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Abstract

In recent years, researchers focused on introducing discrete type distributions which satisfy the necessary demand
to model the complex performance of the real data sets. In this paper, a discrete inverted Kumaraswamy distribution,
which is a discrete version of the continuous inverted Kumaraswamy distribution, is derived using the general
approach of discretization of a continuous distribution. The new discrete inverted Kumaraswamy distribution can
be applied efficiently in discrete lifetime and count data. Some important distributional and reliability properties of
discrete inverted Kumaraswamy distribution such as hazard rate, moments, quantiles, order statistics and some
transformations are obtained. Maximum likelihood and Bayesian approaches are applied under Type-Il censored
samples for estimating the parameters, survival, hazard rate and alternative hazard rate functions. Confidence and
credible intervals for the parameters are obtained. A simulation study is carried out to illustrate the theoretical
results of the maximum likelihood and Bayesian estimation. Finally, the performance of the new distribution is
compared with some distributions using three real data sets to illustrate the suitability and flexibility of the proposed
model.

Key Words: Inverted Kumaraswamy distribution; Discrete lifetime models; Survival, hazard and alternative
hazard rate functions; Order statistics; Type Il censored data; Maximum likelihood and Bayesian estimation;
Squared error loss function; Linear exponential loss function; Confidence and credible intervals.
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1. Introduction

It is well known that the life length in the real world may be associated with continuous non-negative lifetime
distributions; however, sometimes it is difficult to get samples from a continuous distribution in real life. The observed
values are discrete because they are usually measured to only a finite number of decimal places and can't really
constitute all points in a continuum. Even if the measures are taken on a continuous (ratio or interval) scale, the
observations may be recorded in a way making discrete model more appropriate. Therefore, itis reasonable to consider
the observations as coming from a discretized distribution generated from the continuous model.

In many practical situations, the reliability data are measured in terms of the numbers of runs, cycles or shocks the
device sustains before it fails. For example, the number of times that the devices are switched on/off, the lifetime of
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the switch is a discrete random variable (DRV). Also, the number of voltages fluctuations, which an electrical or
electronic item can withstand before its failure, is a DRV, the life of equipment is measured by the number of
completed cycles or the number of times it operated before failure, or the life of weapon is measured by the number
of rounds fired prior to failure. Similarly, in survival analysis the survival function (SF) may be a function of DRV
that is considered as a discrete version of the analogue continuous random variable (CRV). Such as the length of stay
in observation ward; when it is measured by the number of days, or the survival time that the leukemia patients
survived since therapy may be counted by number of days or weeks.

Many discrete distributions are available to model such mentioned situations, for example, the geometric and negative
binomial distributions which are the discrete versions for the exponential and gamma distributions, respectively, but
it is well known that they have monotonic hazard rate functions and thus they are unsuitable for some situations.

On the other hand, there are few discrete distributions which can provide accurate models for both count and times.
As Poisson distribution, is used to model counts but not times. Also, the binomial distribution is not considered to be
popular model for reliability, failure times, count, etc. Beside that it can be approximated to Poisson distribution under
suitable conditions. In addition to that, these discrete distributions only cater to positive integers along with zero, but
in some analysis the variable of interest can take either zero, positive or negative values. In many situations the interest
may be in the difference of two DRVs each having integer support (0, ). The resulting difference will be another
DRV with integer support (—o, ), see Chakraborty and Chakravorty (2016). Thus, there is a need to derive
appropriate discrete distributions by discretizing the continuous distributions to fit various types of data. Therefore,
the study of the discretization of continuous is meaningful.

There are several methods to construct discrete distributions from the continuous ones, for example discrete
analogue of the Pearson system of continuous distributions, discretizing using the probability density function (PDF).
The distribution generated using this method may not always have a compact form due to the normalizing constant.
Also, discretizing can be by shifting the cumulative distribution function (CDF), discretizing using hazard rate
function (HRF), discretizing using SF and two composite methods. For a comprehensive review on this topic, see
Bracquemond and Gaudoin (2003) and Chakraborty (2015).

Many researchers studied the general approach of discretization of some known continuous distributions for use as
lifetime distributions. For example, Nakagawa and Osaki (1975) proposed a discrete Weibull distribution.

Khan et al. (1989) discussed two discrete Weibull distributions and they presented a simple method to estimate the
parameters for one of them. They compared this method with the method of moments, and they concluded that the
estimates appear to have almost similar properties.

Roy (2003) derived a discrete normal distribution and elaborated its application for evaluating the reliability of
complex systems as an alternative to simulation method. Roy (2004) proposed a discrete Rayleigh distribution as a
particular case of the discrete Weibull.

Inusah and Kozubowski (2006) obtained a discrete version of the Laplace (double exponential) distribution and
discussed some of its statistical properties and statistical issues of estimation under the discrete Laplace model.

Krishna and Pundir (2009) presented the discrete Burr XII distribution and applied it to fit the reliability in series
system and a set of real data. Also, they derived the discrete Pareto distribution as a special case of the discrete Burr
distribution.

Jazi et al. (2010) introduced discrete inverse Weibull (DIW) distribution and they studied four methods of estimation
(the heuristic algorithm, the inverse Weibull probability paper plot, the method of moments and the method of
proportions).

Gomez-Deniz and Calderin-Ojeda (2011) constructed the discrete version of Lindley distribution and used it as an
alternative to Poisson distribution to model automobile claim frequency data. Nekoukhou and et al. (2012) presented
a new version of the discrete generalized exponential distribution, which can be viewed as different generalization of
the geometric distribution, some of its distributional and moment properties were discussed. AL-Huniti and AL-
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Dayian (2012) proposed the discrete Burr Type Il distribution, they discussed some important properties and
estimated the parameters based on the maximum likelihood and Bayesian approaches.

Lekshmi and Sebastian (2014) introduced the skewed generalized discrete Laplace distribution which arises as the
difference of two independently distributed count variables; they discussed some properties of the distribution and
illustrated a real data set. Para and Jan (2014) presented a discrete generalized Burr Type XII distribution. Hussain
and Ahmad (2014) proposed the discrete inverse Rayleigh distribution. Hussain et al. (2016) obtained the two-
parameter discrete Lindley (TDL) distribution. Alamatsaz et al. (2016) derived the discrete generalized Rayleigh
distribution. Para and Jan (2016) obtained the discrete three parameter of Burr Type XII and discrete Lomax
distributions. Chakraborty and Chakravorty (2016) proposed the discrete logistic distribution and applied it to model
real life count data.

Sarhan (2017) introduced the two-parameter discrete distribution with bathtub hazard shape; he discussed some
statistical properties of the distribution. Also, he used three different methods to estimate the parameters and used the
bootstrap method to estimate the distributions of these point estimators. Borah and Hazarika (2017) presented the

discrete Shanker distribution. Hegazy et al. (2018) introduced the discrete Gompertz distribution.

Migdadi (2014) used Bayesian inference to estimate the scale parameter of discrete Rayleigh distribution based on
squared error (SE) and general entropy loss functions. This study also involved prediction for the future ordered
observation. Kamari et al. (2015) studied Bayesian analysis of discrete Burr distribution; they used the Metropolis-

Hastings method for numerical parameters estimate with two loss functions, SE and absolute error loss functions.

The rest of the paper is organized as follows: discrete inverted Kumaraswamy (DIKum) distribution is introduced,
and some statistical properties are given in Section 2. Some relationships between DIKum distribution and other well-
known distributions are provided in Section 3. While, in Section 4, maximum likelihood (ML) and Bayesian estimation
are derived. Simulation study and results are presented. In Section 5, a real data set is analyzed showing applicability
and flexibility of DIKum distribution.

2. Discretizing a Continuous Distribution

The general approach of discretizing a continuous variable can be used to construct a discrete model by introducing
a grouping on the time axis see Roy (2003, 2004). If the CRV X has the SF, S(x) = P(X = x)and times are grouped
into unit intervals so that the DRV of X denoted bydX = |X|; which is the largest integer less than or equal to x, will
have the probability mass function (PMF)

PdX=x)=P(x)= P[x<X<x+1]
= S()-Sx+1), x=012... 1)

The PMF of the DRV, dX, can be viewed as discrete concentration of pdf of X. So, given any continuous distribution
it is possible to construct corresponding discrete distribution using (1).

One of the advantages of applying this approach of discretizing is that the SF for discrete distributions has the same
functional form of the SF for the continuous distributions; as a result, many reliability characteristics and properties
remain unchanged. Thus, discretization of a continuous lifetime model according to this approach is an interesting and
simple approach to derive a discrete lifetime model corresponding to the continuous one.

