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1.Introduction and motivation 

The Chen distribution is a continuous probability distribution that has been used in physics, engineering, and finance 

among other disciplines. The Chen distribution can describe a wide range of phenomena, including non-normal and 

skewed data, thanks to its adaptable shape. It is advantageous in circumstances where other distributions would not 

adequately match the data because of its flexibility. Because the moments of the Chen distribution have closed-form 

expressions, it is simpler to calculate statistical characteristics like mean, variance, skewness, and kurtosis. The Chen 

distribution is computationally efficient for simulations and other computational applications because it provides a 
straightforward and effective algorithm for producing random variations. The distribution of stock returns, interest 

rates, and other financial variables has been modelled in finance using the Chen distribution. It is excellent for 

modelling intricate financial phenomena due to its flexibility and effectiveness. The Chen distribution has numerous 

intriguing theoretical characteristics, including connections to the incomplete gamma function and the beta 

distribution. It is a topic of interest in mathematical research because of these characteristics. Let 𝑋 be a non-negative 

random variable (RV) with Chen (C) distribution (see Chen (2000)) with cumulative distribution function (CDF) given 

by  
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𝐺𝑎,𝑏(𝓍) = 1 − 𝑒𝓍𝑝{𝑎[1 − 𝑒𝓍𝑝(𝓍𝑏)]}, (1) 

where 𝓍 > 0, 𝑎 > 0 and 𝑏 > 0. The C distribution has "increasing" and bathtub-shaped" hazard rate function (HRF). 

The HRF of the C model may have a "bathtub" shape when 𝑏 < 1 and has "increasing" failure rate function when  

𝑏 ≥ 1. Chen (2000) analyzed and compared the C model with many other relevant models. Recently, Chaubey and 

Zhang (2015) investigated a new probability density function (PDF) called the Exp-C model. Chaubey and Zhang 

(2015) studied the problem of estimating the Exp-C parameters. For the Exp-C model, Dey et al. (2017) sudied many 

statistical properties and presented some useful applications. They discussed a variety of estimation techniques, 
including the maximum likelihood estimation (MXLE), percentile estimation (PE), ordinary least square and weighted 

least square estimation (OLSE & WLSE), maximum product of spacings estimation (MPSE), Cramér-von Mises 

estimation (CVMSE), Anderson-Darling and right-tail Anderson-Darling estimation (ADE & RTADE), and more. 

The Burr type X Chen (BXC) distribution, a new iteration of the Chen distribution, will be derived in this work using 

the Burr X generator (BX-G). The HRF of the new BXC can be "J-HRF", "monotonically increasing HRF", 

"decreasing-constant-increasing HRF (bathtub HRF)", and "upside down HRF (reversed bathtub HRF)", as shown in 

Figure 2. 

 

The Chen distribution is a generalization of the beta distribution in which the beta distribution's shape parameters are 

permitted to have negative values. The standard beta distribution is what happens when the shape parameters of the 

Chen distribution are set to 1/2 and -1/2, respectively. The normal distribution's mean and variance are permitted to 
be non-zero and non-positive in the Chen distribution, which is a generalization of the normal distribution. The Chen 

distribution decreases to the typical normal distribution when the shape parameters are set to 0 and -1/2, respectively. 
The gamma distribution, which is frequently used to model positive random variables, and the Chen distribution are 

linked. Specifically, the square root of a gamma-distributed random variable can be used to produce the Chen 

distribution.  The CDF of the Burr type X G (BX-G) is defined as  

𝐹𝜗,𝜉(𝓍) = {1 − 𝑒𝓍𝑝 [−𝓞𝜉
2(𝓍)]}

𝜗

, 
(2) 

where  𝓞𝜉(𝓍) =
𝐺𝜉(𝓍)

𝐺𝜉(𝓍)
 . Inserting (1) into (2), the CDF of the BXC distribution can be written as  

𝐹𝜳(𝓍) = {1 − 𝑒𝓍𝑝[−𝓞𝑎,𝑏
2 (𝓍)]}

𝜗
, (3) 

 

where  

𝓞𝑎,𝑏
2 (𝓍) = [

1 − 𝓺𝑎,𝑏(𝓍)

𝓺𝑎,𝑏(𝓍)
]

2

. 

and  𝓺𝑎,𝑏(𝓍) = 𝑒𝓍𝑝{𝑎[1 − 𝑒𝓍𝑝(𝓍𝑏)]}. The relevant CDF of the BXC model can be expressed as 

𝑓𝜳(𝓍) = 2𝜗𝑎𝑏
𝓍𝑏−1 𝑒𝓍𝑝(𝓍𝑏) 𝑒𝓍𝑝[−𝓞𝑎,𝑏

2 (𝓍)] [1 − 𝓺𝑎,𝑏(𝓍)]

𝓺𝑎,𝑏
2 (𝓍){1 − 𝑒𝓍𝑝[−𝓞𝑎,𝑏

2 (𝓍)]}
1−𝜗 . 

 

(4) 

where  𝜳 = (𝜗, 𝑎, 𝑏).  In order to explore the applicability and the flexibility of the new BXC PDF, we present Figure 

1 which show the wide importance and flexibility of the new model. Based on Figure 1, we see that the new BXC 

PDF can be right-skewed and left-skewed with different useful PDF shapes. Analogously, Figure 2 is allocated to 
explore the new HRF. Based on Figure 2, we note that the new BXC HRF can be 

i- "J-HRF" (see Figure 2 (top left)). 

ii- "monotonically increasing HRF" (see Figure 2 (top right)). 

iii- "decreasing-constant-increasing HRF (bathtub HRF)" (see Figure 2 bottom left). 

iv- "upside-down HRF (reversed bathtub HRF)" (see Figure 2 bottom right)).  

 

We are excited and motivated to define and analyze the BXC for the following main reasons: 

i- The new PDF in (4) can be "right skewed" and "left skewed" with different shapes (see Figure 1). 

ii- The HRF of the BXC model can be "J-shape", "monotonically increasing shape", "decreasing-constant-increasing 

shape (bathtub shape)" and "upside down shape (reversed bathtub shape)" (see Figure 2). 
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iii- In reliability analysis, the BXC model may be chosen as the best model, especially in modeling bimodal 

asymmetric real data which have right heavy tailed and the bimodal asymmetric data which have left tailed. 

 

Figure 1: Various PDF plots for the new PDF. 
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Figure 2: Some HRF plots. 

 

2.Simple derivations for the new PDF 

Consider the power series  

(1 −
𝜉1

𝜉2

)
𝜉3

= ∑ (
𝜉1

𝜉2

)
𝑖1

+∞

𝑖1=0

(−1)𝑖1𝛤(1 + 𝜉3)

𝑖1! 𝛤(1 + 𝜉3 − 𝑖1)
|
|
𝜉1
𝜉2

|<1, 𝜉3>0
.  

