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Abstract

This article introduces a new three-parameter model with an increasing and bathtub failure rate functions as an ex-
tension of the Mustapha type-II distribution (Mu-II). The model can be very useful in statistical studies, reliability,
computer sciences and engineering. Various mathematical and statistical properties of the distribution are discussed,
such as moments, mean deviations, Bonferroni and Lorenz curves, entropy, order statistic, and extreme value distri-
butions. Moreover, we consider the bivariate extension of the new model. Statistical inferences by the maximum
likelihood method are discussed and assess by simulation studies. Applications of the proposed model to two right-
skewed data are presented for illustration. The new model provides a better fit than some other existing distribution as
measured by some model selection criteria and goodness of fits statistics.
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1. Introduction

Over decades, several lifetime distributions are extended (generalized) for added flexibility through various techniques
as discussed in the literature; one can see Tahir and Cordeiro (2016); Muhammad et al. (2023). Some distributions on
the unit interval were extended to a finite support by additional parameter(s) to accommodate various data sets. For
example, the uniform distribution (U) on unit interval U(0, 1) to an interval U(a, b), beta distribution on unit interval
B(y; p, q), 0 < y < 1, extended to generalized beta of first kind GB1(y; a, b, p, q), 0 < ya < ba and b, p, q are
positive, among others. One of the techniques that received significant attention by authors for the past years is the
exponentiation technique; this involved raising the cumulative distribution function of a model to arbitrary positive
power. The technique provides a new family of distributions that extends the well-known distributions and provides
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better flexible distributions in modeling real data in practice. For instance, Mudholkar and Srivastava (1993) proposed
exponentiated Weibull distribution which generalized the Weibull distribution; Gupta and Kundu (2001) introduced the
exponentiated exponential distribution; generalized exponential Poisson by Barreto-Souza and Cribari-Neto (2009);
generalized BurrXII Poisson Muhammad (2016a); generalized half logistic Poisson Muhammad (2017b); exponen-
tiated Ailamujia Aafaq A. Rather and Alanzi (2022); exponentiated odd Lomax exponential Dhungana and Kumar
(2022); exponentiated cotangent generalized distributions Tashkandy et al. (2023); exponentiated sine-G Muhammad
et al. (2021a); extended cosine G Muhammad et al. (2021b); exponentiated additive Weibull Ahmad and Ghazal
(2020); exponentiated transformation of Gumbel type-II Sindhu et al. (2021); among others.

Our aim in this work is to extend Mu − II[0, 1] by adding two parameters β, θ > 0. First, we extended the support
to an interval [0, β], β > 0, then we generalized the model using exponentiation technique with additional power
parameter θ > 0. Moreover, to provide some mathematical and statistical properties of the new model and discuss its
estimation of parameters by maximum likelihood and give some illustrative examples using real data.

The rest of the paper is presented as follows. In Section 2, we present the proposed distributions and of its properties.
In Section, 3 bivariate extension of the GMu-II distribution is briefly considered. In Section 4 maximum likelihood
method for the parameter estimation is provided. An application to two real data is given in Section 5. Conclusions
in Section 6.

2. Model and Properties

In this section, we introduce three-parameter extension of Mustapha type II distribution called generalized Mustapha
type-II (GMu-II) by extending the support of the Mu-II distribution from [0, 1] to [0, β], then the exponentiation
procedure by adding the parameter θ. We also provide some mathematical and statistical properties of the proposed
distributions. The cumulative distribution of the Mu-II distribution proposed by Mustapha (2017) with parameter
α > 0 is given by

G(x) = ex
α ln 2 − 1 (1)

The distribution can also be derived as a special case of alpha-power Uniform (0, 1). Now, we obtain the new three
parameter model by extending the cumulative distribution function (CDF) in (1) with an arbitrary positive parameters
β > 0 and θ > 0 as

F (x) = (e(x/β)
α ln 2 − 1)θ, 0 ≤ x ≤ β, (2)

the corresponding probability density function is given by

f(x) = αθ ln 2β−αxα−1e(x/β)
α ln 2 (e(x/β)

α ln 2 − 1)θ−1, 0 < x ≤ β. (3)

The shape properties of the proposed distribution are described below while Figure 1 and 2 provide the plots of the f(x)
for some various values of the parameters, showing that the new model can accommodate increasing and decreasing
densities. All the plots and computations are conducted using-R software.

Theorem 2.1. Let f(x) be the probability density function (PDF) given by ( 3), then, for all β > 0, f(x) is: (i)
monotone increasing function for α ≥ 1 and θ ≥ 1, (ii) monotone decreasing function for α < 1 and 0 < θ ≤ 1

2 , (iii)
bathtub shaped for α < 1 and θ = 1, and (iv) bathtub shaped for α = 1 and 1

2 < θ < 1.