2.1 Construction of discrete inverted Kumaraswamy distribution

Gupta et al. (1998) introduced two-parameter distribution as a generalization of the standard Pareto of second
kind, called the exponentiated Pareto (EP) distribution. Also, Abd AL-Fattah et al. (2017) derived IKum distribution
using special transformation, which has the same PDF of EP distribution. This distribution is important in a wide
range of applications; for example, engineering, medical research, stress-strength analysis and lifetime problems. Also,
in reliability and biological studies, IKum distribution may be used to model failure rates. Gupta et al. (1998) proved
that EP distribution is effective in analyzing many lifetime data. EP distribution has failure rates that take decreasing
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and upside-down bathtub shapes depending on the value of the shape parameters similarly to exponentiated Weibull
(EW) distribution presented by Mudholkar et al. (1995). They observed that exponential distribution, generalized
exponential distribution, Weibull distribution, beta distribution, Gamma distribution, uniform distribution,
exponentiated exponential distribution, exponentiated Gamma distribution and other distributions can be obtained as
special cases of EP distribution. IKum distribution has several applications in different fields, due to its expected wide
applicability. Many researchers studied a generalization and multivariate of this distribution (See Igbal et al. (2017),
AL-Dayian et al. (2020), Usman and Ahsan ul Haq (2020), Abdul Hammed et al. (2020) and Aly and Abuelamayem
(2020)). The PDF of IKum distribution is given by

g) = ap(1+x) VA -1 +x)"F1, x>0 a,p>0, @
where a and 8 are shape parameters and should be positive.

The corresponding CDF and SF are, respectively, given by

Gx)=1—-1+x)9F, x>0; apB >0, )
and
Sx)=1-(1 -0 +x)"9F, x>0; ap>0. )

IKum distribution has a long right tail; compared with other commonly used distributions. Thus, it will affect long
term reliability predictions, producing optimistic predictions of rare events occurring in the right tail of the distribution
compared with other distributions. Also, IKum distribution provides a good fit to several data in literature.

Using (1) discrete X (DX) can be viewed as the discrete analogue to the continuous IKum variable X, and is commonly
said to have DIKum distribution with two parameters a and 8, denoted by DIKum (a, B) distribution, where the
corresponding PMF of DX can be written as

p)=1-Q+x)™ ™) -1-1A+x)"F x=012,.., af>0, 5)
and the CDF, SF and HRF are as follows:

Fx)=PX<x)=1-S@)+PX=x)=1-2+x)F x=012,.., (6)

S =PX=2x)=1—-Fx)+PX=x)=1-(1—-(1+x)"95,
x=012.., )
and

P(x) _ (1-2+x)" OB -(1-(1+x)~HF
sx) 1-(1-(1+x)~®)B ’

h(x) =

x=012,.., apB>0. (8)

There are some problems associated with the definition of h(x), three of the more notable ones are given below:

a. h(x) is not additive for series system.
The cumulative HRF, H(x) = Y h(x) # —InS(x).
h(x) < 1 and it has the interpretation of a probability. [For more details, see Xie et al. (2002) and Lai
(2013) and (2014)].
Therefore, it was necessary to find an alternative definition that is consistent with its continuous counterpart. Roy and
Gupta (1992) provide an excellent alternative definition of a discrete HRF denoted by ah(x):

S(x) ] - [1-(1-(1+x)—a)ﬁ
seanl =1-(1-(2+x)~®)B)’

ah(x) = In x=012,.., a,f>0. 9
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There is a relationship between a#(x) and h(x), given by:
h(x) =1 — e~ah®), (10)

The two concepts h(x) and ak(x) have the same monotonic property, i.e., ak(x) is increasing (decreasing) if and only
if h(x) is increasing (decreasing).

Plots of PMF, HRF and alternative HRF (AHRF) of DIKum distribution are presented, respectively, in Figures 1-3,
for some selected values of the parameters.
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Plots of the hazard rate function
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Plots of the alternative hazard rate function

Figure 1 shows that the PMF of DIKum distribution can be unimodal and right skewed according to the selected values
of the parameters. For some values of parameters, the PMF is decreasing over (0, o0) and the mode is at zero. While

for other values of the parameters, it indicates that the PMF is increasing on (0, x,,,,4.) and reaches the maximum at
1

af+1

Xmode- then decreases to the zero on (x,,,,4e, ©); in this case, X,pg0e = [( 24 )_& — 1]. Plots of PMF, HRF and AHRF

show that DIKum distribution exhibits a long right tail compared with other commonly used distributions. Thus, it
will affect long term reliability predictions, producing optimistic predictions of rare events occurring in the right tail
of the distribution compared with other distributions.

Figures 2 and 3 indicate that although the HRF and AHRF of DIKum distribution are decreasing and upside-down
bathtub shapes depending on the value of the shape parameters. One can observe that the HRF is less than 1.

2.2 Some properties of discrete inverted Kumaraswamy distribution

This subsection is devoted to obtaining some important distributional properties of DIKum (a, 8 ) distribution,
such as the mode, quantiles, 7" moments and order statistics.

2.2.1 Mode of discrete inverted Kumaraswamy distribution

a+1
af+1

_1
The mode of DIKum distribution is at x,,,4. = l( ) *— 1], a,B > 0.
This can be easily verified with PMF plots given in Figure 1.

2.2.2 Quantiles of discrete inverted Kumaraswamy distribution
The ut" quantile of a DRV X, x,,, satisfies

PX<xy)=zuand PX=x,)=>1-u,ie, F(x, —1) <u < F(x,). [For more details see Rohatgi and Saleh
(2001)].

The ut"quantile x,, , of DIKum (a, 8 ) distribution is given by

X, = H(l - (u)%)_% - 1} -2 l, O<u<l1. (12)

where [x] denotes the smallest integer greater than or equal to xand 0 < u < 1.

A Discrete Analog of the Inverted Kumaraswamy Distribution: Properties and Estimation with Application to COVID-19 Data 302



Pak.j.stat.oper.res. VVol.18 No. 1 2022 pp 297-328 DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3634

Proof
P(X <x,) =u, from (6)

(1 -2 +x)"%F > u, hence

1

Xy > {(1 - (u)E)_E - 1} _2. (12)
Similarly, if P(X = x,) =1 — u, one obtains
X, < {(1 - (u)%)_E - 1} ~1 (13)

Combining (12) and (13), one gets,

{(1 - (u)E)_% - 1} -2<x, < {(1 - (u)ﬁ)_é - 1} -1

Hence, x,,is an integer value given by

X, = R(l - (u)ﬁ)_é - 1} 2 ‘ 1)

Thus, the median of DIKum («, ) distribution can be computed from (14) as follows:

Xos = [{(1 - (0.5)5)_5 -~ 1} -2 ‘ (15)

2.2.3 The moments of discrete inverted Kumaraswamy distribution
a. The non-central moments of discrete inverted Kumaraswamy distribution
The non-central moments of DIKum distribution can be obtained using (5) as given below
w =EX") = X5 x" p(x) (16)
=32 ox" [A-Q+0)™ P -1 -1+x) 9], r=12.. . (17)
In particular, the mean (1) of DIKum distribution is given by
= p=Tiox[(1 = 2+ = (1 - (1 +x)9F]. (18)
b. The central moments of discrete inverted Kumaraswamy distribution

The central moments can be derived using the relation between the central and non-central moments as given below
T . .
e = T () Gy jir =12, (19)
thus, the variance (var) of DIKum distribution is

Ho = Tioo X2 [(1 = @+ 207 — (1 - (1 +x)™)]
X [a- @+ — - +0 ] (20)
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c. The standard moments of discrete inverted Kumaraswamy distribution
The rt" standard moments can be obtained as follows:
X— T
a =E(ZH). 1)
The skewness and kurtosis of DIKum distribution are given by, respectively,

as = ”—; and a, = Z—‘é,where p=EX-w' r=12...

I

2.2.4 The order statistic of discrete inverted Kumaraswamy distribution

Let F;(x; a, B ); the cdf of the i*" order statistic for a random sample X;, X5, ..., X,,, from DIKum (a, § ), is given by

Feap) =30 (1) [Fesa I [1 - Fx a, f)I". (22)
Using the binomial expansion for [1 — F;(x; &, f)]™ " and substituting (6) in (22),
where
n n ., n-r n—r . .
Aeap =) () Feapr), (*77) COF@ap).
=5 (s (") cvla- oo (23)

Special cases

Case I: If i =1 in(23), one can obtain the distribution function of the first order statistic, as given below
FGaB)=1-[1-FlaB"=1-[1-1-@2+x) 9", (24)
Case IlI: If i =n in (23), then the distribution function of the largest order statistic, is as follows:

FGsaB) = [Fgapl" = [0 - 2+x) 9" (25)
which is the CDF of DIKum (a, ng), and the SF of DIKum (a, nB ) is

S)=1—-(1 -1 +x)" 9"~ (26)

Suppose that X;, X, ..., X,, is a random sample from DIKum (e, 8) distribution. Let X;.,, X5.,., ..., X, deNOteE the
corresponding order statistics. Then, the PMF of

X, 18 defined by
P(Xpp =x) = ——— fF(x) vl —v)v . (27)

= Dt JFe-1)
Using the binomial expansion for (1 — v)"~¢, then, the PMF in (27) is
n! _i(n—i CF() i
N =] (P K U A
_ n! n—i n—i _ . i
O j=0( j ) (-1 (i+].)
x [[(1 @+ -[a-a+ x)_“)ﬁ]i”]. 28)

The PMF of the smallest order statistic is obtained by substituting i = 1 in (28) as follows:
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PXy,=x) = nz:; (n]— 1) (-1 (%ﬂ)

x|l -+ - [a-a+0r]] (29)
and the PMF of the largest order statistic is obtained by substituting i = n in (28) as follows:

P = 1) = 2= [[(1 = @+ 7™ = [(1 = @ + 798| (30)

Also, (23) can be used to obtain the PMF of DIKum («, ) distribution, (see Arnold et al. (2008)).
3. Some Transformations Applied to Discrete Inverted Kumaraswamy Distribution

In this section relationships between DIKum distribution and other well-known distributions are provided through
using appropriate transformations, which are displayed in Table 1.

