.0742 

50.0296 
 

4.9984 
50.0059 

4.8043 
47.6042 

 
4.9484 

49.9394 
 

4.9789 
49.9972 

1.1671 
2.3681 

 
0.1258 

0.0902 
 

0.0195 
0.0087 

60 

60% 
36 

 

80% 
48 

 

100% 
60 

𝛼 

𝛽 
 

𝛼 

𝛽 
 

𝛼 

𝛽 
 

4.9698 
49.9037 

 
4.9893 
49.9838 

 
4.9995 
49.9974 

6.03× 10−3 

1.92× 10−3 
 

2.13× 10−3 

3.23 × 10−4 
 

1.01× 10−4 

5.20× 10−5 

3.38× 10−4 

1.20× 10−4 
 

1.61× 10−5 

4.97× 10−6 
 

3.84× 10−8 

7.39× 10−8 

5.0386 
49.9911 

 
4.9988 
50.0080 

 
5.0001 
49.9994 

4.8380 
49.7770 

 
4.9751 
49.9589 

 
4.9985 
49.9959 

0.2006 
0.2141 

 
0.0237 
0.0491 

 
0.0016 
0.0035 

4.9866 
49.9851 

 
5.0055 
49.9974 

 
5.0003 
49.9998 

2.66× 10−3 

2.98× 10−4 
 

1.10× 10−3 

5.15× 10−5 
 

5.23× 10−5 

3.44 × 10−6 

1.77× 10−7 

2.22× 10−6 
 

3.03× 10−6 

6.66× 10−8 
 

1.50× 10−8 

3.55 × 10−8 

5.0370 
50.0729 

 
5.0123 
50.0021 

 
5.0007 
50.0001 

4.9306 
49.8602 

 
4.9988 
49.9922 

 
4.9995 
49.9993 

0.1064 
0.2127 

 
0.0134 
0.0098 

 
0.0012 
0.0007 

120 

60% 
72 

 

80% 
96 

 

100% 
120 

𝛼 

𝛽 
 
 

𝛼 

𝛽 
 

𝛼 

𝛽 
 

4.9978 
50.0153 

 
5.0016 

50.0021 
 

4.9999 
49.9999 

4.32× 10−4 

3.06× 10−4 
 

3.27× 10−4 

4.33× 10−5 
 

1.51× 10−5 

2.85× 10−6 

4.86× 10−6 

3.03× 10−6 
 

4.47× 10−7 

5.98× 10−8 
 

1.66× 10−9 

2.48× 10−8 

5.0081 
50.0291 

 
5.0040 

50.0035 
 

5.0001 
50.0000 

4.9812 
49.9934 

 
4.9994 

49.9997 
 

4.9997 
49.9997 

0.0269 
0.0357 

 
0.0046 

0.0038 
 

0.0003 
0.0003 

4.9993 
50.0057 

 
5.0001 

50.0014 
 

5.0000 
49.9999 

1.47× 10−4 

1.13× 10−4 

 

1.57× 10−5 

2.91× 10−5 

 

5.79× 10−6 

1.18× 10−6 

6.28× 10−8 

3.22× 10−7 

 

8.78× 10−9 

2.14× 10−8 
 

1.27× 10−10 

4.53× 10−9 

5.0021 
50.0167 

 
5.0012 

50.0023 
 

5.0000 
50.0000 

4.9946 
49.9980 

 
4.9992 

49.9999 
 

4.9999 
49.9999 

0.0074 
0.0187 

 
0.0019 

0.0024 
 

0.0001 
0.0001 
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Table 6: Bayes averages, relative absolute biases, relative errors of the Bayes estimates and 95% credible intervals of the 𝑺(𝒕𝟎), 𝒉(𝒕𝟎) and 𝒂𝒉(𝒕𝟎)  
 

 based on Type II censoring of DIKum (𝑵𝑹 = 𝟏𝟎𝟎𝟎𝟎, 𝒕𝟎 = 𝟏, 𝜶 = 𝟓, 𝜷 = 𝟓𝟎) 
 

n r Par 
SE LINEX(𝒗 = 𝟎. 𝟏) 

Averages RAB RE UL LL Length Averages RAB RE UL LL Length 

30 
 

60% 
18 
 

80% 
24 
 

100% 
30 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

0.6191 

0.5653 
2.3258 

 
0.7839 
0.6995 
1.5985 

 
0.7968 

0.7539 
1.4573 

0.2216 
0.7727 
1.0747 

 
0.0145 

0.0864 
0.5736 

 

3.97× 10−3 

1.54× 10−2 
0.4764 

0.0268 
0.2752 
0.9443 

 