Proof. We start by computing

(log f(x))′ =
α− 1

x
+ αβ−αxα−1 ln 2 +

(θ − 1)αβ−αxα−1 e(x/β)
α ln 2 ln 2

e(x/β)α ln 2 − 1
. (4)

1. It is clear from (4) if α ≥ 1 and θ ≥ 1 (log f(x))′ > 0, thus f(x) is increasing function.

2. We show that (log f(x))′ < 0; it is clear that the first term in (4) i.e. α−1
x < 0 for α < 1, therefore, we need

to show that the sum of the last two terms in (4) is less than or equal to zero; simplifying the sum of the last two
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terms in (4) we have
αβ−αxα−1 (θ e(x/β)

α ln 2 − 1) ln 2

e(x/β)α ln 2 − 1
. (5)

The above expression is less than or equal to zero if (θ e(x/β)
α ln 2−1) ≤ 0, but 1 ≤ e(x/β)α ln 2 ≤ max |e(x/β)α ln 2| =

2, thus, (θ e(x/β)
α ln 2 − 1) ≤ 0 if θ ≤ 1

2 .

3. For θ = 1 equation (4) becomes (log f(x))′ = (α−1)+αβαxα ln 2
x with the root x0 =

(
(1−α)βα
α ln 2

) 1
α

, thus, if
α < 1 we have: for 0 < x < x0 implies (log f(x))′ < 0, at x = x0 (log f(x0))′ = 0, and (log f(x))′ > 0 for
x0 < x < β, hence f(x) is bathtub shaped.

4. For α = 1 equation (4) become (log f(x))′ = β−1(θ e(x/β) ln 2−1) ln 2
e(x/β) ln 2−1 with root say x∗ = −β log θ

log 2 . Since x ≤ β,

therefore, − log θ
log 2 ≤ 1 for a valid x∗, which occurs only for 1

2 < θ < 1; hence, we have that (log f(x∗))′ < 0

for 0 < x < x∗, (log f(x∗))′ = 0, and (log f(x))′ > 0 for x∗ < x < β, hence f(x) is bathtub shaped.

The limiting behavior of density function given by ( 3) are: (i) for all α, θ, β > 0, limx →β f(x) = αθ ln 4
β , (ii)

for α > 1, θ > 1, β > 0, limx →0 f(x) → 0, (iii) for α < 1, θ < 1, β > 0, limx →0 f(x) → ∞, and (iv) for
α = 1, θ = 1, β > 0, limx →0 f(x) = ln 2

β .
The survival function S(x), hazard rate function h(x) and the reverse hazard rate function (r(x)) of the GMu-II
distribution are given respectively as

s(x) = 1− (e(x/β)
α ln 2 − 1)θ,

h(x) =
αθβ−αxα−1e(x/β)

α ln 2 ln 2 (e(x/β)
α ln 2 − 1)θ−1

1− (e(x/β)α ln 2 − 1)θ
, (6)

r(x) =
αθβ−αxα−1e(x/β)

α ln 2 ln 2

e(x/β)α ln 2 − 1
.

Theorem 2.2. The hazard rate function h(x) given by ( 6) is monotone increasing function for α ≥ 1 and θ ≥ 1.

Proof. According to the theorem provided by Glaser (1980), we have that

(log h(x))′ =
(α− 1)

x
+ ln 2αβ−αxα−1 +

(θ − 1) ln 2αβ−αxα−1e(x/β)
α ln 2

e(x/β)α ln 2 − 1

+
ln 2αθβ−αxα−1e(x/β)

α ln 2(e(x/β)
α ln 2 − 1)θ−1

1− (e(x/β)α ln 2 − 1)θ
, (7)

thus, for α ≥ 1 and θ ≥ 1, (log h(x))′ > 0, hence, h(x) is increasing function.

The limiting behavior of the hazard rate function given by ( 6) are: (i) for all α, θ, β > 0, limx →β h(x) → ∞ ,
(ii) for α > 1, θ > 1, β > 0, limx →0 h(x) → 0, (iii) for α < 1, θ < 1, β > 0, limx →0 h(x) → ∞, and (iv) for
α = 1, θ = 1, β > 0, limx →0 h(x) = ln 2

β .
Figure 3 provide some plots of the hazard function of the GMu-II distribution for various values of parameters, showing
that the hazard function can accommodate bathtub and increasing failure rates.
Let |z| ≤ 1, and b > 0 real and non integer, then

(1− z)b−1 =

∞∑
i=0

(−1)i Γ(b)

i!Γ(b− i)
zi. (8)

Here, we want to express the PDF given by (3) in a series form, and we start by

f(x) = αθ ln 2β−αxα−1eθ(x/β)
α ln 2 (1− e−(x/β)

α ln 2)θ−1,
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by applying (8) and exponential expansion we have

f(x) = αθ

∞∑
i=0

∞∑
j=0

(−1)i(θ − i)j(ln 2)j+1Γ(θ)

i! j!βα(j+1)Γ(θ − i)
xα(j+1)−1. (9)
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Figure 1: Plots of the GMu-II density function for some values of parameters
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Figure 2: Plots of the GMu-II density function for some values of parameters
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Figure 3: Plots of the GMu-II hazard rate function for some values of parameters

2.1. Moments and quantiles

The quantile function ζ(.) of the GMu-II can be used for generating random data distributed according to ( 3) by
generating data from uniform distribution and it is given by

ζ(p) = β

(
log(p1/θ + 1)

log 2

) 1
α

. (10)

Therefore, the median (M) of the GMu-II can be obtained directly by substituting p = 1/2 in (10) as

M = β

(
log((0.5)1/θ + 1)

log 2

) 1
α

. (11)

Figure 4 shows that for any value of β > 0 the median is an increasing function when both α and θ are increasing.