Table 1: Summary of some transformations applied to inverted Kumaraswamy distribution
and DIKum distribution and the resulting distributions

Distribution Transformation Result PMF
Inverted p(n) =
Kumaraswamy Y, = [X] HDIKum@ ) 1 G2 2 4y (1= (1 4+ )",
X~IKum(a, ) y;=012,.., a,f >0.
Discrete inverted
Kumaraswamy p(,) =
X/s~DIKum(a, 8) _2 . —aynf_(1 _ —aynp
Xs Y, = max,<jcn X; | Yo~DIK~(a,nB) =@ +y2)™)" =1 = A +y2)™)",
(i=1,23,..n)be _
id y,=012,.., a,f > 0.
Discrete inverted Y,~DIKum(a, B) p(ys) =
37 ) ) 3) —
[Umeaswamy _ (1= @2 +7)™F ~(= (1 +y5)" ),
X;s~DIKum(a, B;) | Y3 = max i<y X; n
X|s are independent B = Bi. Y = 01,2 @B >0
i=1 3 — U L4 .., ) .
Discrete inverted Y,~ geometric p(ys) = 07+(1-0),
Kumaraswamy _ distribution with
X~ DIKum(6,1), | = @+x 6 =e. Y, =0,1,2, ..., 0<6<1.
where f=¢~“
Discrete inverted | y, = Ys~dicrete p(ys) =
Kumaraswamy 1 generalized Raleigh (1 — 9(1+ys)2)ﬁ — (1 — gysz)ﬁ’
X~DIKum(6,p), | (n(2+x)2 6,B), ¥s=012,..,
where f=e~* -1 0=e"% 0<9<1,B8>0.
Discrete inverted | Y6 = (In (2 + . , p(Ve) =
Kumaraswamy X))z —1 Yo ~discrete Raleigh (1-90+¥%) — (1— %),
) (6), where§ = e
X~ DIKum(6, 1), ' : ¥ = 0,1,2, ...
where 6=¢~% 0<O6<1.
Discrete inverted p(y7) = (60+) — (6@+)
Kumaraswamy _ . g+y2)) — (g(2+y7)),
X~ DIKum(6, 1), Y, =x Y, ~discrete Pareto (6| Yy =012, ..
where 6=~ % 0<6<1.
Exponential P(s) =
AR Ys~DIKum(6,1),
Cletribution hoer-z | NERLEOD (1= (2 +yg) (1= (1 +%)™)
X~exp(a) ye =012, ..., a>0.

4. Estimation of the Parameters of Discrete Inverted Kumaraswamy Distribution

In this section, ML and Bayesian methods are used to derive the estimators of the parameters for DIKum distribution.
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4.1 Method of maximum likelihood
This subsection is devoted to estimate the vector of two parameters, ¢ = (a, ), SF, HRF and AHRF of DIKum

(a, B) distribution, based on Type Il censored samples, also confidence interval of the parameters «, 8, SF, HRF and
AHRF are derived.

Suppose that X;, X,, ..., X, isa Type Il censored sample of size r obtained from a life-test on n items whose lifetimes
have DIKum (a, 8) distribution. Then the likelihood function is

L(gix) o Tz p G MSGeo)]" (31)

where p(x) and S(x) are given, respectively, by (5) and (7). The x(;)'s are ordered times fori = 1,2,...r.
L(gx) o {IT (1 = 2 + %)™ )F = (1= (1 + x)™)F)
x[1- - +x) " (32)
The natural logarithm of the likelihood function is given by
¢ =InL (g; g) « In 1_[::1[(1 —R+x)™F = (1 -1+ x)9F
+(m—7r)In[1 -1 - 1 +x)"F. (33)
- Z:_ln [(1- @ +x)" ) — (1= (1+x)" %]

+(m—r)In[1 - (1 - 1 +x)"F. (34)

Considering the two parameters, a and 8 are unknown and differentiating the log likelihood function in (34), with
respect to a and 3, one obtains

3 _ {[ﬂ(l—(z+xi)'“)ﬁ'1(2+xi)""ln(2+xi)]+[[?(1—(1+xi)'“)ﬁ'1(1+xi)'“ln(1+xl-)]}

da i=1 [(A-@+x)~OB-(1-(1+x)~ 9]
o BA-Qtx)”NF ! (k)% (tay)
+(n—7r) -G , (35)
and

2 _yr [1-2+x) " 1P In[1-(2+x) ~*]-[1-A+x) ¥ In[1-(1+2) ~%]
ap ~ “~i=1 [(A=@+x)~ DB -(1-(1+x;)~ D) B]

{1-A+xp)~HP In(1-1+x) "%
[1-{1-(1+x)~*}5]

—(n—-7)

(36)

Then the ML estimators of the parameters, denoted by @ and § are derived by equating the two nonlinear likelihood
(35) and (36) to zeros and solving numerically.

Depending on the invariance property, the ML estimators of S(x), h(x) and ah(x) can be obtained by replacing « and
8 with their corresponding ML estimators @ and S, respectively, in (7), (8) and (9), as given below

Sy =1-(1-(1+ x)-ﬁ)g ) x=123,.., (37)

(1—(2+x)—‘7‘)5—(1—(1+x)—‘7‘)ﬁ

Ay (x) = ) x=012,.. , (38)

1—(1—(1+x)—@)5
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and

x=012,.. . (39)

ahy, (0) = In M]

N
1-(1-(2+x)~%)
When the sample size is large and the regularity conditions are satisfied, see Lehmann and Casella (1998), the
asymptotic distribution of the ML estimators is
@~Bivariate Normal (g,l‘lE (g)) where ¢ = (a,8), ¢ =(&B), and I7'(p) is the asymptotic variance

covariance matrix of the ML estimators « and 8, which is the inverse of the observed Fisher information matrix. The
asymptotic observed Fisher information matrix can be obtained as follows:

€ @)
_(aia{)ﬁ) _(ZTi) (a’B)

The asymptotic 100(1 — a)% confidence interval for a, 8, Sy, (x), hy, (x) and ah,,; (x) are given, respectively, by

L,(®) = (40)

L,=&—Zaoy  and Uy, =8+ Zaag, (41)
2

NI

where L, and U, are the lower and upper bound respectively,
@ is & B,5(x), h(x) or h,(x), where Z is the100% (1 —g)th standard normal percentile, (1 — a) is confidence
coefficient and o is the standard deviation.

4.2 Bayesian Estimation

The Bayesian approach is considered, under two types of loss functions, SE and linear exponential (LINEX) loss
functions, to estimate the parameters, SF, HRF and AHRF of DIKum (e, 8) distribution. Bayesian estimators are
obtained based on Type Il censored samples, using informative prior. Also, credible intervals for the parameters, SF,
HRF and AHRF are obtained.

L (9; g) in (31) can be written as follows:

L(a Blx) o {TT=y (wip — wi)Iw, ", (42)
where

wip = 1= (1+x) ), wy=1~-@2+x) 9P

and

w,=1-—(1-(14+x.)"%~. (43)

Assuming that the parameters « and § of DIKum distribution are random variables with a joint bivariate prior density
function that was used by AL-Hussaini and Jaheen (1992) as

n(a, ) = g:(alB)g.(B) , @B >0, (44)
where

gi(alp) = %aa-le-ﬁa, a,a B >0, (45)
and

9:(B) = 7= B e, B,bc> 0. 46)
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The joint prior density of @ and B will be obtained by substituting (45) and (46) in (44) and it’s given by
m(a, f) « a1 patc-le=Flatb) a,fB,a,b,c> 0. (47)

The joint posterior distribution for ¢ and f can be derived using (31) and (47) as follows:

(e, Blx) o L(a, Blx) n(a, B) (48)
= k@t prre-le BT (Wi, — wi)Iw, ™7, (49)

where
kit = f0°° pate-t f0°° a® ! [T, (Wi, — wiy)}w, " Te F@*Ddq ap, (50)

which is a normalizing constant.

The marginal posterior distributions m(a|x) and (S]x) are given, respectively, by

n(alx) =k a®? fow{ﬂ?:l(wiz —wy)} w,T At lemFlarbgp, (51)
and
m(Blx) = ky poret fom{H?zl(wiz —wy)} w,"T e Flathldg, (52)

where ki1 isa normalizing constant given in (50) and w;,;, w;, and w, are defined in (43).
a. Point estimation

The Bayes point estimators of the parameters, SF, HRF and AHRF are considered based on informative prior and two
different loss functions: SE and LINEX loss functions.