3.62× 10−3 

4.42× 10−3 
0.2444 

 

1.05× 10−5 

1.30× 10−4 
0.1647 

0.7561 

0.7459 
3.0717 

 
0.8911 
0.7869 
1.7861 

 
0.8041 

0.7682 
1.4699 

0.3716 

0.3704 
1.8260 

 
0.6289 
0.6105 
1.3879 

 
0.7884 

0.7408 
1.4463 

0.3845 

0.3755 
1.2457 

 
0.2621 
0.1763 
0.3982 

 
0.0157 

0.0274 
0.0236 

0.7347 

0.6503 
1.8209 

 
0.7894 
0.7415 
1.5890 

 
0.7987 

0.7599 
1.4550 

0.0764 
0.1507 
0.7269 

 

7.72× 10−3 

0.0316 
0.5671 

 

1.59× 10−3 

7.63× 10−3 
0.4749 

3.01× 10−3 
0.0109 
0.4164 

 

2.64× 10−4 

6.32× 10−4 
0.2355 

 

9.87× 10−6 

2.58× 10−5 

0.1636 

0.7961 

0.7538 
2.3576 

 
0.8277 
0.7717 
1.6912 

 
0.8022 

0.7631 
1.4617 

0.6694 

0.5545 
1.2653 

 
0.7424 
0.6967 
1.4473 

 
0.7931 

0.7511 
1.4441 

0.1267 

0.1992 
1.0923 

 
0.0853 
0.0749 
0.2439 

 
0.0091 

0.0120 
0.0176 

60 
 
 

60% 
36 
 

80% 
48 
 

 

100% 
60 

 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

 

0.6970 
0.6758 

1.5267 
 

0.8019 
0.7628 
1.4811 

 
0.7963 
0.7653 

1.4528 

0.1237 
0.2617 

0.5242 
 

8.89× 10−3 

4.06× 10−3 
0.4928 

 

1.03× 10−3 

9.60× 10−4 

0.4733 

8.19× 10−3 
0.0359 
0.2005 

 

1.66× 10−4 

1.93× 10−5 
0.1763 

 

5.68× 10−7 

6.71× 10−7 
0.1626 

0.7878 
0.7459 

1.6119 
 

0.8250 
0.7719 
1.5004 

 
0.7971 
0.7664 

1.4537 

0.5400 
0.6807 

1.3908 
 

0.7809 
0.7543 
1.4460 

 
0.7952 
0.7640 

1.4514 

0.2477 
0.0652 

0.2210 
 

0.0441 
0.0176 
0.0544 

 
0.0019 
0.0024 

0.0023 

0.8543 
0.6352 

1.5111 
 

0.7969 
0.7614 
1.4571 

 
0.7962 
0.7668 

1.4514 

0.0739 
0.1704 

0.5134 
 

1.77× 10−3 

3.81× 10−3 
0.4762 

 

9.37× 10−4 

4.81× 10−4 
0.4727 

2.64× 10−3 
0.0164 
0.1925 

 

6.48× 10−6 

1.71× 10−5 
0.1646 

 

4.27× 10−7 

3.95× 10−7 
0.1622 

0.8963 
0.6678 

1.6224 
 

0.8005 
0.7667 
1.4605 

 
0.7956 
0.7669 

1.4523 

0.7926 
0.6243 

1.4116 
 

0.7880 
0.7555 
1.4503 

 
0.7944 
0.7658 

1.4511 

0.1037 
0.0435 

0.2108 
 

0.0125 
0.0112 
0.0102 

 
0.0012 
0.0011 

0.0012 
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Table 6: continued 

 

n r Par 
SE LINEX(𝒗 = 𝟎. 𝟏) 

Averages RAB RE UL LL Length Averages RAB RE UL LL Length 

120 

60% 
72 

 
 

80% 
96 
 
 

100% 
120 

 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

0.8048 
0.7756 
1.4668 

 
0.7951 
0.7671 
1.4531 

 
0.7954 
0.7657 
1.4515 

0.0116 
0.0128 
0.4829 

 

9.01× 10−4 

1.69× 10−3 
0.4735 

 

1.87× 10−4 

3.96× 10−5 

0.4724 

1.42× 10−4 

8.77× 10−5 
0.1693 

 

4.72× 10−7 

1.75× 10−6 
0.1627 

 