 

(5) 

 

Applying (5) to (4) we have 

𝑓𝜳(𝓍) = 2𝜗𝑎𝑏𝓍𝑏−1 𝑒𝓍𝑝(𝓍𝑏)
1 − 𝓺𝑎,𝑏(𝓍)

𝓺𝑎,𝑏
2 (𝓍)

∑
(−1)𝑖1𝛤(𝜗)

𝑖1! 𝛤(𝜗 − 𝑖1)

+∞

𝑖1=0

𝑒𝓍𝑝[−(𝑖1 + 1)𝓞𝑎,𝑏
2 (𝓍)]. 

 

(6) 
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Consider and apply the well-known power series to the quntity  𝑒𝓍𝑝[−(𝑖1 + 1)𝓞𝑎,𝑏
2 (𝓍)] , equation (6) becomes 

𝑓𝜳(𝓍) =  2𝜗𝑎𝑏𝓍𝑏−1 ∑
(−1)𝑖1+𝑖2(𝑖1 + 1)𝑖2𝛤(𝜗)[1 − 𝓺𝑎,𝑏(𝓍)]

2𝑖2+1

𝑖1! 𝑖2! 𝛤(𝜗 − 𝑖1) 𝑒𝓍𝑝(𝓍𝑏) 𝓺𝑎,𝑏
2𝑖2+2(𝓍)

+∞

𝑖1,𝑖2=0

. 
 

(7) 

 

Consider and apply the following series expansion  

(1 −
𝜉1

𝜉2

)
−𝜉3

= ∑ (
𝜉1

𝜉2

)
𝑖3

+∞

𝑖3=0

𝛤(𝜉3 + 𝑖3)

𝑖3! 𝛤(𝜉3)
|
|
𝜉1
𝜉2

|<1, 𝜉3>0
. 

 

(8) 

 

Applying the expansion in (8) to (7) for the term  𝓺𝑎,𝑏
2𝑖2+3(𝓍) , equation (7) becomes 

𝑓𝜳(𝓍) = ∑ 𝜻𝑖2,𝑖3

+∞

𝑖2,𝑖3=0

𝜋𝝇⋅(𝓍)|𝝇⋅=2𝑖2+𝑖3+2, 

 

 

(9) 

  

where 

𝜻𝑖2,𝑖3
= 

2𝜗(−1)𝑖2𝛤(𝜗)𝛤(2𝑖2 + 𝑖3 + 2)

𝑖2! 𝑖3! 𝛤(2𝑖2 + 2)𝝇⋅
∑(−1)𝑖1

+∞

𝑖1=0

(𝑖1 + 1)𝑖2

𝑖1! 𝛤(𝜗 − 𝑖1)
 

and 

𝜋𝝇⋅(𝓍) = 𝝇⋅𝑔𝑎,𝑏(𝓍)[𝐺𝑎,𝑏(𝓍)]
𝝇⋅−1

. 

Equation (9) refers to that the new density can be simplified as a mixture of Exp-C densities. Similarly, the CDF of 

the BX-G family can also be expressed as a mixture of EC CDFs given by 

𝐹𝜳(𝓍) = ∑ 𝜻𝑖2,𝑖3

+∞

𝑖2,𝑖3=0

 𝛱𝝇⋅(𝓍), 
(10) 

where 𝛱𝝇⋅(𝓍) = [𝐺𝑎,𝑏(𝓍)]
𝛓⋅

 is the CDF of the EC family with power parameter 𝝇⋅ . Due to Dey et al. (2017), the shape 

of the PDF of the Exp-C distribution may be characterized as follows: for  𝝇⋅ <   1,   1 > 𝑏 ,  𝑔𝑎,𝑏(𝓍)  is a decreasing 

density, for  1 < 𝝇⋅,   𝑏 > 1 ,  𝑔𝑎,𝑏(𝓍) = 𝑑𝐺𝑎,𝑏(𝓍)/𝑑𝓍  is a unimodal density and for  𝝇⋅ < 1, 𝑏 > 1  and  1 < 𝝇⋅ ,  

1 > 𝑏 ,  𝑔𝑎,𝑏(𝓍)  may be unimodal or decreasing density. Chaubey and Zhang (2015) presented a proof that the failure 

behavior of the Exp-C distribution are, respectively, bathtub ( 𝝇⋅ < 1, 𝑏 < 1), increasing (1 < 𝝇⋅, 𝑏 > 1), increasing 

or bathtub (𝝇⋅ < 1, 𝑏 > 1 and 1 < 𝝇⋅ , 𝑏 < 1). 

3.Mathematical and statistical properties 

Understanding probability distributions requires an understanding of mathematical properties. Mathematical functions 

called probability distributions describe the likelihood of various outcomes of a random variable. They are employed 

in a variety of fields, including finance, physics, engineering, and many more, and play a significant role in statistics 

and probability theory. 

3.1 Moments and generating function 

Numerous fields, including physics, engineering, economics, and finance use moments and incomplete moments as 

crucial statistical tools. They are mathematical operations that provide details about a probability distribution's form, 
location, and variability. Following Dey et al. (2017), we can extract the following two theorems: 

Theorem 1:  

Let  𝑋  be a RV having the Exp-C distribution with parameters  𝑎, 𝑏  and power parameter  𝜍 ⋅ . Then using the 

transformation  

𝑡 = [𝐺𝑎,𝑏(𝓍)]
1
𝝇⋅
, 

the  𝑟th  ordinary moment of  𝑋  is given by  
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𝜇𝑟
′ = 𝐸[𝑋𝑟] = 𝑏 ∑ 𝝇𝑝 (

𝑟

𝑏
)

+∞

𝑝,𝓳=0

𝝇𝓳 (
𝑟

𝑏
+ 𝑝)

(−1)
2𝑟
𝑏

+𝑝

𝑎
2𝑟
𝑏

+𝑝[𝑏(𝝇 + 𝑝 + 𝓳) + 𝑟]
, 

where 𝝇𝑝 (
𝑟

𝑏
) is the coefficient of  [

1

𝑎
𝑙𝑜𝑔(1 − 𝑡)]

2𝑟

𝑏
+𝑝

  in the expansion of  {∑
1

ℎ1

+∞
ℎ1=1 [

1

𝑎
𝑙𝑜𝑔(1 − 𝑡)]}

𝑟

𝑏
  and 𝝇𝓳 (

𝑟

𝑏
+ 𝑝) 

is the coefficient of  𝑡𝑝+𝓳+
𝑟

𝑏  in the expansion of  (∑
𝑡ℎ2

ℎ2

+∞
ℎ2=1 )

𝑟

𝑏
+𝑝

  (see Balakrishnan and Cohen (2014) for more 

details). 
 