The rth ordinary moments can be computed by µr = E[Xr] =
∫ β
0
xrf(x)dx, thus, we can get the ordinary moments

of X in a series form using (9) as

E(Xr) = αθ

∞∑
i=0

∞∑
j=0

(−1)i(θ − i)j(ln 2)j+1βr Γ(θ)

i! j! (α(j + 1) + r)Γ(θ − i)
. (12)

We can compute the mean µ = E(X) and variance σ2 = E(X2) − (E(X))
2 using (12), also, the other higher

moments can be obtained by setting r = 1, 2, 3 . . . . Figure 5 below described the behavior of the mean and variance
of the GMu-II distribution. The mean is increasing when α and θ are increasing, while the variance is unimodal as α
and θ increases.
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Figure 4: Plots of the median of GMu-II distribution.
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Figure 5: Plots of the mean and variance of GMu-II distribution for β = 5.

Moreover, the effect of the parameters α and θ on the skewness and kurtosis of GMu-II can also be analyzed using the
Bowley skewness (B) and Moores kurtosis (M) which are defined by

B =
ζ(3/4) + ζ(1/4)− 2 ζ(2/4)

ζ(3/4)− ζ(1/4)
, and M =

ζ(3/8)− ζ(1/8) + ζ(7/8)− ζ(5/8)

ζ(6/8)− ζ(2/8)
,

respectively, where ζ(.) is given by ( 10), notice that both Bowley skewness and Moores kurtosis are independent of
β. Figure 6 below illustrated that the skewness of the GMu-II distribution decreases as both α and θ increases, while
the kurtosis is decreasing then increasing as α and θ increases.
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Figure 6: Plots of skewness (B) and kurtosis (M) of GMu-II distribution

2.2. Mean deviations, Bonferroni and Lorenz curves

The mean deviations of a random variableX about the mean (µ1) and median (M) are defined by δ1(X) = E(|X−µ1|)
and δ2(X) = E(|X −M |) which can be expressed as

δ1(X) = 2µ1F (µ1)− 2m1(µ1) and δ2(X) = µ1 − 2m1(M)

respectively, where µ1 = E(X), F (µ1) can be computed from (2), M median of X given by (11) and m1(.) is the
first incomplete moment of X which can be obtain from ( 12) when r = 1 as

m1(t) = αθ

∞∑
i=0

∞∑
j=0

(−1)i(θ − i)j(ln 2)j+1 tΓ(θ)

i! j! (α(j + 1) + 1)Γ(θ − i)
. (13)

Hence, δ1 and δ2 can be computed by setting t = µ1 and t = M in ( 13) respectively.

Moreover, for a given probability p, the Bonferroni and Lorenz curves are defined by B(p) = m1(q)/(pµ1) and

L(p) = m1(q)/µ1 respectively, where q = β
(
log(p1/θ + 1)

) 1
α (log 2)−

1
α is the quantile of X at p. These measures

have been applied in analyzing many problems in both sciences and social sciences such as economics, insurance,
income and poverty, survival analysis and medicine. Therefore, we can get the expressions of the Bonferroni and
Lorenz curves of the GMu-II distribution using t = q in ( 13) respectively as

B(p) = αθ

∞∑
i=0

∞∑
j=0

(−1)i(θ − i)j(ln 2)j+1 q Γ(θ)

i! j! pµ1(α(j + 1) + 1)Γ(θ − i)
,

and

B(p) = αθ

∞∑
i=0

∞∑
j=0

(−1)i(θ − i)j(ln 2)j+1 q Γ(θ)

i! j!µ1(α(j + 1) + 1)Γ(θ − i)
,

respectively.
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2.3. Entropy

Entropy is defined as the measure of uncertainty. The two most popularly used entropy measures are the Shannon
entropy and Renyi entropy. We first give this important lemma, which is very useful in their computations.

Lemma 2.3. Let X ∼ f(x) in (3), let a, b ∈ R and c is a real and non integer, define

∆(a, b, c, α, β) =

∫ β

0

xa eb(x/β)
α (ln 2)(e(x/β)

α ln 2 − 1)c dx,

then,

∆(a, b, c, α, β) =

∞∑
i=0

∞∑
j=0

(−1)i
(
c
i

)
(b+ c− i)j(ln 2)j βa+1

j!(a+ αj + 1)
. (14)

Proof: follow similar to (12).