1.67× 10−8 

4.83× 10−9 
0.1620 

0.8234 
0.7869 
1.4850 

 
0.7958 
0.7689 
1.4538 

 
0.7955 
0.7658 
1.4516 

0.7831 
0.7638 
1.4436 

 
0.7937 
0.7654 
1.4514 

 
0.7953 
0.7655 
1.4514 

0.0403 
0.0230 
0.0414 

 
0.0021 
0.0035 
0.0024 

 
0.0002 
0.0003 
0.0002 

0.7930 
0.7669 
1.4569 

 
0.7948 
0.7662 
1.4521 

 
0.7955 
0.7658 
1.4516 

3.13× 10−3 

1.52× 10−3 
0.4761 

 

4.67× 10−4 

5.61× 10−4 

0.4728 
 

8.16× 10−6 

1.90× 10−5 
0.4724 

6.29× 10−6 

8.04× 10−6 
0.1645 

 

2.29× 10−7 

1.55× 10−7 
0.1622 

 

2.64× 10−10 

1.21 × 10−9 
0.1619 

0.7959 
0.7729 
1.4633 

 
0.7955 
0.7666 
1.4526 

 
0.7956 
0.7659 
1.4516 

0.7885 
0.7581 
1.4484 

 
0.7939 
0.7657 
1.4514 

 
0.7955 
0.7658 
1.4515 

0.0073 
0.0147 
0.0148 

 
0.0016 
0.0009 
0.0012 

 
0.0000 
0.0001 
0.0001 
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Table 7: ML estimates of the parameters, survival, hazard rate, 

 the alternative hazard rate functions and 

standard errors for the first real data set based on Type II censoring 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

n r Parameters Estimates SE 

30 

21 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

4.3155
51.4347
0.9294
0.6094
0.940

 

0.4686
0.2582
0.0179
0.0245
0.2616

 

27 

𝛼 

𝛽 

𝑆(𝑡0) 
ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

4.4383
50.4820
0.9078
0.6469
1.0409

 

0.3155
0.2323
0.0126
0.0141
0.1687

 

30 

𝛼 

𝛽 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

4.4503
50.3975
0.9055
0.6503
1.0506

 

0.3021
0.1580
0.0121
0.0133
0.1608
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Table 8: Goodness-of-fit measures for fitted models of second real data set 

Model 
Estimates 

MLE(SE) -2LL AIC BIC CAIC 
K-S 

P-value 

DIKum 
𝛼 

5.7268(0.3142) 

𝛽 

50.0817(1.2764) 
  107.061 111.061 113.864 111.506 

0.2666 

0.2391 

DIW 
 

0.5610(0.2500) 

 

1.7016(0.198) 
  144.567 148.567 151.37 149.012 

0.3333 

0.0692 

DMIR 
 

0.4366(0.2567) 

 

0.8817(0.2328) 
  112.494 116.494 119.297 116.939 

0.3000 

0.1350 

EDIR 0.8994(0.2319) 0.4541(0.2558)   161.666 165.666 168.468 166.11 
0.3 

0.1324 

TDL 
 

0.3288(0.2626) 

 

1.6827(0.1986) 
  111.143 115.143 117.945 115.587 

0.3333 

0.0708 

 

Table 9: Goodness-of-fit measures for fitted models of third real data set II 

Model 
Estimates 

MLE(SE) -2LL AIC BIC CAIC 
K-S 

P-value 

DIKum 
𝛼 

0.8617 (0.2193) 

𝛽 

1.3172 (0.2116) 
  382.41 386.41 391.071 386.574 

0.0921 

0.9067 

DIW 0.6405 (0.2233) 0.5418 (0.2252)   408.41 412.41 417.072 412.575 
0.2105 

0.0686 

DMIR 0.6387 (0.2234) 0.1093 (0.2336)   392.625 396.625 401.286 396.789 
0.1973 

0.1035 

EDIR 0.9053 (0.2185) 0.3914 (0.2281)   442.087 446.087 450.749 446.251 
0.1973 

0.1035 

TDL 0.2653 (0.2305) 3.8661 (0.2009)   446.254 450.254 454.915 450.418 
0.2763 

0.0582 
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Table 10: Bayes Estimates and standard errors for the  𝜶 and 𝜷 
  of DIKum based on Type II censoring for the three real data sets 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Real Data I n r Par 

                SEL                                      LINEX(𝒗 = 𝟎. 𝟏) 
Estimates 

 

SE 

 

Estimates 

 

SE 

 

Application 

 I 
30 

 

𝟔𝟎% 

18 

 

𝟖𝟎% 

24 

 

𝟏𝟎𝟎% 

30 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

 
5.0107 
50.0294 

 

5.0019 
49.9994 

 
4.9999 
50.0000 

 