Theorem 2:  

Let  𝑋  be a RV having the Exp-C distribution. Then, the  𝑟th  conditional moment can be derived as 

𝐸(𝑋𝑟|𝑋 > 𝓍) = 𝝇𝑏 ∑
𝝇𝑝 (

𝑟
𝑏) 𝝇𝓳 (

𝑟
𝑏 + 𝑝) (−1)

2𝑟
𝑏

+𝑝 𝓺𝑎,𝑏(𝓍)

𝑎
2𝑟
𝑏

+𝑝[𝑏(𝝇 + 𝑝 + 𝓳) + 𝑟]{1 − [1 − 𝓺𝑎,𝑏(𝓍)]
𝝇
}

+∞

𝑝,𝓳=0

. 

Based on Theorem 1, the  𝑟th  ordinary moment of the BXC model can then be expressed as  

𝜇𝑟
′ = 𝐸[𝑋𝑟] = 𝝇⋅𝑏 ∑ 𝜻𝑖2,𝑖3  𝝇𝑝

⋅ (
𝑟

𝑏
)𝝇𝓳

⋅ (
𝑟

𝑏
+ 𝑝)

+∞

𝑖2,𝑖3,𝑝,𝓳=0

(−1)
2𝑟
𝑏

+𝑝

𝑎
2𝑟
𝑏

+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 𝑟]
. 

 

(11) 

 

In particular, 

𝜇1
′ = 𝐸[𝑋] = 𝝇⋅𝑏 ∑ 𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
1

𝑏
)𝝇𝓳

⋅ (
1

𝑏
+ 𝑝)

+∞

𝑖2 ,𝑖3,𝑝,𝓳=0

(−1)
2
𝑏
+𝑝

𝑎
2
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 1]

, 

 

𝜇2
′ = 𝐸[𝑋2] = 𝝇⋅𝑏 ∑ 𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
2

𝑏
)𝝇𝓳

⋅ (
2

𝑏
+ 𝑝)

+∞

𝑖2,𝑖3,𝑝,𝓳=0

(−1)
2
𝑏
+𝑝

𝑎
2
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 2]

, 

 

𝜇3
′ = 𝐸[𝑋3] = 𝝇⋅𝑏 ∑ 𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
3

𝑏
)𝝇𝓳

⋅ (
3

𝑏
+ 𝑝)

+∞

𝑖2,𝑖3,𝑝,𝓳=0

(−1)
6
𝑏
+𝑝

𝑎
6
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 3]

, 

and 

𝜇4
′ = 𝐸[𝑋4] = 𝝇⋅𝑏 ∑ 𝜻𝑖2,𝑖3 𝝇𝓳

⋅ (
4

𝑏
)𝝇𝓳

⋅ (
4

𝑏
+ 𝑝)

+∞

𝑖2 ,𝑖3,𝑝,𝓳=0

(−1)
8
𝑏
+𝑝

𝑎
8
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 4]

. 

The variance (V(𝑌)) ,  cumulants,  𝑛th  central moment, skewness (S(𝑌)), kurtosis (K(𝑌)) and Index of dispersion or 

the variance to mean ratio (ID(𝑌)) measures can be calculated from the ordinary moments using well-known 

relationships. 

 

3.2 Conditional moments 

For the increasing failure rate models, it is also of interest to know what  𝐸(𝑋𝑟|𝑋 > 𝓍)  is. It can be easily seen that 

𝐸(𝑋𝑟|𝑋 > 𝓍) = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
𝑟
𝑏
)𝝇𝓳

⋅ (
𝑟
𝑏

+ 𝑝) (−1)
2𝑟
𝑏

+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
2𝑟
𝑏

+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 𝑟] {1 − [1 − 𝓺𝑎,𝑏(𝓍)]
𝝇⋅

}

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

. 

 

 

 
(12) 

In particular, 

𝐸(𝑋|𝑋 > 𝓍) = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
1
𝑏) 𝝇𝓳

⋅ (
1
𝑏 + 𝑝) (−1)

2
𝑏
+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
2
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 1] {1 − [1 − 𝓺𝑎,𝑏(𝓍)]

𝝇⋅

}

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

, 
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𝐸(𝑋2|𝑋 > 𝓍) = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
2
𝑏
) 𝝇𝓳

⋅ (
2
𝑏

+ 𝑝) (−1)
4
𝑏
+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
4
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 2] {1 − [1 − 𝓺𝑎,𝑏(𝓍)]

𝝇⋅

}

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

, 

 

𝐸(𝑋3|𝑋 > 𝓍) = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
3
𝑏) 𝝇𝓳

⋅ (
3
𝑏 + 𝑝) (−1)

3
𝑏
+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
3
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 3] {1 − [1 − 𝓺𝑎,𝑏(𝓍)]

𝝇⋅

}

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

, 

and 

𝐸(𝑋4|𝑋 > 𝓍) = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
4
𝑏) 𝝇𝓳

⋅ (
4
𝑏 + 𝑝) (−1)

8
𝑏
+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
8
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 4] {1 − [1 − 𝓺𝑎,𝑏(𝓍)]

𝝇⋅

}

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

. 

 
3.3 Mean residual lifetime 

The residual life function, often referred to as the remaining life function, is a function that is used in dependability 

theory to characterize the likelihood that a product will fail after a specific amount of time has passed, assuming that 

it has lasted up to that point. The conditional survival probability, assuming the object has already survived up to a 

particular point, can be defined as the residual life function.  The mean residual life (MRL) can be defined as 

𝑀1 = 𝐸(𝑋 − 𝓍|𝑋 > 𝓍) =
1

1 − 𝐹𝜳(𝓍)
[∫ 𝑦

+∞

𝓍

𝑓𝜳(𝑦)𝑑𝑦] − 𝓍. 

Then using (12), we get 

𝑀1 = 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3 𝝇𝑝

⋅ (
1
𝑏
)𝝇𝓳

⋅ (
1
𝑏

+ 𝑝) (−1)
2
𝑏
+𝑝𝓺𝑎,𝑏(𝓍)

𝑎
2
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 1] [1 − (1 − 𝓺𝑎,𝑏(𝓍))

𝝇⋅

]

+∞

𝑖2,𝑖3 ,𝑝,𝓳=0

− 𝓍. 

 

3.4 Mean past lifetime 

The mean past lifetime (MPL) of the component can be defined as 

𝑃1 = 𝐸(𝓍 − 𝑋|𝑋 ≤ 𝓍) = 𝓍 −
1

𝐹𝜳(𝓍)
∫ 𝑦

𝑡

0

𝑓𝜳(𝑦)𝑑𝑦. 