For a random variableX with pdf given by ( 3), the Renyi entropy is defined by IR(ρ) = (1− ρ)−1log
[∫∞
−∞f(x)ρdx

]
,

with ρ > 0 and ρ 6= 1. We first compute
∫ β
0
fρ(x)dx by applying the Lemma 2.3 as∫ β

0

fρ(x)dx = αρθρβ−ρα
∫ β

0

xρ(α−1)eρ(x/β)
α(ln 2)(e(x/β)

α ln 2 − 1)ρ(θ−1)dx

= αρθρβ−ρα(ln 2)ρ ∆(ρ(α− 1), ρ, ρ(θ − 1), α, β).

Thus,

IR(ρ) =
1

1− ρ
log
[
αρθρβ−ρα(ln 2)ρ ∆(ρ(α− 1), ρ, ρ(θ − 1), α, β)

]
.

The Shannon entropy which is defined by E[− log f(x)] can directly be computed by considering the following the
Lemma 2.4.

Lemma 2.4. Let X∼(3), then,

E[log(e(X/β)
α ln 2 − 1)] = αθβ−α ln 2

∂

∂t
∆(α− 1, 1, θ + t− 1, α, β)|t=0, (15)

E[logX] =
∂

∂t
E[Xt]|t=0. (16)

Proof. follow from Lemma 2.3

Therefore, from (15) and (16) we get,

E[−logf(X)] = − log

(
αθ ln 2

βα

)
− (α− 1)E[logX]

− (θ − 1)E[log(2(X/β)
α

− 1)]− β−α(log 2)E[Xα]

= log

(
βα

αθ ln 2

)
− (α− 1)

∂

∂t
E[Xt]|t=0

− (θ − 1)αθβ−α(ln 2)
∂

∂t
∆(α− 1, 1, θ + t− 1, α, β)|t=0 − β−α(log 2)E[Xα].

2.4. Order statistics

Let, X1:n ≤ X2:n ≤ · · · ≤ Xn:n, j = 1, 2, 3, · · · , n, be a random sample of independent observation of size n from
the GMu-II distribution, then the density of the jth order statistic fXj:n(x) can be presented in a series of the form
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fXj:n(x) =

n−j∑
l=0

n! (−1)l

(j − 1)!(n− j − l)! l!
f(x)(F (x))j+l−1,

where f(x) and F (x) are given by (3) and (2) respectively. By expanding (F (x))j+l−1 and exponential expansion we
have

fXj:n(x) =

n−j∑
l=0

n! (−1)l ln 2αβ−αθ

(j − 1)! (n− j − l)! l!
xα−1e(x/β)

α ln 2
(
e(x/β)

α ln 2 − 1
)θ+j+l−2

.

thus, its the series of GMuII with parameters α, β and θ + j + l − 1 as

fXj:n(x) =

n−j∑
l=0

n! (−1)lθf(x;α, β, θ + j + l − 1)

(j − 1)! (n− j − l)! l! (θ + j + l − 1)
.

The asymptotic distributions for the extreme order statistics X1:n and Xn:n from X1, X2, X3, · · · , Xn with GMu-II
are derived. for more detailed see Arnold et al. (1992); Leadbetter et al. (2012). Let W be a random variable with
CDF G, then the CDF F is in the domain of maximal attraction of G is the same as (Xn,n − an)/bn

d→W , provided
there exist a sequence {an} and {bn > 0}. Suppose that W ∗ be a random variable with CDF G∗, then the CDF F
is in the domain of minimal attraction of G∗ is the same as (X1,n − a∗n)/b∗n

d→ W ∗, provided there exist a sequence
{a∗n} and {b∗n > 0}.

Theorem 2.5. Let X1, X2, X3, · · · , Xn be a random sample following GMu-II, let Wn = (Xn:n − an)/bn, then,

Wn
d→W implies that

lim
n→∞

P (Wn ≤ x) = G(x) = ex,

for every point x ∈ R of G(x) for which G(x) is continuous, where the normalizing constant can be obtain from (10)

by the Theorem 8.3.4 of Arnold et al. (1992), thus, an = β and bn = β

(
1−

(
log((1− 1

n )1/θ+1)

log 2

)1/α)
.

Proof. According to the Theorem 8.3.2 of Arnold et al. (1992), we consider

lim
ε→0+

1− F (F−1(1)− εx)

1− F (F−1(1)− ε)
= lim
ε→0+

1−
(
e(
β−εx
β )α ln 2 − 1

)θ
1−

(
e(
β−ε
β )α ln 2 − 1

)θ = x,

hence the proof.

Theorem 2.6. Let X1, X2, X3, · · · , Xn be a random sample following GMu-II, let W ∗n = (X1:n − a∗n)/b∗n, then,

W ∗n
d→W ∗ is equivalent to

lim
n→∞

P (W ∗n ≤ x) = G∗(x;αθ) = 1− e−x
αθ

,

for every point x ∈ R+ of G∗(x;αθ) for which G∗(x;αθ) is continuous, where the normalizing constant can be

computed from (10) by the Theorem 8.3.6 of Arnold et al. (1992), thus, a∗n = 0 and b∗n = β
(

log(( 1
n )1/θ+1)

log 2

)1/α
.