I Bayesian estimation under squared error loss function
Under SE loss function the Bayes estimators of the parameters a and 8 are given by their marginal posterior
expectations using (51) and (52), respectively, as shown below

A(spy = E(“' x)

=k i a® [ T —wi)} w7 pete e Aarbdpda, (53)
and
Bisey = E(Blx) =l [, B+ [} (TTiZa Wiy = win)} wp"™" e F@*P)dadp. (54)
Also, the Bayes estimators of the SF, HRF and AHRF under SE loss function can be obtained using (7)-(9) and (49)
as follows:

Stsm) (0 = E(S()|x)
=1—k! fo"’ pate-1 f0°°(1 — (1 +x)"%)F g1 g=Flath)
X {Il=i(wyy — wid}w," " dadp, (55)

hise) () = E(h(0)|x)

-1 (@ pate—1 [© Q=@+ DE--+0"DF 1 _pla+b)
= ki J‘0 P J‘0 1-(1-(1+x)~ 9B @ €

X {Iliz1 Wiz —wi)}w, """ dadp, (56)
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and

ahisgy(x) = E(ah(x)lg)

— -1 (® patc-1 (® 1= 9P —B(a+b)
=k fo B fo In [1—(1—(2+x)—a)ﬁ a*le

X {Ili=1 Wiz — wi)}w," " dadp. (57)

1. Bayesian estimation under linear exponential loss function

Under the LINEX loss function, the Bayes estimators for the parameters a and 8 are given, respectively, by
* -1 —
Anx) = ?ln E(e 190{'5)

=ky 5 In[f," @ e [T, (Wi, — wi)} w7 Bate e F@h dpdal, (58)
and

Bivxy = % In E(e o |E)

= ey S [ f; Bete ™ [ @ {TI (Wi — wi)} W, e @ dadp, (59)

where 9 # 0.

Similarly, the Bayes estimators of the SF, HRF and AHRF under LINEX loss function can be obtained from (7)-(9)
and (49) as follows:

-1

Sanpn ) = ?ln E(e™*®|x)
= E ® Hha+ce-1 [(® —19(1—(1+x)—a)ﬁ a-1 ,—B(a+b)
1+ 9 In fo ﬁ fO e a e
x {ITi=1 (Wi = wi)Iw, " "dadp, )

-1
hinx () = —-In E(e=?"®|x)
= %}k{lln [f0°° pa+e-1 f0°° e~ 9-(1+0)"DF [ a-1 ,-Bla+b)

X {Ili=1(Wiz — wi)}w,""da dp, (61)
and
ah{ g () = _T} In E(e=?9"™)|x)
= %k{lln [fom pare-1 fow [1:8:8:2:22 - %=1 g—Bla+b)
x {ITi=1(wiz = wi)}w,""]da dp. (62)
To obtain the Bayes estimates of the parameters, SF, HRF and AHRF (53) - (62) should be evaluated numerically.

b. Credible interval for the parameters

In general, a two-sided 100(1- w) % credible interval of ¢ is given by
P[L(x) < o < U(x)Ix] = fLU(S)ﬂ(q)Iz) dp=1-w,
where L(x) and U(x), are the lower limit (LL) and upper limit (UL).
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Since, the marginal posterior distributions are given by (51) and (52), then a 100 (1 — w) % credible interval for
a; (L(g), U(g)), are given by

Pla > L(x)|x]
= o fg @t P W = W)} W, e B AR o = 1 -,

(63)
and

Pla > U@)|x]
= ky fy @ Jy Ul Wiy = wi)} w7 et le F@)dp da = 2, (64)

Also, a 100 (1- w) % credible interval for f is (L(g), U(g)) and can be obtained as follows:

P[B> L(x)lx]
=k, f:gx) peret fom{]_[lle(wiz —w)} wT e Pt dadp =1~ % (65)

and

P[> U(x)lx]

=k f:&z) B [Ty Wiz — win)} W™ e F@* ) dadp = 2. (66)
Furthermore, a 100 (1- ) % credible interval for S(x) is (L(g) U(g)) where
PlL(x) <5 < U@l = [;§ 7S ds =1~ w, (67)

where 7(S|x) is the posterior distribution of SF and r(S|x) = f,” n(S, z|x) dz.

LetS=S(x) =1-(1—(1+x)"*)F and a=z,

da 9B
_ In(1-5) az oz| _ 1
b= (ln(l—(1+x)‘z))' so that da 9B T (1-)in(1-(1+x)77)’
as oS

The joint posterior distribution of S and z is

_ kyz@ 1 ma-s) %l (ROSD )4y
n(S,zlx) = - in(1-(1+0-%) (ln(l—(1+x)‘z)) e M-t
X {H{:l(wiz* - Wll*)} WTTI*_T! 0 < S < 1;Z > 0! (68)
where
( In(1-5) > ( In(1-5) >
P E—— —_ —Z
Wiy, = (1 — (2 + xi)—z) In(1-(1+x;) ) Wi, = (1 — (1 + xl_)—z) In(1-+x;) °)
and
( In(1-5) )
e, =1 (1= (1+x,)) Fa-a), (69)

Hence, the posterior density function for SF is given by

o a-1 _ atc-1 In(1-5)
T[(S|X) = klf ka2 @ —$) e_(ln(l—(1+x)‘z))(z+b)
= o =91 -A+x)H\InQ1-1Q+x)77%)

X o1 Wiz — wi )Iw,, " Tdz, 0<S<1. (70)
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Then a 100 (1- w) % credible interval for S is (L(g), U(g)),
PIS> L(x)lx]

—k fl fw kyz01 ( m(1-5) )a+c—1e_(m(1”_‘8%)(z+b)

T L(x) Yo (1-)in(1-(1+072) \in(1-(1+x)7%)

X {H?=1(Wi2* - Wil*)}Wr*n_rdZdS =1- %; (71)
and
P[s> U(x)|x]

=kt [ kyz@t ( in(1-5) )a+c_1 e_(%)(ﬁb)

T ML) Yo (1-9)in(1-(1+0~2) \in(1-(1+x)7%)

X ATy Wiz — Wi )}w,, " dzdS = 2 (72)

2"

5. Numerical Results

This section aims to investigate the precision of the theoretical results based on simulated and real data, by
evaluating relative absolute biases (RABs) and relative errors (RES).

5.1 Simulation study

In this subsection, a simulation study is conducted to illustrate the performance of the presented ML and Bayes
estimates based on generated data from DIKum distribution. ML and Bayes averages of the estimates of the
parameters, SF, HRF and AHRF based on Type Il censoring are computed. Moreover, confidence and credible
intervals for the parameters, SF, HRF and AHR are calculated. All simulation studies are performed using
Mathematica 9 and R programming language. The numerical procedures are performed according to the following
algorithm.

Step 1: a random sample X;, X,, ..., X,, of sizes (n=30, 60,120) are generated from DIKum distribution using the
following transformation:

1
x; = {(1 — (ui)?) ‘o 1} -2 ‘ i =1,2,..,n and y; are random samples from uniform (0,1) and then taking

the ceiling.

Step 2: Two different set values of the parameters are selected as,

Setl(a =3, p=5)andSet2 (a =5, B = 50).

Step 3: For each model parameters and for each sample size, the ML estimates are computed.

Step 4: Steps from 1 to 3 are repeated 5000 times for each sample size and for selected sets of the parameters.
Then the averages, RABs, REs and variances of the estimates of the unknown parameters are computed. The
RABs, REs, variances of ML and Bayes estimates of the parameters, SF, HRF and AHRF are computed as
follows:

YR estimates

1) Averages = ™

2) RABs (estimates) = \2as (estimate)|

true value

3) REs _estimated risk (ER)(estimate)

true value !

4) Variances (estimate) = ER(estimate) — bias? (estimate),
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Table 2 shows the ML averages, RABs, REs, variances, SF, HRF and AHRF estimates, also 95% confidence intervals
where the population parameters values for a = 3, f = 5 under three levels of % % 100 percentage of uncensored
observations Type Il censoring 60%, 80% and 100%. Table 3 displays the same computational results, but for different

population parameters values « = 5, g = 50, from DIKum distribution for different sample sizes where (n=30, 60
and 120) and level of Type Il censoring 60%, 80% and 100% and number of replications (NR) = 5000.

Tables 4 and 5 present the Bayes averages of the estimates for the parameters and their RABs, REs and credible
intervals under three levels of % % 100 percentage of uncensored observations Type Il censoring 60%, 80% and 100%

for different population parameters values for a« = (3,5), 8 = (5,50) and NR = 10000.

Table 6 displays the Bayes averages of the estimates and 95% confidence intervals of the SF, HRF and AHRF at
to = 1, from DIKum distribution based on Type Il censoring for different sample sizes and NR = 10000.

Tables 7-10 present the ML, Bayes estimates and standard errors (SE) for the a, B, S(t,), h(t,) and ah(t,)
of DIKum based on Type Il censoring for the three real data sets.

5.2 Applications
This subsection aims to demonstrate how the proposed DIKum distribution can be used in practice through
analyzing three real lifetime data sets.

Application 1
This real data set is obtained from Hinkley (1977). It consists of thirty successive values of March precipitation (in

inches) in Minneapolis/St Paul.

The data is: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, and 2.05.

Application 2

The second application is given by Murthy et al. (2004). The data refers to the time between failures for a repairable
item

The data is: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45,
0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86 and 1.17.