Then using (11) and (12), we get 

𝑃1 = 𝓍 − 𝝇⋅𝑏 ∑
𝜻𝑖2,𝑖3  𝝇𝑝

⋅ (
1
𝑏)𝝇𝓳

⋅ (
1
𝑏 + 𝑝) (−1)

2
𝑏
+𝑝

𝑎
2
𝑏
+𝑝[𝑏(𝝇⋅ + 𝑝 + 𝓳) + 1]

+∞

𝑖2,𝑖3,𝑝,𝓳=0

(1 − 𝓺𝑎,𝑏(𝓍))

𝑏(𝑝+𝓳)+1
𝑏

. 

Finally, developing and evaluating statistical models requires a comprehension of these mathematical features. We 
build models that faithfully capture the behavior of real-life occurrences by employing probability distributions with 

well-defined mathematical features. 

 

3.5 Numerical analysis for some properties 

Skewness and kurtosis coefficients provide a numerical basis for comparing different datasets. By comparing the 

skewness and kurtosis values, you can assess the relative shape and distribution characteristics of multiple datasets. 

This analysis can be helpful in various fields, such as finance, economics, biology, and social sciences. It's important 

to note that while skewness and kurtosis provide valuable insights, they should be used in conjunction with other 

statistical measures and domain knowledge to gain a comprehensive understanding of the data. Additionally, the 

interpretation of skewness and kurtosis may vary depending on the specific context and the underlying data generating 

process. Table 1 below gives numerical results for the mean, variance (V(𝑋)), skewness (S(𝑋)), kurtosis (K(𝑋)) and 

dispersion index (DisIx (𝑋)). Based on Table 1, we note that: 

i-The skewness of the BXC distribution can range in the interval (0.4287,4890.765). 

iii-The spread for the BXC kurtosis is much larger ranging from 2.494433 to 26541861. 

iii-ID (𝑋)  more than  1  which recommend the BXC model for modeling the over-dispersed real data sets. 

 

Table 1: Mean, variance, skewness and kurtosis. 

ϑ a b E(X) V(X) S(X) K(X) ID(X) 

0.01 0.35 0.5 0.951667 1641.974 100.4695 14275.09 1725.367 
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0.25   23.47723 40430.34 20.20585 579.3061 1722.109 

5   383.6581 640166.7 4.892992 35.86464 1668.587 

20   1080.718 1682322 2.749077 12.72226 1556.671 

50   1872.575 2671425 1.889141 7.136960 1426.605 

100   2641.222 3463667 1.354422 4.804903 1311.388 
200   3495.955 4283805 0.800976 3.388077 1225.361 

        

2 0.01 0.1 1.069857 7310.186 88.95714 8399.703 6832.862 

 0.1  2469.187 4887737 1.132327 3.70872 1979.493 

 0.2  138.4765 26766.7 2.404077 11.64097 193.2942 

 0.3  17.96500 577.7038 2.885243 15.89334 32.15718 

 0.4  3.646305 28.47126 3.291995 20.21016 7.808249 

 0.5  0.969634 2.3134 3.648973 24.5676 2.385848 

        

5 0.1 0.01 0.000363 1.965695 4890.765 26541861 5415.138 

  0.05 1.693889 11429.94 70.58933 5303.069 6747.75 

  0.10 3885.444 5786855 0.4287445 2.494433 1489.368 
  0.125 826.0476 184714.0 0.9397281 4.199913 223.6118 

  0.15 264.7239 13317.82 0.6932051 3.571194 50.30835 

 

4.Copula 

When modelling bivariate or multivariate data, the copula is a crucial statistical concept. The marginal distributions 

of two or more variables are connected to their joint distribution via this function. Copulas' adaptability and capacity 

to model intricate interrelationships between variables have made them more and more common in recent years. The 

following list highlights the significance and application of copulas in statistics and bivariate data modelling: 

I. A fundamental topic in many branches of statistics and data science, dependence between variables is 

modelled using copulas. Copulas make it easier to represent complicated interdependencies between 
variables that are difficult to capture by straightforward correlation measurements because they preserve 

the marginal distributions of each variable while modelling the joint distribution of variables. 

II. In finance, copulas are used to represent the relationship between the returns on various assets. This is 

crucial for portfolio optimization, which aims to build an asset mix that maximizes returns while 

lowering risk. We can more accurately evaluate a portfolio's risk and create more effective portfolios by 

utilizing copulas to model the interdependence between assets. 

III. Copulas can be used to calculate the risk of severe events like market collapses or natural disasters and 

are also utilized in risk management. Copulas can give a more precise assessment of the likelihood that 

such events will occur by modelling the dependence structure between variables, which is crucial for 

risk management and insurance. 

IV. Copulas can also be used to generate data, which is advantageous when gathering data is difficult or 
expensive. We can simulate new data sets with dependence structures identical to the original data, 

enabling us to produce fresh data for analysis and testing. To do this, we model the dependence structure 

between variables using a copula (see Morgenstern (1956), Gumbel (1958) and Gumbel (1960), 

Rodriguez-Lallena and Ubeda-Flores (2004)), Pougaza and Djafari (2011), Elgohari et al. (2021), 

Shehata and Yousof (2021, 2022), Shehata et al. (2021, 2022) and Elgohari and Yousof (2020a,b,c)) 

 

 

First, we will consider the joint CDF of the FGM family, where  

𝐻𝜁(𝜈, 𝜏) = 𝜈𝜏(1 + 𝜁𝜈∗𝜏∗)|𝜈∗=1−𝜈,𝜏∗=1−𝜏 , 

and the marginal function  𝜈 = 𝐹1 ,  𝜏 = 𝐹2 ,  𝜁 ∈ (−1,1)  is a dependence parameter and for every  𝜈, 𝜏 ∈ (0,1) ,  
𝐻(𝜈, 0) = 𝐻(0, 𝜏) = 0  which is "grounded minimum" and  𝐻(𝜈, 1) = 𝜈  and  𝐻(1, 𝜏) = 𝜏  which is "grounded 

maximum",  𝐻(𝜈1, 𝜏1) + 𝐻(𝜈2, 𝜏2) − 𝐻(𝜈1, 𝜏2) − 𝐻(𝜈2, 𝜏1) ≥ 0 .   
 

4.1 Via FGM family 

A copula is continuous in  𝜈  and  𝜏 ; actually, it satisfies the stronger Lipschitz condition, where 
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|𝐻(𝜈2 , 𝜏2) − 𝐻(𝜈1 , 𝜏1)| ≤ |𝜈2 − 𝜈1| + |𝜏2 − 𝜏1|. 

For  0 ≤ 𝜈1 ≤ 𝜈2 ≤ 1  and  0 ≤ 𝜏1 ≤ 𝜏2 ≤ 1,  we have  

𝑃𝑟(𝜈1 ≤ 𝜈 ≤ 𝜈2 , 𝜏1 ≤ 𝜏 ≤ 𝜏2) = 𝐻(𝜈1 , 𝜏1) + 𝐻(𝜈2 , 𝜏2) − 𝐻(𝜈1 , 𝜏2) − 𝐻(𝜈2 , 𝜏1) ≥ 0. 