Proof. According to Theorem 8.3.6 of Arnold et al. (1992) we can first consider the asymptotic of F (x) as follows.
Since,
limx→0

(
e(x/β)

α ln 2 − 1
)
∼ (x/β)α ln 2, therefore, limx→0 F (x) ∼ (x/β)αθ (ln 2)θ. Hence,

lim
ε→0+

F (F−1(0) + εx)

F (F−1(0) + ε)
∼ (εx/β)αθ (ln 2)θ

(ε/β)αθ (ln 2)θ
= xαθ.
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3. Bivariate GMuII

In this section, we discuss the bivariate extension for the GMu-II distribution when the shape parameter θ are different.
Let, U1, U2 and U3 be mutually independent such that, U1 ∼ GMuII(α, β, θ1), U2 ∼ GMuII(α, β, θ2) and U3 ∼
GMuII(α, β, θ3). Let,X1 = max{U1, U3} andX2 = max{U2, U3}, then, the vector (X1, X2) has the bivariate GMu-
II distribution with parameters α, β, θ1, θ2 and θ3, denoted by BVGMuII(α, β, θ1, θ2, θ3). We now briefly discuss on
the CDF and the density function of the BVGMu-II.
If (X1, X2) ∼ BV GMuII(α, β, θ1, θ2, θ3), then, the joint CDF of (X1, X2) for x1 ≤ β, x2 ≤ β, is given by

FX1,X2
(x1, x2) =

(
e(x1/β)

α ln 2 − 1
)θ1 (

e(x2/β)
α ln 2 − 1

)θ2 (
e(z/β)

α ln 2 − 1
)θ3

,

where z = min{x1, x2}.
If (X1, X2) ∼ BV GMuII(α, β, θ1, θ2, θ3), then, the joint CDF of (X1, X2) for x1 ≤ β, x2 ≤ β, can be presented
as

FX1,X2
(x1, x2) = FBVGMuII(x1, α, β, θ1)FBVGMuII(x2, α, β, θ2)FBVGMuII(z, α, β, θ3)

= FBVGMuII(x1, α, β, θ1 + θ3)FBVGMuII(x2, α, β, θ2) if x1 < x2

= FBVGMuII(x1, α, β, θ1)FBVGMuII(x2, α, β, θ2 + θ3) if x2 < x1

= FBVGMuII(x, α, β, θ1 + θ2 + θ3) if x1 = x2 = x.

Proposition 3.1. If (X1, X2) ∼ BV EMu(α, β, θ1, θ2, θ3), then, the joint PDF of (X1, X2) for x1 ≤ β, x2 ≤ β, is
given by

fX1,X2
(x1, x2) =

 f1(x1, x2) if x1 < x2
f2(x1, x2) if x2 < x1
f0(x1, x2) x1 = x2 = x.

where

f1(x1, x2) = fBVGMuII(x1, α, β, θ1 + θ3)fBVGMuII(x2, α, β, θ2)

= α2θ2(θ1 + θ3)β−2αxα−11 e(x1/β)
α ln 2(ln 2)2 (e(x1/β)

α ln 2 − 1)θ1+θ3−1

× xα−12 e(x2/β)
α ln 2(e(x2/β)

α ln 2 − 1)θ2−1

f2(x1, x2) = fBVGMuII(x1, α, β, θ1)fBVGMuII(x2, α, β, θ2 + θ3)

= α2θ1(θ2 + θ3)β−2αxα−12 e(x2/β)
α ln 2(ln 2)2 (e(x2/β)

α ln 2 − 1)θ2+θ3−1

× xα−11 e(x1/β)
α ln 2(e(x1/β)

α ln 2 − 1)θ1−1

f0(x1, x2) =
θ3

θ1 + θ2 + θ3
f(x, α, β, θ1 + θ2 + θ3)

= αθ3β
−αxα−1e(x/β)

α ln 2 ln 2 (e(x/β)
α ln 2 − 1)θ1+θ2+θ3−1

Proof. fi(x1, x2) for i = 1, 2 can be determined from ∂2FX1,X2
(x1,x2)

∂x1∂x2
. For the f0(x1, x2) we follow the fact that,∫ β

0

∫ x2

0

f1(x1, x2)dx1dx2 +

∫ β

0

∫ x1

0

f2(x1, x2)dx2dx1 +

∫ β

0

f0(x)dx = 1,

thus, ∫ β

0

∫ x2

0

f1(x1, x2)dx1dx2 =

∫ β

0

αθ2β
−αxα−12 e(x2/β)

α ln 2 ln 2 (e(x2/β)
α ln 2 − 1)θ1+θ2+θ3−1dx2,∫ β

0

∫ x1

0

f2(x1, x2)dx2dx1 =

∫ β

0

αθ1β
−αxα−11 e(x1/β)

α ln 2 ln 2 (e(x1/β)
α ln 2 − 1)θ1+θ2+θ3−1dx1,
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hence, ∫ β

0

f0(x)dx =

∫ β

0

αθ3β
−αxα−1e(x/β)

α ln 2 ln 2 (e(x/β)
α ln 2 − 1)θ1+θ2+θ3−1dx.