0.1450 
0.1170 

 
0.0050 

5.64× 10−5 
 

1.57× 10−5 

1.20× 10−6 

4.9990 
50.0041 

 

5.0001 
50.0005 

 
5.0000 
50.0000 

0.0109 
0.00436 

 

1.32× 10−4 

4.00× 10−5 
 

9.04× 10−7 

1.06× 10−7 

Application 

II 
30 

𝟔𝟎% 

18 

 

𝟖𝟎% 

24 

 

𝟏𝟎𝟎% 

30 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

4.9985 
50.0006 

 
5.0005 
49.9991 

 
4.9999 
49.9998 

0.0031 

1.50× 10−4 

 
0.0013 

5.77× 10−5 
 

3.06× 10−4 

2.89× 10−5 

 

4.9995 
49.9998 

 
5.0002 
49.9995 

 
5.0000 
49.9999 

 

0.0013 

6.46× 10−5 
 

1.82× 10−4 

4.50× 10−5 
 

1.43× 10−4 

1.77× 10−5 

Application 

III 
30 

 

𝟔𝟎% 

18 

 

𝟖𝟎% 

24 

 

 

𝟏𝟎𝟎% 

30 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

𝜶 

𝜷 

 

 
0.8988 
0.8024 

 
0.9010 
0.7977 

 

0.8995 
0.8017 

 

 
0.0550 
0.0979 

 
0.0077 
0.0395 

 

0.0031 
0.0233 

 

0.9015 
0.8004 

 
0.8997 
0.7985 

 

0.9000 
0.7990 

0.0186 
0.0449 

 
0.0022 
0.0176 

 

0.0014 
0.0050 
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Table 11: Bayes Estimates and standard errors of the  𝑺(𝒕𝟎), 𝒉(𝒕𝟎)  and  𝒂𝒉(𝒕𝟎) 

of DIKum based on Type II censoring for the three real data sets 

 

 

 

 

 

 

 

 

Real Data I n r Par 

SEL LINEX(𝒗 = 𝟎. 𝟏) 
Estimates 

 

SE 

 

Estimates 

 

SE 

 

Application 

 I 
30 

𝟔𝟎% 

18 

 

 

𝟖𝟎% 

24 

 

 

 

𝟏𝟎𝟎% 

30 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

0.4507 

0.2605 
0.2776 

 
0.4585 
0.2352 
0.2726 

 
0.4587 
0.2374 

0.2710 

0.2370 
0.1300 
0.3060 

 

0.0049 
0.1160 
0.2290 

 

1.33× 10−4 

2.97 × 10−4 

0.0217 

0.4592 

0.2347 
0.2739 

 
0.4589 
0.2365 
0.2713 

 
0.4588 
0.2373 

0.2710 

0.0613 

0.3100 
0.2480 

 

7.11× 10−4 

0.0309 
0.21200 

 

3.51× 10−6 

3.98× 10−5 
0.2080 

Application 

II 
30 

𝟔𝟎% 

18 

 

 

𝟖𝟎% 

24 

 

 

𝟏𝟎𝟎% 

30 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

0.7975 
0.7629 
1.4517 

 
0.7943 
0.7644 

1.4515 
 

0.7952 
0.7662 
1.4514 

0.0303 
0.0588 
0.1621 

 
0.0104 
0.0203 
0.1620 

 
0.0047 
0.0045 
0.1620 

 

0.7967 
0.7654 
1.451 

 
0.7951 
0.7660 

1.4516 
 

0.7953 
0.7659 
1.4516 

0.0129 
0.0054 
0.1620 

 
0.1060 
0.3880 
0.1620 

 
0.4470 
0.1760 
0.1619 

 

Application 

III 
76 

 

𝟔𝟎% 

46 

 

 

𝟖𝟎% 

61 

 

 

𝟏𝟎𝟎% 

76 
 

 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 
 

𝑆(𝑡0) 

ℎ(𝑡0) 

𝑎ℎ(𝑡0) 

0.4599 
0.3203 
0.3896 

 
0.4589 
0.3249 

0.3897 
 

0.4588 
0.3226 
0.3893 

0.0201 
0.1120 
0.0058 

 
0.0019 
0.0893 

0.0058 
 

0.0017 
0.0079 
0.0057 

0.4587 
0.3225 
0.3896 

 
0.4589 
0.3226 

0.3895 
 

0.4590 
0.3226 
0.3896 

0.0025 
0.0030 
0.0057 

 

8.61× 10−4 

0.0014 
0.0057 

 

6.46× 10−4 

1.65× 10−4 
0.0055 