Then, setting  𝜈∗(𝑤1) = 1 − 𝐹𝜳1
(𝑤1)|[𝜈∗=(1−𝜈)∈(0,1)]  and  𝜏∗(𝑤2) = 1 − 𝐹𝜳2

(𝑤2)|[𝜏∗=(1−𝜏)∈(0,1)],  we can then obtain 

the joint CDF of the BXC using the FGM family  

𝐻𝜁(𝓍, 𝑦) = {1 − 𝑒𝓍𝑝[−𝑂𝑎1 ,𝑏1

2 (𝓍)]}
𝜗1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2 ,𝑏2

2 (𝑦)]}
𝜗2

 

× {1 + 𝜁 [
(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎1 ,𝑏1

2 (𝓍)]}
𝜗1

)

(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

)
]}. 

The joint PDF can then be derived from  ℎ𝜁(𝓍, 𝑦) = 1 + 𝜁𝜈∗𝜏∗|(𝜈∗=1−2𝜈 and τ∗=1−2𝜏) . 

4.2 Via modified FGM family 

As a generalization for the FGM, the modified FGM copula is given by 

𝐻𝜁(𝜈, 𝜏) = 𝜈𝜏[1 + 𝜁𝐵(𝜈)𝐴(𝜏)]|𝜁∈(−1,1) 

or 

𝐻𝜁(𝜈, 𝜏) = 𝜈𝜏 + 𝜁𝜛𝜈𝐴̇𝜏|𝜁∈(−1,1) , 

where  𝜛𝜈 = 𝜈𝐵(𝜈) , and  𝐴̇𝜏 = 𝜏𝐴(𝜏)  and  𝐵(𝜈)  and  𝐴(𝜏)  are two continuous functions on (0,1)  with  𝐵(0) = 𝐵(1) =

𝐴(0) = 𝐴(1) = 0.   
 

Let  

𝑐1(𝜛𝜈) = 𝑖𝑛𝑓 {𝜛𝜈  :  
𝜕

𝜕𝜈
𝜛𝜈} |𝛺1,𝜈

< 0, 

𝑐2(𝜛𝜈) = 𝑠𝑢𝑝 {𝜛𝜈  :  
𝜕

𝜕𝜈
𝜛𝜈} |𝛺1,𝜈

< 0, 

𝑐3(𝐴̇𝜏) = 𝑖𝑛𝑓 {𝐴̇𝜏  :  
𝜕

𝜕𝜏
𝐴̇𝜏} |𝛺2,𝜏

> 0, 

and 

𝑐4(𝐴̇𝜏) = 𝑠𝑢𝑝 {𝐴̇𝜏  :  
𝜕

𝜕𝜏
𝐴̇𝜏} |𝛺2,𝜏

> 0. 

Then, 

1 ≤ 𝑚𝑖𝑛{𝑐1(𝜛𝜈)𝑐2(𝜛𝜈), 𝑐3(𝐴̇𝜏)𝑐4(𝐴̇𝜏)} < ∞, 
where 

𝜈
𝜕

𝜕𝜈
𝐵(𝜈) =

𝜕

𝜕𝜈
𝜛𝜈 − 𝐵(𝜈), 

 

𝛺1,𝜈 = {𝜈  :   𝜈 ∈ (0,1)|
𝜕

𝜕𝜈
𝜛𝜈    exists} 

and  

𝛺2,𝜏 = {𝜏  :   𝜏 ∈ (0,1)|
𝜕

𝜕𝜏
𝐴̇𝜏   exists}. 

Then, we can consider the following three type of the modified FGM copula. 

TYPE-I 

Consider the following functional form for both 𝐵(𝜈) and  𝐴(𝜏). Then, the B-BXC-FGM (Type-I) can be derived from  

𝐻𝜁(𝓍, 𝑦) = {1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

 

+𝜁 [
{1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

)

{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

)
] |𝜁∈(−1,1). 
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TYPE-II 

Let  𝐵(𝜈)  and  𝐴(𝜏)  be two functional form satisfying all the conditions stated earlier where  𝐵(𝜈)
∗ |(𝜁1>0) =

𝜈𝜁1(1 − 𝜈)1−𝜁1  and  𝐴(𝜏)
∗ |(𝜁2>0) = 𝜏𝜁2(1 − 𝜏)1−𝜁2 .  Then, the corresponding B-BXC-FGM (Type-II) can be derived 

from  𝐻𝜁,𝜁1 ,𝜁2
(𝜈, 𝜏) = 𝜈𝜏[1 + 𝜁𝐵(𝜈)

∗  𝐴(𝜏)
∗ ].  Thus 

𝐻𝜁,𝜁1 ,𝜁2
(𝓍, 𝑦) = {1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

 

×

[
 
 
 
 
 
 

1 + 𝜁

(

 
 
 
 

{1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1𝜁1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2𝜁2

(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

)
1−𝜁1

(1 − {1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

)
1−𝜁2

)

 
 
 
 

]
 
 
 
 
 
 

. 

 

TYPE-III 

Let  𝜔(𝜈) = 𝜈[𝑙𝑜𝑔(1 + 𝜈∗)]  and  𝜓(𝜏) = 𝜏[𝑙𝑜𝑔(1 + 𝜏∗)]  for all  𝐵(𝜈)  and  𝐴(𝜏)  which satisfies all the conditions 

stated earlier. In this case, one can also derive a closed form expression for the associated CDF of the B-BXC-FGM 

(Type-III) from  𝐻𝜁(𝜈, 𝜏) = 𝜈𝜏(1 + 𝜁𝜔(𝜈) 𝜓(𝜏)).  Then 

𝐻𝜁(𝓍, 𝑦) = {1 − 𝑒𝓍𝑝[−𝑂𝑎1 ,𝑏1

2 (𝓍)]}
𝜗1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2 ,𝑏2

2 (𝑦)]}
𝜗2

 

×

[
 
 
 
 
 
 

1 + 𝜁

(

 
 
 
 

{1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

[𝑙𝑜𝑔 (2 − {1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

)] 

[𝑙𝑜𝑔 (2 − {1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

)])

 
 
 
 

]
 
 
 
 
 
 

. 