4. Maximum likelihood estimation

In this section, we estimate the unknown parameters of the GMu-II by the method of maximum likelihood and examine
by simulation studies. Let, X1, X2, · · · , Xn be a random sample of size n obtained from the GMu-II distribution,
then, the log-likelihood function (`(Θ)) where Θ = (α, β, θ) is given by

`(Θ) = n logα+ n log θ − nα log β + n log(ln 2) + (α− 1)

n∑
i=1

log xi

+ log 2

n∑
i=1

(
xi
β

)α
+ (θ − 1)

n∑
i=1

log(e(xi/β)
α ln 2 − 1).

Since max{X1, X2, · · · , Xn} ≤ β, therefore, the MLE of β is Xn:n and its a consistent estimator because

lim
n →∞

P (|Xn:n − β| > ε) = lim
n →∞

(
e(

β−ε
β )

α
ln 2 − 1

)nθ
→ 0,

hence, we can obtain the MLE of α and θ, i.e α̂ and θ̂ by the solution of the non-linear system ∂`
∂α = ∂`

∂θ = 0, and
setting β̂ = Xn:n + ϑ, ϑ ∈ R+ (or using constrain MLE) where

∂`

∂α
=
n

α
− n log β +

n∑
i=1

log xi + log 2

n∑
i=1

(
xi
β

)α
log

(
xi
β

)

+ (θ − 1) ln 2

n∑
i=1

e(xi/β)
α ln 2

(
xi
β

)α
log
(
xi
β

)
(e(xi/β)α ln 2 − 1)

, (17)

∂`

∂θ
=
n

θ
+

n∑
i=1

log(e(xi/β)
α ln 2 − 1). (18)

For the asymptotic interval estimation and hypothesis tests of the parameters α and θ, we need 2×2 Fisher information
matrix denoted by (J(Θ)), under the usual condition that are fulfilled for the parameters α and θ in the interior of
the parameter space but not on the boundary. The asymptotic distribution of

√
n(Θ̂ − Θ) is N2(0, I−1(Θ)), which

is a Normal 2−variate with zero mean and variance covariance I(Θ). This condition is also applicable if I(Θ) is
substitute by the information matrix evaluated at Θ̂, that is J(Θ̂). The Normal 2−variate distribution N2(0, J−1(Θ))
can be used to establish an approximate confidence interval and region for the model parameters α and θ. J(Θ) =
−[∂2`/∂Θ∂ΘT ], and the element of J(Θ) are given in by

∂2`

∂θ2
= − n

θ2
, (19)

∂2`

∂α∂θ
=

n∑
i=1

ln 2 e(xi/β)
α ln 2(xi/β)α ln(xi/β)

e(xi/β)α ln 2 − 1
, (20)
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∂2`

∂α2
= − n

α2
+ ln 2

n∑
i=1

(xi/β)α (ln(xi/β))
2

+ (θ − 1) ln 2

n∑
i=1

e(xi/β)
α ln 2(xi/β)α (ln(xi/β))

2

e(xi/β)α ln 2 − 1

+ (θ − 1)(ln 2)2
n∑
i=1

e(xi/β)
α ln 2(xi/β)2α (ln(xi/β))

2

e(xi/β)α ln 2 − 1
− (θ − 1)(ln 2)2

n∑
i=1

e2(xi/β)
α ln 2(xi/β)2α (ln(xi/β))

2(
e(xi/β)α ln 2 − 1

)2 .

(21)

Moreover, we investigate the existence and uniqueness of the MLEs of α and θ under some possible conditions in
similar way to Jafari and Tahmasebi (2016); Muhammad (2017a), among others.

Theorem 4.1. Let zθ(θ;α, β;xi) be the right hand side of (18), where α and β are true values of parameters, then,
zθ(θ;α, β;xi) = 0 has a unique real root.

Proof. limα →0 zθ(θ;α, β;xi) =∞ and limα →∞ zθ(θ;α, β;xi) =
∑n
i=1 log(2(xi/β)

α − 1) < 0, this show that zθ is
a monotone function from positive to negative, thus, zθ = 0 has at least one root. To prove the uniqueness we show
that z

′

θ < 0 and z
′

θ = − n
θ2 from (19).

Theorem 4.2. Let zα(α;β, θ, xi) be the right hand side of (17), where θ and β are true values of parameters, then,
zα(α;β, θ, xi) = 0 has at least one real root.

Proof. Now, limα →0 zα(α;β, θ, xi) = ∞, the we need to show that limα →∞ zα is negative. From the last term of
zα, since limα →∞

(xi/β)
α

(e(xi/β)
α ln 2−1) = 1/ ln 2. Thus, limα →∞ zα = θ

∑n
i=1 log(xi/β) < 0, hence the proof.