Application 3

The data of this application is considered by Mubarak and Almetwally (2021). This data represents a COVID-19
data which belong to the United Kingdom of 76 days, from 15 April to 30 June 2020. These data formed of drought
mortality rate. The data is: 0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079 0.2395 0.2751 0.2845 0.2992
0.3188 0.3317 0.3446 0.3553 0.3622 0.3926 0.3926 0.4110 0.4633 0.4690 0.4954 0.5139 0.5696 0.5837 0.6197
0.6365 0.7096 0.7193 0.7444 0.8590 1.0438 1.0602 1.1305 1.1468 1.1533 1.2260 1.2707 1.3423 1.4149 1.5709
1.6017 1.6083 1.6324 1.6998 1.8164 1.8392 1.8721 1.9844 2.1360 2.3987 2.4153 2.5225 2.7087 2.7946 3.3609
3.3715 3.7840 3.9042 4.1969 4.3451 4.4627 4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456 8.2307 9.6315
10.1870 11.1429 11.2019 11.4584.

To check the validity of the fitted model, Kolmogorov-Smirnov (K-S) goodness of fit test is performed for
the three data sets. The p values are 0.799, 0.239 and 0.907, respectively. The p values show that DIKum fits the data
very well.

The real data sets are provided to illustrate the flexibility and applicability of DIKum distribution. DIKum
distribution is compared to some distributions such as DIW distribution introduced by Jazi et al. (2010), discrete
modified inverse Rayleigh (DMIR) distribution proposed by Shahid and Raheel (2019), exponentiated discrete inverse
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Rayleigh (EDIR) presented by Mashhadzadeh and Mirmostafaee (2020), and TDL distribution considered by Hussain
et al. (2016).

The comparison is done by using K-S statistic, the corresponding p-value and other criteria for the purpose
of model selection including Akaike information criterion (AIC), Akaike information criterion with correction (AICC)
and Bayesian information criterion (BIC), where

AIC = 2k —2log(L),

k(k+1)
AICC = AIC + 22—,
n—k-—1

and
BIC = klog(n) — 2log(L),

where k denotes the number of the estimated parameters, L is the maximized value of the likelihood function for the
estimated model, and n is the sample size. The distribution which has the lowest values of AIC, AICC, BIC and the
highest p-value, fits better to the real data set.

The comparison was applicable for the second and third real data only. The p-values show that DIW, DMIR
and TDL do not fit the first real data which ensures that DIKum distribution is the best to model the first real data.
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Figure 4: The PP-plot, QQ-plot, fitted PMF and TTT-plot of
DIKum distribution for the first data set

A Discrete Analog of the Inverted Kumaraswamy Distribution: Properties and Estimation with Application to COVID-19 Data 313



Pak.j.stat.oper.res. VVol.18 No. 1 2022 pp 297-328

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3634

LOF T 5
0.8} +
0.6} e 3
- : o
0.4' ‘_" ... 2 X «*
. . e
0.2} s * 1 ' .,.-.g' .
0.0l * . . - ] N
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 25

PP-plot for the second data set

0.6}
0.5}
04}
0.3}
0.2}
0.1}

Plot of the fitted PMF

n

QQ-plot for the second data set

TTT-plot for the second data set

Figure 5: The PP-plot, QQ-plot, fitted PMF and TTT-plot of
DIKum distribution for the second data set

A Discrete Analog of the Inverted Kumaraswamy Distribution: Properties and Estimation with Application to COVID-19 Data

314



Pak.j.stat.oper.res. VVol.18 No. 1 2022 pp 297-328

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3634

1.0 -
T At 10}
0.8 |
‘r,.-' - 8
0.6
) ’ .l 6 .
) . ". . -
04 r‘ 4 -P.".'
l' .-
2 -il - el
0.2 ¢ 2l i
0.0k v 0-/. . e . . .
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 § 10 12 14
PP-plot for the third data set QQ-plot for the third data set
0.30 w
0.25 ]
0.20 e =
0.15 3
0.10 2
0.05 s |
OIO OIQ O,‘4 OIS OIB 1‘0
1 2 3 4 5 in

Plot of the fitted PMF

TTT-plot for the third data set
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DIKum distribution for the third data set

4.7.3 Concluding remarks

From Tables 2, 3 and 7 the RABSs, variances and REs of the ML averages of the estimates for the
parameters a and 8 decrease when the sample size n increases. Also, it is observed that as the level of
censoring decreases the RABs, variances and REs of the ML estimates of the parameters, SF, HRF and
the AHRF estimates decrease. The lengths of the confidence intervals become narrower as the sample
size increases.

It is noticed, from Tables 4-6, 8 and 9 that the RABs, REs for the estimates of the parameters, SF, HRF,
AHRF and the credible interval lengths of the parameters, SF, HRF and AHRF under LINEX loss
function have less values than the corresponding RABs, REs and the credible interval lengths under the

SE loss function.

It is observed that less RABs and REs, obtained for complete sample sizes, are less than the

corresponding results for censored samples. Also, the results perform better when n and r get larger.

The Bayes intervals include the estimates (between the LL and UL).
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V. Table 9 and 10 conclude the ML estimates and corresponding standard error (SE), K-S statistic with its
corresponding p-value, -2LL, AIC, BIC and CAIC. The results in these tables indicate DIKum
distribution has the smallest values of -2LL, AIC, BIC, CAIC, K-S and highest p-value. That means that
DIKum distribution is better fit for this data compared with other distributions used here.

VI. The total time test (TTT) plot can be used to get information about the shape of the HRF of a given data
set, which helps in selecting a particular model to fit a provided data set. Figures 4-6 show the TTT plots
of the three real data sets which ensure that the HRF is decreasing. Moreover, the fitted PMF, PP and
QQ plots indicate that DIKum distribution fit for the three real data sets.
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Table 2: ML averages relative absolute biases, relative errors, variances of the ML estimates, 95%confidence
intervals of the parameters, survival, hazard rate and alternative hazard rate functions from DIKum
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distribution for different sample sizes n, censoring size r and NR=5000 (¢ =3, B =5)

n r Parameters | Averages RABs REs Variance UL LL Length
a 2.4058 0.1980 0.2090 0.0401 2.7984 2.0132 0.7852

B 5.3932 0.0849 0.2755 0.7954 7.1413 3.6451 3.4962

18 S(ty) 0.6675 0.3703 0.4109 0.0075 0.8374 0.4976 0.3398
h(t,) 0.5129 0.2072 0.2315 0.0045 0.6437 0.3821 0.2617

ah(ty) 0.7275 0.3012 0.3241 0.0155 0.9714 0.4837 0.4877

a 2.4147 0.1951 0.2049 0.0351 2.7819 2.0475 0.7343

B 5.1902 0.0786 0.1949 0.7182 6.6346 3.7459 2.8886

30 24 S(ty) 0.6575 0.3500 0.3859 0.0062 0.8128 0.5023 0.3105
h(ty) 0.5158 0.2026 0.2276 0.0045 0.6473 0.3924 0.2531

ah(ty) 0.7334 0.2955 0.3180 0.0149 0.9731 0.4937 0.4793

a 2.5302 0.1589 0.1593 0.0020 2.6198 2.4406 0.1791

B 5.4246 0.0380 0.1522 0.5430 6.9938 4.8553 2.1384

30 S(ty) 0.6337 0.3011 0.3300 0.0043 0.7626 0.5049 0.2576
h(ty) 0.5446 0.1580 0.1607 0.0003 0.5815 0.5078 0.0736

ah(ty) 0.7875 0.2435 0.2466 0.0016 0.8666 0.7084 0.1581

a 2.4268 0.1911 0.1983 0.0252 2.7380 2.1156 0.6223

B 5.2371 0.0474 0.1952 0.483 6.2950 4.1792 2.1158

36 S(to) 0.6561 0.347 0.3771 0.0052 0.7970 0.5152 0.2818
h(ty) 0.5205 0.1955 0.2150 0.0019 0.6339 0.4070 0.2269

ah(ty) 0.7411 0.2882 0.3057 0.0113 0.9491 0.5330 0.4162

a 2.4386 0.1871 0.1920 0.0166 2.6915 2.1857 0.5057

B 5.0661 0.0247 0.1179 0.2913 5.7275 4.4048 1.3227

60 48 S(to) 0.6425 0.3191 0.3381 0.0029 0.7492 0.5358 0.2134
h(ty) 0.5286 0.1829 0.1955 0.0009 0.6162 | 0.44105 | 0.1751