 

4.3 B-BXC and M-BXC type via Clayton copula 

The Clayton copula can be considered as  𝐻(𝜏1, 𝜏2) = [(1/𝜏1)
𝜁 + (1/𝜏2)

𝜁 − 1]−𝜁−1
|𝜁∈(0,∞).  Setting  𝜏1 = 𝐹𝜳1

(𝜈) 

and  𝜏2 = 𝐹𝜳2
(𝑤), the B-BXC type can be derived from  𝐻(𝜏1, 𝜏2) = 𝐻(𝐹𝜳1

(𝜏1), 𝐹𝜳1
(𝜏2)).  Then 

 

𝐻(𝓍, 𝑦) = (

{1 − 𝑒𝓍𝑝[−𝑂𝑎1,𝑏1

2 (𝓍)]}
𝜗1

+{1 − 𝑒𝓍𝑝[−𝑂𝑎2,𝑏2

2 (𝑦)]}
𝜗2

−1

)

−𝜁−1

|𝜁∈(0,∞) 

Similarly, the M-BXC can be derived from by generalizing the above result. 

4.4 B-BXC type via Renyi's entropy 

Using the theorem of Pougaza and Djafari (2011), we have 

𝐻(𝓍, 𝑦) = 𝑦𝐹𝜳1
(𝓍) + 𝓍𝐹𝜳2

(𝑦) − 𝓍𝑦, 

the associated B-BXC can be derived from 

𝐻(𝓍, 𝑦) = 𝑦{1 − 𝑒𝓍𝑝[−𝑂𝑎1 ,𝑏1

2 (𝓍)]}
𝜗1

+ 𝓍{1 − 𝑒𝓍𝑝[−𝑂𝑎2 ,𝑏2

2 (𝑦)]}
𝜗2

− 𝓍𝑦. 

5. Parameter estimation 

Once a distribution has been selected, its parameters can be calculated via maximum likelihood estimation using the 

data. This entails determining the parameter values that maximize the distribution-given probability of observing the 

data. The distribution can be used to draw conclusions about the population after the parameters have been estimated, 

such as determining survival probabilities, hazard rates, and median survival times. The method of maximum 

likelihood is the most frequently used method of parameter estimation. Its success stems from its many desirable 

properties including consistency, asymptotic efficiency, invariance property as well as its intuitive appeal. Let  
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𝓍1, . . . , 𝓍𝑛  be a random sample of size 𝑛 from (4), then the log-likelihood function of (4) without constant terms is 

given by 

 

ℓ(𝚿) = 𝑛 𝑙𝑜𝑔 2 + 𝑛 𝑙𝑜𝑔 𝜗 + 𝑛 𝑙𝑜𝑔 𝑎 + 𝑛 𝑙𝑜𝑔 𝑏 + (𝑏 − 1)∑𝑙𝑜𝑔

𝑛

𝑖=1

𝓍𝑖 + ∑𝓍𝑖
𝑏

𝑛

𝑖=1

− ∑𝓞𝑎,𝑏
−2 (𝓍𝑖)

𝑛

𝑖=1

 

−(1 − 𝜗)∑{1 − 𝑒𝓍𝑝[−𝓞𝑎,𝑏
−2 (𝓍𝑖)]}

𝑛

𝑖=1

− 2∑𝑙𝑜𝑔[𝓺𝑎,𝑏(𝓍)]

𝑛

𝑖=1

+ ∑𝑙𝑜𝑔[1 − 𝓺𝑎,𝑏(𝓍𝑖)]

𝑛

𝑖=1

. 

The components of the score vector,  𝑈(𝜳) =
𝜕ℓ(𝜳)

𝜕𝜳
= (𝑈(𝜗),𝑈(𝑎), 𝑈(𝑏))

𝑇
. The maximum likelihood estimates of 

the parameters 𝜗, 𝑎 and 𝑏 are obtained by solving the following nonlinear systems of equations 
𝜕

𝜕𝜗
ℓ(𝜳) = 0,

𝜕

𝜕
ℓ(𝜳) = 0,

𝜕

𝜕𝑎
ℓ(𝜳) = 0,

𝜕

𝜕𝑏
ℓ(𝜳) = 0. 

6. Simulation study 

Simulation studies are a common approach for assessing the performance of estimation methods in statistics. The use 

of simulation studies has become increasingly popular in recent years due to their ability to provide a controlled and 

rigorous evaluation of different estimation methods under various scenarios. In this context, this essay aims to 

highlight the statistical importance and motivations behind simulation studies for assessing estimation methods.  

Graphically and using the biases and mean squared errors (MSEs), we can perform simulation experiments to assess 

the finite sample behavior of the maximum likelihood estimations (MXLEs). The assessment was based on 𝑁 =10000 

replication for all  𝑛|(𝑛=200,400,…,10000). For a number of reasons, simulation studies are a crucial tool in statistical 

analysis. 

I. By producing data under particular circumstances and evaluating the methods' accuracy in estimating 

the genuine parameters, simulation studies enable statisticians to assess the effectiveness of various 

statistical techniques. This gives a way to evaluate the approaches' reliability and applicability to various 

kinds of data. 

II. By creating data that reflects the null or alternative hypothesis and comparing the outcomes with the 

observed data, simulation studies can be used to test hypotheses. This enables researchers to evaluate the 
strength of their tests and gauge the statistical significance of their findings. 

III. To choose the right sample size for a study, simulation studies might be employed. Researchers can 

identify the sample size that will produce the most accurate and trustworthy results by producing data 

with various sample sizes and evaluating the effectiveness of various statistical methods. 

 

The following algorithm is considered: 

I. Generate  𝑁 =1000 samples of size  𝑛|(𝑛=200,400,…,10000)  from the BXC distribution using (4);  

𝑋𝑈 = (𝑙𝑛{1 −
1

𝑎
[𝑙𝑛(1 − {[−𝑙𝑛 (1 − 𝑈

1
𝜃)]

−
1
2
+ 1}

−1

)]})

1
𝑏

 

II. Compute the MXLEs for the  𝑁 =10000 samples, 

III. Compute the standard errors (SEs) of the MXLEs for the 10000 samples, 
IV. The standard errors (SEs) were computed by inverting the observed information matrix. 

V. Compute the biases and mean squared errors given for  𝛩 = 𝜃, 𝑎, 𝑏 . We repeated these steps for  

𝑛|(𝑛=200,400,…,10000)  with  𝜗 = 1,2, . . ,1000, 𝑏 = 1,2, . . ,1000, 𝑎 = 1,2, . . ,1000 , so computing biases (Bias𝛩(𝑛)) 

, mean squared errors (MSEs)  (MSEℎ(𝑛))  for  𝛩 = 𝜗, 𝑎, 𝑏  and  𝑛|(𝑛=200,400,…,10000). 

 

Figure 3 gives the biases (left) and MSEs (right) for the parameters  𝜗, 𝑏  and  𝑏  respectively. The left plots from 

show how the three biases vary with respect to the sample size 𝑛 . The right plots show how the four MSEs vary 

with respect to sample size  𝑛. The broken line in red in Figure 3 (left plots) corresponds to the biases being  0 . 