4.1. Simulation

In this subsection, simulation studies are conducted to examine the proposed estimation method for the GMu-II. We
generate 1000 samples from GMu-II model, each of sample sizes (30, 60, 90, . . . , 180) for some parameter values and
assess based on the average values of the estimators and their standard deviations; the proportion of the convergence for
the iterations are considered. The simulation result is given in the Table 1, the performance of the maximum likelihood
shows consistency and the standard deviation is decreasing as the sample size increases, also, the proportion of the
convergence is approaching more than 95% in most of cases.

5. Illustration

In this section, the GMu-II distribution was fitted to a real data in order to demonstrate its important and applicability
in data studies. We compare the fit of the GMu-II with that some existing models such as: Weibull (W), beta (B),
exponential uniform (ExU) Javanshiri et al. (2013), logistic-uniform (LU) Torabi and Montazeri (2014), generalized
exponential (GE) Gupta and Kundu (2001), Chen (Ch) Chen (2000), exponentiated Nadarajah-Haghighi (ENH) Abdul-
Moniem (2015); Lemonte (2013), generalized linear exponential (GLE) Mahmoud and Alam (2010), half logistic
Poisson (HLP) Muhammad and Yahaya (2017), Topp-Leone (TL) Topp and Leone (1955), odd-exponential uniform
is the limiting distribution of Poisson odd generalized exponential uniform Muhammad (2016c), odd generalized
exponential power function Hassan et al. (2019), Mustapha type I (Mu-I) Muhammad (2016b), tau distribution (Tau)
Bakouch et al. (2023), and Kumaraswamy (Kw) Kumaraswamy (1980).

The MLEs of the parameters of each model are computed, the Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), consistent Akaike information criterion (CAIC), and Kolmogorov-Smirnov (KS) test are used
to compare the new distribution and the other models. The model with the smallest value of these measures provides
better fits than the other models.
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Table 1: Selected values, average estimates (AE) with standard deviation (Sd) in parenthesis, and proportion of convergence
(PC) of the simulated data from GMu-II distribution.

Sample size Selected values Average Estimate(Sd) Prop. of Converg.

n α θ β α̂ θ̂ β̂ PC
30 0.1 1.0 1.0 0.4284 1.9869 0.8092 0.92

(0.3678) (4.8215) (0.1598)
60 0.1 1.0 1.0 0.3936 0.8762 0.8929 0.98

(0.2846) (4.1615) (0.0947)
90 0.1 1.0 1.0 0.3278 1.0827 0.9211 0.98

(0.2411) (2.5222) (0.0708)
120 0.1 1.0 1.0 0.3018 1.6796 0.9426 0.97

(0.2292) (2.4691) (0.0522)
150 0.1 1.0 1.0 0.2695 1.5013 0.9538 0.98

(0.2146) (2.0314) (0.0443)
180 0.1 1.0 1.0 0.2376 1.4490 0.9595 0.98

(0.1900) (1.0006) (0.0381)
30 0.2 1.0 1.5 0.8848 1.5360 1.3336 0.93

(0.6912) (3.9731) (0.1499)
60 0.2 1.0 1.5 1.0615 0.0565 1.4169 0.98

(0.4649) (3.5490) (0.0796)
90 0.2 1.0 1.5 0.5737 2.3729 1.4405 0.92

(0.4323) (2.1762) (0.0553)
120 0.2 1.0 1.5 0.4732 2.3455 1.4543 0.94

(0.4241) (2.0786) (0.0453)
150 0.2 1.0 1.5 0.5244 1.7423 1.4654 0.96

(0.4213) (2.0162) (0.0352)
180 0.2 1.0 1.5 0.5717 1.1497 1.4699 0.98

(0.3984) (1.9861) (0.0307)
30 0.2 0.4 1.0 0.3628 1.2241 0.7667 0.96

(0.2615) (3.5978) (0.1816)
60 0.2 0.4 1.0 0.3361 0.4998 0.8727 0.98

(0.1950) (2.074) (0.1175)
90 0.2 0.4 1.0 0.2898 0.8509 0.9066 0.99

(0.1739) (2.0485) (0.0889)
120 0.2 0.4 1.0 0.2705 1.0111 0.9331 0.99

(0.1712) (2.0014) (0.0631)
150 0.2 0.4 1.0 0.2447 1.1057 0.9420 0.99

(0.1534) (1.8234) (0.0530)
180 0.2 0.4 1.0 0.2685 0.6271 0.9505 0.98

(0.1349) (1.5460) (0.0473)
30 0.6 0.9 0.6 2.3881 1.2596 0.5735 0.95

(1.8085) (3.2827) (0.0256)
60 0.6 0.9 0.6 1.0611 1.2384 0.5871 0.87

(1.1053) (3.1316) (0.0123)
90 0.6 0.9 0.6 1.2543 2.3964 0.5907 0.89

(1.1006) (2.2379) (0.0086)
120 0.6 0.9 0.6 1.3963 1.7333 0.5936 0.95

(1.0016) (2.1979) (0.0063)
150 0.6 0.9 0.6 1.4226 1.2543 0.5949 0.98

(1.0005) (2.0025) (0.0049)
180 0.6 0.9 0.6 1.4623 1.0342 0.8958 0.99

(1.0004) (2.0012) (0.0042)