ah(t,) 0.7558 0.2741 0.2852 0.0067 0.9164 0.5951 0.3212

a 2.5232 0.1602 0.1604 0.0010 2.5879 2.4583 0.1296

B 5.0658 0.0131 0.0688 0.1138 5.9745 5.1571 0.8173

60 S(ty) 0.6147 0.2620 0.2809 0.0024 0.7114 0.5180 0.1934
h(t,) 0.5506 0.1489 0.1505 0.0002 0.5788 0.5223 0.0564

ah(ty) 0.8004 0.2312 0.2331 0.0009 0.8610 0.7396 0.1214

a 2.4542 0.1819 0.1852 0.0107 2.6566 2.2517 0.4049

B 5.1233 0.0322 0.1202 0.0915 5.7162 4.5304 1.1858

72 S(to) 0.6426 0.3193 0.3326 0.0021 0.7316 0.5537 0.1779
h(t,) 0.5315 0.1784 0.1872 0.0013 0.6033 0.4597 0.1436

ah(ty) 0.7608 0.2693 0.2770 0.0046 0.8933 0.6283 0.2651

a 2.4543 0.1819 0.1832 0.0041 2.5799 2.3287 0.2512

B 5.0272 0.0132 0.0653 0.0335 5.3436 4.7107 0.6330

120 96 S(to) 0.6365 0.3068 0.3122 0.0008 0.6919 0.5751 0.1168
h(t,) 0.5346 0.1736 0.1766 0.0004 0.5755 0.4937 0.0818

ah(ty) 0.7658 0.2645 0.2674 0.0016 0.8453 0.6862 0.1590

a 2.5193 0.1565 0.1573 0.0005 2.5625 2.4761 0.0865

B 5.8389 0.0054 0.0327 0.0261 5.9742 5.7036 0.2706

120 S(ty) 0.6025 0.2369 0.2447 0.0008 0.6609 0.5502 0.1107
h(t,) 0.5545 0.1429 0.1436 8.32x 1075 0.5724 0.5366 0.0358

ah(t,) 0.8088 0.2232 0.2240 0.0004 0.8474 0.7701 0.0773
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Table 3: ML averages relative absolute biases, relative errors, variances of ML estimates, 95%confidence
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intervals of the parameters, survival, hazard rate and the alternative hazard rate functions from DIKum

distribution for different sample sizes n, censoring size r and NR=5000 (¢ = 5, 8 = 50)

n r Parameters | Averages RABs REs Variance UL LL Length
a 4.3601 0.1320 | 0.1329 0.0100 4.5564 4.1638 0.3925
B 51.5789 | 0.0316 | 0.0210 0.9232 52.4621 | 49.6957 | 2.7664
18 S(ty) 0.9228 0.1613 | 0.1617 0.0001 0.9461 0.8994 0.0467
h(t,) 0.6202 0.1934 | 0.1966 0.0013 0.6908 0.5497 0.1412
ah(ty) 0.9717 0.3363 | 0.3386 0.0060 1.1238 0.8195 0.3044
a 4.3934 | 0.1280 | 0.1295 0.0071 4.5586 4.2281 0.3305
30 B 51.4992 | 0.0300 | 0.0370 0.7023 52.1417 | 49.8566 | 2.2852
24 S(ty) 0.9181 0.1599 | 0.1606 0.0001 0.9387 0.8974 0.0414
h(ty) 0.6300 0.1901 | 0.1958 0.0009 0.6881 0.5719 0.1163
ah(t,) 0.9967 0.3306 | 0.3349 0.0043 1.1246 0.8689 0.2557
a 4.3401 0.1213 | 0.1225 0.0062 44944 4.1858 0.3086
B 51.0067 | 0.0201 | 0.0343 0.0930 51.6046 | 50.4089 | 1.1957
30 S(ty) 0.9239 0.1540 | 0.1546 | 7.21 x 1075 0.9405 0.9073 0.0333
h(ty) 0.6177 0.1773 | 0.1815 0.0007 0.6705 0.5648 0.1057
ah(ty) 0.9634 | 0.3134 | 0.3166 0.0033 1.0755 0.8512 0.2242
a 4.3838 0.1278 | 0.1280 0.0022 44751 4.2925 0.1827
B 51.4433 | 0.0289 | 0.0191 0.2451 52.4136 | 50.4730 | 1.9406
36 S(ty) 0.9198 0.1579 | 0.1580 | 4.52x 107° 0.9329 0.9066 0.0263
h(ty) 0.6282 0.1849 | 0.1854 0.0002 0.6552 0.6012 0.0541
ah(ty) 0.9900 0.3255 | 0.3260 0.0012 1.0587 0.9214 0.1372
a 44162 0.1232 | 0.1236 0.0016 4.4948 4.3375 0.1573
B 51.3599 | 0.0272 | 0.0305 0.0909 51.9508 | 50.7690 | 1.1818
60 48 S(ty) 0.9147 0.1561 | 0.1564 | 3.82x 107° 0.9269 0.9026 0.0242
h(ty) 0.6373 0.1797 | 0.1806 0.0001 0.6593 0.6154 0.0439
ah(t,) 1.0147 0.3180 | 0.3189 0.0009 1.0741 0.9553 0.1188
a 43611 0.1168 | 0.1170 0.0012 44278 4.2944 | 0.13336
B 50.9473 | 0.0189 | 0.0279 0.0129 51.1703 | 50.7243 | 0.4460
60 S(ty) 0.9212 0.1498 | 0.1500 | 1.92x 1075 0.9297 0.9126 0.0172
h(t,) 0.6242 0.1678 | 0.1684 0.0001 0.6446 0.6038 0.0408
ah(ty) 0.9791 0.3010 | 0.3017 0.0006 1.0277 0.9304 0.0973
a 4.3959 0.1259 | 0.1259 0.0009 4.4555 4.3364 0.1191
B 51.4420 | 0.0288 | 0.0301 0.1853 52.2857 | 50.5984 | 1.6873
72 S(ty) 0.9181 0.1561 | 0.1562 | 2.07 X 1075 0.9270 0.9092 0.0178
h(t,) 0.6316 | 0.1812 | 0.1813 | 6.94 x 107> 0.6480 0.6153 0.0327
ah(ty) 0.9989 0.3205 | 0.3206 0.0005 1.0428 0.9550 0.0877
a 4.4303 0.1208 | 0.1210 0.0008 4.4854 4.3751 0.1103
B 51.3119 | 0.0262 | 0.0265 0.0396 51.7021 | 50.9218 | 0.7803
120 96 S(ty) 0.9125 0.1541 | 0.1542 | 1.95x 1075 0.9212 0.9039 0.0173
h(t,) 0.6413 0.1752 | 0.1755 | 5.92x 1075 0.6564 0.6262 0.0302
ah(ty) 1.0255 0.3118 | 0.3122 0.0004 1.0670 0.9840 0.0830
a 4371 0.1139 | 0.1141 0.0003 4.4060 4.3353 0.0707
B 50.9235 | 0.0185 | 0.0185 0.0032 51.0341 | 50.8128 | 0.2214
120 S(to) 0.9198 0.1470 | 0.1471 | 6.4220 x 107| 0.9247 0.9148 0.0099
h(t,) 0.6270 0.1626 | 0.1629 | 2.4319 x 107| 0.6367 0.6174 0.0193
ah(ty) 0.9863 0.2935 | 0.2939 0.0002 1.0120 0.9607 0.0513
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based on Type Il censoring of DIKum (NR = 10000,t, = 10,a = 3, = 5)

Table 4: Bayes averages, relative absolute biases, relative error of the Bayes estimates and 95% credible intervals of the parameters a and

0 . | par SE LINEX(v = 0.1)
Averages RAB RE UL LL | Length | Averages RAB RE UL LL | Length
60% | « 0.0114
18 B 2.7699 0.0767 0.0064 2.9931 | 2.5890 | 0.4041 2.9710 0.0097 2.64x 107* | 3.0140 | 2.8723 | 0.1417
4.7736 0.0452 ' 4.9676 | 4.5504 | 0.4171 5.0615 0.0156 0.0017 5.2274 | 4.8453 | 0.3821
0
30 834/0 a 3.1271 0.0424 888?2 3.2451 | 2.9532 | 0.2919 2.9842 0.0053 2.54x 107* | 3.0483 | 2.9167 | 0.1316
B 5.0582 0.0116 ' 5.2373 | 4.8931 | 0.3442 4.9219 0.0123 2.35x 10™* | 5.0022 | 4.7960 | 0.2062
-5
a 2.9883 0.0039 ;ggx 18_5 2.9988 | 2.9750 | 0.0238 3.0041 0.0014 4,80 x 107% | 3.0096 | 2.9968 | 0.0127
100% B 5.0119 0.0024 X 5.0278 | 4.9935 | 0.0343 5.0064 0.0013 4.89% 107¢ | 5.0103 | 4.9996 | 0.0107
30
a
60% B 2.9934 0.0022 1.36x 1075 | 3.0030 | 2.9790 | 0.0240 3.0019 6.65x 10™* | 3.88x 107° | 3.0086 | 2.9944 | 0.0141
36 4.9994 0.0027 3.34x 1075 | 5.0179 | 4.9793 | 0.0386 4.9926 0.0014 7.38x 107° | 5.0003 | 4.9850 | 0.0153
a
60 80% B 3.0063 0.0021 9.97x 107¢ | 3.0134 | 2.9955 | 0.0179 3.0012 3.96x 10™* | 1.48x 107° | 3.0077 | 2.9964 | 0.0113
48 4.9863 3.17x 107* 1.72x 107> | 5.0024 | 4.9678 | 0.0345 4.9992 1.59x 107* | 1.22x 107° | 5.0052 | 4.9926 | 0.0126
100% a 3.0015 5.12x 107* | 7.63x 1077 | 3.0037 | 2.9990 | 0.0047 3.0008 2.80x 107* | 1.56x 10~7 | 3.0015 | 3.0000 | 0.0015
60 B 4.9986 2.84x 107* | 2.37x 1077 | 4.9997 | 4.9974 | 0.0023 4.9997 6.66x 107> | 2.16x 1078 | 5.0002 | 4.9991 | 0.0011
a
60% B 2.9989 3.76x 10™* | 3.46x 1077 | 2.9998 | 2.9968 | 0.0030 2.9994 1.91x 107* | 8.40x 1078 | 3.0001 | 2.9986 | 0.0014
72 5.0011 2.27x107* | 3.46x 1077 | 5.0031 | 4.9990 | 0.0041 4.9989 2.23x107* | 1.57x 1077 | 4.9998 | 4.9974 | 0.0024
120 80% a 3.0002 6.12x 107> | 4.66x 107% | 3.0012 | 2.9992 | 0.0020 2.9999 4.90x 1075 | 1.64x 1078 | 3.0003 | 2.9993 | 0.0010
96 B 5.0009 1.84x 107* 1.32x 1077 | 5.0018 | 4.9991 | 0.0027 4.9995 1.04x 10~* | 4.98x 1078 | 5.0003 | 4.9986 | 0.0017
100% a 3.0001 4.39x 1075 3.80x 10° | 3.0003 | 3.0000 | 0.0003 3.0000 2.60x 107> | 1.15x 102 | 3.0000 | 2.9999 | 0.0001
120 I 4.9999 2.05x 1075 1.38x 10~° | 5.0000 | 4.9997 | 0.0003 5.0001 1.68x 1075 | 1.16 x 10=° | 5.0002 | 5.0000 | 0.0002
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Table 5: Bayes averages, relative absolute biases, relative error of the Bayes estimates and 95% credible intervals of the parameters e and g8