From Figure 3 (left plots), the biases for each parameter tends to zero as  𝑛 → ∞ . From Figure 3 (right plots), the 

MSEs for each parameter decrease to zero as  𝑛 → ∞. 
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Figure 3: Biases (left) and MSEs (right) for the parameters  𝜗, 𝑎, 𝑏. 

7. Applications 

In statistics, comparing competing probability distributions is an important task that helps researchers to understand 

the underlying data generating process and to make inferences about the population parameters. However, the choice 

of the appropriate probability distribution for a given dataset can be challenging, especially when there are several 
competing distributions. In this context, the importance of real data modeling for comparing different probability 

distributions cannot be overstated.  

 

The Chen distribution has been used in quality control to model the distribution of defects in a manufacturing process. 

Its ability to model non-normal and skewed data makes it useful in situations where the defect data is not normally 

distributed. This distribution can be used to estimate the process capability and to optimize the manufacturing process. 

The Chen distribution has been used in engineering applications such as fatigue analysis, where it can be used to 

model the number of cycles to failure of a component subjected to cyclic loading. Its flexibility and efficiency in 

generating random variates make it useful in simulations and other computational applications. The Chen distribution 
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has been used in reliability engineering to model the time-to-failure of components in a system. Its ability to model 

non-normal and skewed data is useful in situations where the failure data is not normally distributed. This distribution 

can be used to estimate the reliability and availability of a system and to optimize its maintenance. The Chen 

distribution has been applied to engineering tasks like fatigue analysis, where it can be used to predict how many 

cycles will pass before a component that has been subjected to cyclic loading will fail. It is helpful in simulations and 
other computer applications due to its adaptability and effectiveness in producing random variations.  In reliability 

engineering, the Chen distribution has been used to simulate the time to failure of system components. When the 

failure data is not regularly distributed, it can be helpful because of its capacity to represent skewed and non-normal 

data. This distribution can be used to predict a system's availability and reliability and to plan for the best possible 

maintenance. 

 

In this section, two real data sets are considered and analyzed to show the applicability of the BXC model. The new 

model is compared with many common competitive models under the Akaike Information Criterion (AICR), the 

Bayesian Information Criterion (BICR), the Cramér-von Mises (CVMS), the Anderson--Darling (AD) and 

Kolmogorov--Smirnov (KS) (corresponding p-value). The following competitive models are considered: the Gamma-

Chen distribution (GC) (Alzaatreh et al. (2014)), the Beta-Chen distribution (BC) (Eugene et al. (2002)), Marshall-

Olkin Chen distribution (MOC) (Jose (2011)), the Kumaraswamy Chen distribution (KC) (Cordeiro and de Castro 
(2011)), the Transmuted Chen (TC) (Khan et al. (2013)), the Transmuted Exponentiated Chen (TEC) (Khan et al. 

(2016)), the Extended Chen (EC) and the standard Chen distribution have been selected for comparison in three 

examples. Some other useful Chen extension can be found in Yousof et al. (2022), Korkmaz et al. (2022), Ibrahim et 

al. (2022) and Ali et al. (2022). The parameters of models have been estimated by the MXLE method. Moreover, Chen 

extension and its generalizations have many applications in insurance and actuarial sciences, see for example, 

Mohamed et al. (2022a,b,c), Yousof et al. (2023), Emam et al. (2023a,b) and Ibrahim et al. (2023). 

 

Data 1: The relief times of twenty patient’s data 

This subsection is allocated for studying the data set of Gross and Clark (1975) on the relief times of twenty patients 

receiving an analgesic: 1.1, 1.40, 1.3, 1.70, 1.9, 1.80, 1.6, 2.20, 1.7, 2.70, 4.1, 1.80, 1.5, 1.20, 1.40, 3, 1.7, 2.3, 1.60, 

2.00. Figure 4 gives the box plot, quantile-quantile (Q-Q) plot, TTT plot and NKDE plot for the relief times data. The 

box plot shows that relief times data has one extreme value. The Q-Q plots ensure the results obtained by the box plot. 

The dashed line in all the Q-Q plots refers to the safe boundaries for the standard errors. The TTT plot shows that the 

HRFs for the relief times data is "monotonically increasing". The NKDE plot shows that the KDE is "asymmetric 

bimodal density" with right tail. Estimated PDF (EPDF) estimated CDF(ECDF), probability-probability (P-P), 
estimate HRF (EHRF) and Kaplan-Meier plots for the relief times data are listed in Figure 5. Table 2 lists statistics 

for comparing model under the relief times data. Based on Table 2, it is noted that the BXC model provides the best 

results: AICR=37.51, BICR=40.49, CVMS=0.040, AD=0.232, K. S=0.116 and P-Value=0.9524. Table 3 gives the 

MXLEs (SEs) for the relief times data. 
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Figure 4: Box plot, Q-Q plot, TTT plot and NKDE plot for the relief times data. 

 

 

Table 2: Results for comparing competing model under the relief times data. 

Model AICR BICR CVMS AD K.S P-Value 

BXC 37.511 40.49 0.040 0.232 0.116 0.9524 

GC 46.396 51.36 0.049 0.288 0.998 <0.010 

EC 38.156 41.18 0.057 0.305 0.138 0.8644 
KC 41.069 44.03 0.058 0.310 0.149 0.8208 

TC 53.693 56.65 0.279 1.579 0.234 0.2439 

TEC 39.584 43.57 0.047 0.289 0.129 0.9493 

MOC 45.821 47.89 0.147 0.849 0.159 0.7743 

BC 41.545 44.47 0.067 0.347 0.157 0.7692 

Chen 54.133 55.14 0.290 1.663 0.240 0.2066 
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Table 3: The MXLEs (SEs) for the relief times data. 

Model MXLE (Standard errors) 

BXC(ϑ,a,b) 1.097×10³ 7.029×10⁻² 9.22×10⁻²  

 (1.6×10³) (5.3×10⁻²) (2.4×10⁻²)  

GC(ϑ,λ,a,b) 7.59144 1.98813 5.00233 0.5349 

 (2.0955) (0.4653) (1.0743) (0.0035) 

TEC(ϑ,λ,a,b) 300.0144 0.50233 2.43029 0.34435 
 (587.043) (0.5643) (1.0888) (0.1190) 

KC(ϑ,λ,a,b) 160.074 0.49432 2.2143 0.5200 

 (222.41) (0.5198) (0.7556) (0.2149) 

BC(ϑ,λ,a,b) 85.874 0.4812 2.0134 0.5555 

 (103.130) (0.5132) (0.699) (0.2020) 

EC(ϑ,a,b) 250.0143 2.4010 0.3743  

 (407.52) (0.890) (0.1001)  

MOC(ϑ,a,b) 400.014 2.3202 0.4332  

 (488.061) (0.6399) (0.089)  

TC(ϑ,a,b) 0.74555 0.07142 1.0223  

 (0.28403) (0.03434) (0.090)  

Chen(a,b) 0.13880 0.94534   
 (0.05111) (0.09435)   
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Figure 5: EPDF, ECDF, P-P, EHRF and Kaplan-Meier plot for the relief times data. 
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Data 2:  The Minimum Flow data 

This subsection is related to the study of minimum flow data which was presented by Cordeiro et al. (2012) that 

include 38 observations. The data set is the following: 43.860, 44.970, 46.27, 51.290, 61.190, 61.20, 67.80, 69.00, 

71.840, 77.310,85.39, 86.590, 86.66, 88.160, 96.030, 102.00, 108.29, 113.00, 115.14, 116.71, 126.86, 127.00, 127.14, 

127.29, 128.00, 134.140, 136.140, 140.430, 146.430, 146.43,148.00, 148.43, 150.86, 151.29, 151.43, 156.14, 163.00, 

186.43. Like the previous application examples, we have Tables 5 and 6. As is clear, the BXC is selected as the best 

model with all criteria. Figure 6 gives the box plot, Q-Q plot, TTT plot, NKDE plot and Kaplan-Meier plot for the 

minimum flow data. The box plot shows that minimum flow data has one extreme value. The Q-Q plots ensure the 
results obtained by the box plot. The TTT plot shows that the HRFs for the relief times data is "monotonically 

increasing". The NKDE plot shows that the KDE of minimum flow data is asymmetric bimodal" density. Table 4 

gives statistics for comparing model under the minimum flow data.  Table 5 lists the MXLEs (and their corresponding 

standard errors (SEs)) for the minimum flow data. Based on Table 2, it is noted that the BXC model provides the best 

results: AICR=389.44, BICR=394.35, CVMS=0.05, AD=0.44, K. S=0.11 and P-Value=0.762. EPDF, ECDF, P-P and 

EHRF plots for the minimum flow data are displayed in Figure 7. 

 

Figure 6: Box plot, Q-Q plot, TTT plot and NKDE plot for the minimum flow data. 
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Table 4: Results for comparing competing model under the minimum flow data. 

Model AICR BICR CVMS AD K.S P-Value 

BXC 389.44 394.35 0.051 0.444 0.1101 0.7621 

MOC 391.57 395.49 0.098 0.615 0.1277 0.6890 

Chen 397.63 400.91 0.102 0.646 0.1686 0.2624 

KC 392.27 396.78 0.115 0.667 0.1441 0.4090 

TC 388.51 393.46 0.1 89  0.661 0.1553 0.3839 
TEC 392.70 399.28 0.114 0.702 0.1578 0.3771 

EC 389.99 395.80 0.133 0.729 0.1533 0.3486 

BC 394.25 397.77 0.125 0.753 0.1519 0.3436 

GC 392.49 399.04 0.288 1.715 0.5791 <0.010 

 

Table 5: The MXLEs (SEs) for the minimum flow data. 

Model MXLE (Standard errors) 

BXC(ϑ,a,b) 0.5443 0.0017 0.3596  

 (0.094) (0.0013) (0.0041)  

TEC(ϑ,λ,a,b) 2.7372 -0.2488 0.0132 0.3488 

 (1.216) (0.478) (0.013) (0.029) 

BC(ϑ,λ,a,b) 3.0144 0.7734 0.0144 0.3544 

 (1.909) (1.249) (0.011) (0.055) 

GC(ϑ,λ,a,b) 3.1352 4.3649 0.0965 0.3455 
 (1.143) (4.437) (0.025) (0.022) 

KC(ϑ,λ,a,b) 4.5144 21.111 0.0222 0.2735 

 (2.022) (42.855) (0.024) (0.053) 

MOC(ϑ,a,b) 13.0010 0.0232 0.3455  

 (18.667) (0.026) (0.048)  

EC(ϑ,a,b) 2.8593 0.01447 0.3554  

 (0.987) (0.004) (0.028)  

TC(ϑ,a,b) -1.0044 0.0039 0.3685  

 (0.707) (0.0024) (0.017)  

Chen(a,b) 0.00324 0.3655   

 (0.0019) (0.019)   
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Figure 7: EPDF, ECDF, P-P, EHRF and Kaplan-Meier plot for the minimum flow data. 
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Table 6 gives the mean, variance, skewness and kurtosis using the estimated parameters. For the relief times data 

S(𝑋) = 0.431397 > 0, K(𝑋) = 3.282876 > 3 and 1 > ID(𝑋) > 0 . For the minimum flow data S(𝑋) = 8.22105 > 0, 

K(𝑋) = 72.80223 > 3 and ID(𝑋) > 1. 
 

Data availability: The data set is available in the paper.  

Funding: This research received no external funding.  

Conflicts of Interest: The authors declare no conflict of interest. 

8. Conclusions 

A new flexible Chen extension which accommodates many useful hazard  rate shapes such as the “J”, “monotonically 

increasing”, “U (bathtub)” and “upside down (reversed bathtub)” hazard rate shapes. The new model is derived based 

on Burr type X G family and called the Burr type X Chen (BXC) model. Moments, conditional moments, moment 

generating function, mean residual life, and mean past lifetime are among the pertinent statistical features of the BXC 
model that are obtained. Many common copulas, such the Farlie-Gumbel-Morgenstern, modified FGM copula, Renyi's 

entropy, and Clayton copula, are used to create some bivariate BXC type distributions. For calculating the BXC model 

parameters, we took into account the maximum likelihood estimation approach. Maximal likelihood estimators are 

evaluated via graphical simulations. To demonstrate the BXC model's applicability, two actual data sets are taken into 

account and examined. 

 

The Beta-Chen distribution, Gamma-Chen distribution, Marshall-Olkin Chen distribution, Transmuted Chen, 

transmuted exponentiated Chen, Extended Chen, Kumaraswamy Chen distribution, and Standard Chen distribution 

are just a few examples of common competitive models that the BXC model is compared to. The Akaike Information 

criterion, Bayesian Information criterion, Cramer-von Mises criterion, Anderson-Darling criterion, Kolmogorov-

Smirnov test statistic, and its associated p-value are all used to do the comparison. 
 

The BXC distribution can be used to model the distribution of financial risk, which is important for estimating the 

probability of financial losses for individuals and organizations. Its flexibility in modeling non-normal and skewed 

data is useful for analyzing complex financial data.  The BXC distribution can be used to model the distribution of 

investment returns, which is important for estimating the risk and return of investment portfolios. Its ability to model 

non-normal and skewed data is useful for analyzing investment return data that may not follow a normal distribution.  

For the purpose of calculating the expected value of claims and the risk of losses for insurance firms, it is critical to 

model the distribution of insurance claims using the BXC distribution. It is helpful for analyzing complicated insurance 

claim data because of its adaptability in modelling non-normal and skewed data. 
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