based on Type Il censoring of DIKum (NR = 10000,t, = 10,a = 5, = 50)

n r Par SE LINEX(v =0.1)
Averages RAB RE UL LL Length | Averages RAB RE UL LL Length
60% g 3.7607 0.2478 0.1945 4.7620 | 2.5532 | 2.2088 5.56311 0.1062 0.0282 5.9715 | 4.8043 | 1.1671
18 45.7949 0.0841 0.2240 49.9432 | 42.4794 | 7.4637 | 48.8031 0.0239 0.01432 49.9723 | 47.6042 | 2.3681
30 80% a 4.9690 6.20x 1073 | 5.48x 10™* | 5.0567 | 4.7860 | 0.2707 5.0077 3.53x 1073 | 593x 107 | 5.0742 | 4.9484 | 0.1258
24 B 50.1109 | 2.21x 1073 | 1.76x 10™* | 50.2608 | 49.9402 | 0.3206 | 49.9865 | 2.70x 10™* | 1.83x 107® | 50.0296 | 49.9394 | 0.0902
100% a 5.0154 3.08x 1073 | 2.99x 107> | 5.0265 | 4.9987 | 0.0278 4.9895 2.09x 1073 | 1.09x 107° 49984 | 4.9789 | 0.0195
30 B 49.9949 1.02x 10~ | 4.14x 10~7 | 50.0038 | 49.9856 | 0.0182 | 50.0019 | 3.75x 10~5 | 5.64 x 10~8 | 50.0059 | 49.9972 | 0.0087
60% g 4.9698 6.03x 1073 | 3.38x 107* | 5.0386 | 4.8380 | 0.2006 4.9866 2.66x 1073 | 1.77x 1077 | 5.0370 | 4.9306 | 0.1064
36 49.9037 1.92x 1073 | 1.20x 10™* | 49.9911 | 49.7770 | 0.2141 | 49.9851 | 2.98x 10™* | 2.22x 107° | 50.0729 | 49.8602 | 0.2127
60 80% g 4.9893 2.13x 1073 | 1.61x 1075 | 4.9988 | 4.9751 | 0.0237 5.0055 1.10x 1072 | 3.03x 107° | 5.0123 | 4.9988 | 0.0134
48 49,9838 | 3.23x 107* | 4.97x 107° | 50.0080 | 49.9589 | 0.0491 | 49.9974 | 5.15x 10> | 6.66x 10~ | 50.0021 | 49.9922 | 0.0098
100% a 4.9995 1.01x 107* | 3.84x 1078 | 5.0001 | 4.9985 | 0.0016 5.0003 5.23x 107° | 1.50x 10=8 | 5.0007 | 4.9995 | 0.0012
60 B 49.9974 | 520x 1075 | 7.39x 1078 | 49.9994 | 49.9959 | 0.0035 | 49.9998 | 3.44 x 107 | 3.55%x 1078 | 50.0001 | 49.9993 | 0.0007
a
60% B 4.9978 4.32x107* | 4.86x 107® | 5.0081 | 4.9812 | 0.0269 4.9993 147x107* | 6.28x 1078 | 50021 | 4.9946 | 0.0074
72 50.0153 | 3.06x 10™* | 3.03x 107° | 50.0291 | 49.9934 | 0.0357 | 50.0057 1.13%x 107* | 3.22x 1077 | 50.0167 | 49.9980 | 0.0187
120 80% a 5.0016 3.27x 107" | 4.47x 1077 | 5.0040 | 4.9994 | 0.0046 5.0001 1.57x 1075 | 8.78x 107° | 5.0012 | 4.9992 | 0.0019
96 B 50.0021 | 4.33x 1075 | 5.98x 10~% | 50.0035 | 49.9997 | 0.0038 | 50.0014 | 2.91x 1075 | 2.14x 10~% | 50.0023 | 49.9999 | 0.0024
100% | « 4.9999 1.51x 1075 | 1.66x 107° | 5.0001 | 4.9997 | 0.0003 5.0000 5.79%x 107% | 1.27x 1071° | 50000 | 4.9999 | 0.0001
120 B 49.9999 | 2.85x 10~¢ | 2.48x 108 | 50.0000 | 49.9997 | 0.0003 | 49.9999 1.18x 107% | 4.53x 109 | 50.0000 | 49.9999 | 0.0001
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Table 6: Bayes averages, relative absolute biases, relative errors of the Bayes estimates and 95% credible intervals of the S(t,), h(t,) and ah(t,)

based on Type Il censoring of DIKum (NR = 10000,t, =1, = 5,8 = 50)

n r Par SE LINEX(v =0.1)
Averages RAB RE UL LL Length | Averages RAB RE UL LL Length
S(ty) 0.6191 0.2216 0.0268 0.7561 | 0.3716 | 0.3845 0.7347 0.0764 3.01x 1073 | 0.7961 | 0.6694 | 0.1267
60% h(ty) 0.5653 0.7727 0.2752 0.7459 | 0.3704 | 0.3755 0.6503 0.1507 0.0109 0.7538 | 0.5545 | 0.1992
180 ah(ty) 2.3258 1.0747 0.9443 3.0717 | 1.8260 | 1.2457 1.8209 0.7269 0.4164 2.3576 | 1.2653 | 1.0923
30 | 80% S(ty) 0.7839 0.0145 3.62x 1072 | 0.8911 | 0.6289 | 0.2621 0.7894 7.72x 1073 | 2.64x 10™* | 0.8277 | 0.7424 | 0.0853
240 h(ty) 0.6995 0.0864 4.42x 1072 | 0.7869 | 0.6105 | 0.1763 0.7415 0.0316 6.32x 10™* | 0.7717 | 0.6967 | 0.0749
ah(ty) 1.5985 0.5736 0.2444 1.7861 | 1.3879 | 0.3982 1.5890 0.5671 0.2355 1.6912 | 1.4473 | 0.2439
1%%% S(ty) 0.7968 3.97x 1073 | 1.05x 105 | 0.8041 | 0.7884 | 0.0157 0.7987 1.59x 1073 | 9.87x 10¢ | 0.8022 | 0.7931 | 0.0091
h(ty) 0.7539 1.54x 1072 | 1.30x 10~* | 0.7682 | 0.7408 | 0.0274 0.7599 7.63x 1073 | 2.58x 1075 | 0.7631 | 0.7511 | 0.0120
ah(ty) 1.4573 0.4764 0.1647 1.4699 | 1.4463 | 0.0236 1.4550 0.4749 0.1636 1.4617 | 1.4441 | 0.0176
S(to) 0.6970 0.1237 8.19x 1072 | 0.7878 | 0.5400 | 0.2477 0.8543 0.0739 2.64x 1072 | 0.8963 | 0.7926 | 0.1037
60% h(ty) 0.6758 0.2617 0.0359 0.7459 | 0.6807 | 0.0652 0.6352 0.1704 0.0164 0.6678 | 0.6243 | 0.0435
36 ah(ty) 1.5267 0.5242 0.2005 1.6119 | 1.3908 | 0.2210 1.5111 0.5134 0.1925 1.6224 | 1.4116 | 0.2108
60 | 80% S(to) 0.8019 8.89x 1072 | 1.66x 10™* | 0.8250 | 0.7809 | 0.0441 0.7969 1.77x 1073 | 6.48x 107® | 0.8005 | 0.7880 | 0.0125
48 h(ty) 0.7628 4.06x 1073 | 1.93x 10~° | 0.7719 | 0.7543 | 0.0176 0.7614 3.81x 1072 | 1.71x 10~% | 0.7667 | 0.7555 | 0.0112
ah(ty) 1.4811 0.4928 0.1763 1.5004 | 1.4460 | 0.0544 1.4571 0.4762 0.1646 1.4605 | 1.4503 | 0.0102
100% | S(to) 0.7963 1.03x 1073 | 5.68x 10~7 | 0.7971 | 0.7952 | 0.0019 0.7962 9.37x 107* | 4.27x 1077 | 0.7956 | 0.7944 | 0.0012
60 h(ty) 0.7653 9.60x 10™* | 6.71x 107 | 0.7664 | 0.7640 | 0.0024 0.7668 4.81x 107* | 3.95x 107 | 0.7669 | 0.7658 | 0.0011
ah(ty) 1.4528 0.4733 0.1626 1.4537 | 1.4514 | 0.0023 1.4514 0.4727 0.1622 1.4523 | 1.4511 | 0.0012
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Table 6: continued

n r Par SE LINEX(v =0.1)
Averages RAB RE UL LL Length | Averages RAB RE UL LL Length
600 | SCfo) | 0.8048 0.0116 | 1.42x107* | 0.8234 | 0.7831 | 0.0403 | 0.7930 | 3.13x 107 | 6.29x 107 | 0.7959 | 0.7885 | 0.0073
720 h(ty) 0.7756 0.0128 8.77x 107> | 0.7869 | 0.7638 | 0.0230 0.7669 1.52x 1073 | 8.04x 107° | 0.7729 | 0.7581 | 0.0147
ah(ty) 1.4668 0.4829 0.1693 1.4850 | 1.4436 | 0.0414 1.4569 0.4761 0.1645 1.4633 | 1.4484 | 0.0148
80% S(to) 0.7951 9.01x 10™* | 4.72x 1077 | 0.7958 | 0.7937 | 0.0021 0.7948 | 4.67x107* | 2.29x 10~7 | 0.7955 | 0.7939 | 0.0016
120 960 h(ty) 0.7671 1.69x 1073 | 1.75x 10~¢ | 0.7689 | 0.7654 | 0.0035 0.7662 5.61x 10™* | 1.55x 10~7 | 0.7666 | 0.7657 | 0.0009
ah(ty) 1.4531 0.4735 0.1627 1.4538 | 1.4514 | 0.0024 1.4521 0.4728 0.1622 1.4526 | 1.4514 | 0.0012
100% S(ty) 0.7954 1.87x 107* | 1.67x 1078 | 0.7955 | 0.7953 | 0.0002 0.7955 8.16x 107° | 2.64x 10710 | 0.7956 | 0.7955 | 0.0000
1200 h(ty) 0.7657 3.96x 1075 | 4.83x 1072 | 0.7658 | 0.7655 | 0.0003 0.7658 1.90x 1075 | 1.21x 10~° | 0.7659 | 0.7658 | 0.0001
ah(ty) 1.4515 0.4724 0.1620 1.4516 | 1.4514 | 0.0002 1.4516 0.4724 0.1619 1.4516 | 1.4515 | 0.0001
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Table 7: ML estimates of the parameters, survival, hazard rate,
the alternative hazard rate functions and
standard errors for the first real data set based on Type Il censoring

n r Parameters Estimates SE
a 43155 0.4686
8 51.4347 0.2582
21 S(to) 0.9294 0.0179
h(to) 0.6094 0.0245
ah(to) 0.940 0.2616
a 44383 0.3155
5 50.4820 0.2323
30 27 S(to) 0.9078 0.0126
h(to) 0.6469 0.0141
ah(to) 1.0409 0.1687
a 4.4503 0.3021
5 50.3975 0.1580
30 S(to) 0.9055 0.0121
h(to) 0.6503 0.0133
ah(to) 1.0506 0.1608
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Table 8: Goodness-of-fit measures for fitted models of second real data set

Estimates K-S

Model MLE(SE) -2LL AC  BIC cAlC
a B 0.2666

DIKum 5.7268(0.3142) 50.0817(1.2764) 107.061 111.061 113.864 111.506 (2391
0.3333

DIW 0.5610(0.2500)  1.7016(0.198) 144 567 148.567 151.37 149.012 (0692
0.3000

DMIR 0.4366(0.2567) 0.8817(0.2328) 112.494 116.494 119.297 116.939 (1350

0.3

EDIR 0.8994(0.2319)  0.4541(0.2558) 161.666 165.666 168.468 166.11 (1324
0.3333

TDL 0.3288(0.2626)  1.6827(0.1986) 111.143 115.143 117.945 115.587 (0708

Table 9: Goodness-of-fit measures for fitted models of third real data set 11

Estimates K-S

Model MLE(SE) -2LL AIC BIC CAIC b_value
a B 0.0921

DIKum 0.8617 (0.2193) 1.3172 (0.2116) 382.41 386.41 391.071 386.574 (9067
0.2105

DIW 0.6405 (0.2233)  0.5418 (0.2252) 408.41 41241 417.072 412575 (0686
0.1973

DMIR 0.6387 (0.2234)  0.1093 (0.2336) 392.625 396.625 401.286 396.789 (1035
0.1973

EDIR 0.9053 (0.2185)  0.3914 (0.2281) 442.087 446.087 450.749 446251 (1035
0.2763

TDL 0.2653 (0.2305)  3.8661 (0.2009) 446.254 450.254 454.915 450.418 (582
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Table 10: Bayes Estimates and standard errors for the a and f8
of DIKum based on Type Il censoring for the three real data sets

SEL LINEX(v = 0.1)
Real Data | n r Par | Estimates SE Estimates SE
a 5.0107 0.1450 4.9990 0.0109
60% | B | 50.0294 0.1170 50.0041 0.00436
18
Application | oo | o0 ; 5.0019 0.0050 5.0001 | 1.32x107*
I e 49.9994 | 5.64x 1075 | 50.0005 | 4.00x 105
a
100% | B 4.9999 1.57x 1075 5.0000 9.04x 1077
30 50.0000 | 1.20x 10~6 | 50.0000 | 1.06x 10~7
60% a 4.9985 0.0031 4,9995 0.0013
18 B | 50.0006 | 1.50x107* | 49.9998 | 6.46x 1075
Application 30 | 80% ; 5.0005 0.0013 5.0002 1.82x 1074
I 24 49.9991 | 5.77x 1075 | 49.9995 | 4.50x 10~5
a
100% | g | 49999 | 3.06x10~* | 5.0000 | 1.43x107*
30 49.9998 | 2.89%x 1075 | 49.9999 | 1.77x 10-5
60% | @ 0.8988 0.0550 0.9015 0.0186
18 B 0.8024 0.0979 0.8004 0.0449
Application | , | 80% a 0.9010 0.0077 0.8997 0.0022
1 2% | B | 07977 0.0395 0.7985 0.0176
a
B 0.8995 0.0031 0.9000 0.0014
1%‘(’)/" 0.8017 0.0233 0.7990 0.0050
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Table 11: Bayes Estimates and standard errors of the S(ty), h(ty) and ah(ty)
of DIKum based on Type Il censoring for the three real data sets

SEL LINEX(v = 0.1)
Real Data | n r Par Estimates SE Estimates SE
60 S(to) 0.4507 0.2370 0.4592 0.0613
| Rt 0.2605 0.1300 0.2347 0.3100
ah(ty) 0.2776 0.3060 0.2739 0.2480
- 80% | S(to) 0.4585 0.0049 0.4589 7.11x 10~
Application | g0 | 54 h(to) 0.2352 0.1160 0.2365 0.0309
ah(ty) 0.2726 0.2290 0.2713 0.21200
oo | SCt0) 0.4587 1.33x 1074 0.4588 3.51x 1076
30/" h(to) 0.2374 2.97 x 1074 0.2373 3.98x 1075
ah(ty) 0.2710 0.0217 0.2710 0.2080
S(to) 0.7975 ggggg 0.7967 883?2
60% | h(ty) 0.7629 01621 0.7654 01620
18 ah(ty) 1.4517 : 1.451 '
0.0104 0.1060
Application 80% S(to) 0.7943 0.0203 0.7951 0.3880
“ 30 | %) h(to) 0.7644 01620 0.7660 01620
ah(ty) 1.4515 ' 1.4516 '
1009% | S(to) 0.7952 8881; 0.7953 8-‘11%8
30 h(to) 0.7662 - 0.7659 :
ah(to) 1.4514 0.1620 1.4516 0.1619
60% | S(ty) 0.4599 0.0201 0.4587 0.0025
46 h(to) 0.3203 0.1120 0.3225 0.0030
ah(to) 0.3896 0.0058 0.3896 0.0057
o 80% | S(to) 0.4589 0.0019 0.4589 8.61x 10~
Appiication | 76 | g1 h(to) 0.3249 0.0893 0.3226 0.0014
ah(ty) 0.3897 0.0058 0.3895 0.0057
100%| S(to) 0.4588 0.0017 0.4590 6.46x 10~
76 h(to) 0.3226 0.0079 0.3226 1.65x 10~
ah(to) 0.3893 0.0057 0.3896 0.0055
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