5.1. Data I

The following first data is given by Abouammoh et al. (1994) its the ordered lifetimes (in days) of 43 blood cancer
patients from one of the ministry of Health Hospitals in Saudi Arabia, also, studied by Mahmoud and Alam (2010):
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115, 181, 255 ,418, 441, 461, 516, 739, 743, 789, 807 ,865, 924, 983, 1024, 1062, 1063, 1165, 1191, 1222, 1222,
1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852.

To know some information about the shape of the failure rate of the data, we consider the total time on test (TTT).
In Figure 7 it shows that the data possess an increasing failure rate; thus, we can conclude that GMu-II can be an
appropriate model for fitting the data sets.
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Figure 7: Plots of the total time on test (TTT) for the data I

It can be seen from the Table 2 the GMu-II represent the data set better than the other models as measured by these
criteria. For more illustrations, Figure 8 shows the histogram (left) and empirical CDF (right) with the fitted GMu-II
distribution for the data I, while Figure 9 give the empirical hazard with the fitted GMu-II (left), and the quantile-
quantile plot (right) for the data I. Moreover, the plot of the profile log-likelihood function of the GMu-II for the data
I is illustrated in Figure 10.

Table 2: MLEs, `, AIC, BIC, CAIC, K-S and P-values for the data I.
Model α̂ β̂ θ̂ λ̂ â b̂ ĉ ` AIC BIC CAIC K-S P-value
GMu-II 0.0610 1852.0 18.8704 - - - - -297.37 600.73 605.79 594.89 0.0585 0.9979
LU - 0.4159 107.0 - - - 4.1375 -317.16 640.32 645.39 634.49 0.1618 0.2206
ExU 115.01 - - 2.107−8 899.99 - - -298.39 602.79 607.86 603.31 1.238 1.0× 10−10

ENH 168.0 2.3006 - 4.743 ×10−6 - - - -304.26 614.51 619.58 608.68 0.1434 0.3489
GLE 2.102×10−4 - 1.5528 - - 1.389×10−6 - -305.34 616.68 621.74 610.84 0.1435 0.3488
Ch 0.3116 8.613×10−5 - - - - - -302.06 608.13 611.50 604.23 0.0882 0.8879
GE 0.0017 3.6502 - - - - - -310.16 624.31 627.69 620.42 0.1655 0.1996
W 9.935×10−9 2.5775 - - - - - -304.42 612.83 616.21 608.94 0.1237 0.5323
HLP 0.0004 - - 4.3496 - - - -322.32 648.65 652.02 648.97 0.2950 0.0014
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Figure 8: Plots of the histogram (left) and empirical CDF (right) with the fitted GMu-II distribution for the data I
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Figure 9: Plots of the empirical hazard with the fitted GMu-II (left), and the quantile-quantile plot (right) for the data I
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Figure 10: Plots of the profile log- likelihood function of the GMu-II for the data I

5.2. Data II

The following second data is the monthly water capacity of the Shasta reservoir in the time range of August and
December from 1975 to 2016 given by Kohansal (2019), also, studied by Tu and Gui (2020):

0.667157, 0.287785, 0.126977, 0.768563, 0.703119, 0.729986, 0.767135, 0.811159, 0.829569, 0.726164, 0.423813,
0.715158, 0.640395, 0.363359, 0.463726, 0.371904, 0.291172, 0.414087, 0.650691, 0.538082, 0.744881, 0.722613,
0.561238, 0.813964, 0.709025, 0.668612, 0.524947, 0.605979, 0.715850, 0.529518, 0.824860, 0.742025, 0.468782,
0.345075, 0.425334, 0.767070, 0.679829, 0.613911, 0.461618, 0.294834, 0.392917, 0.688100

It is clear from the Table 3 the GMu-II provides a better fit to the data better than the other models based on these
criteria. Figure 11 give the histogram (left) and empirical CDF (right) with the fitted GMu-II for the data II. Figure 12
the quantile-quantile plot of the GMu-II for the data II. Further, the plot of the profile log-likelihood function of the
GMu-II for the data II is given by Figure 13.
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Table 3: MLEs, `, AIC, BIC, CAIC, K-S and P-values for the data II.
Model α̂ β̂ θ̂ λ̂ â b̂ ĉ ` AIC BIC CAIC K-S P-value
GMu-II 11.1810 0.8296 0.2046 - - - - 20.30 -34.59 -29.38 -40.44 0.1013 0.7445
LU - 0.4159 0.1260 - - - 3.9436 2.71 0.58 5.79 -5.27 0.6818 2.22× 10−16

ExU - - - 9.85−9 0.1370 4.4900 - 16.04 -26.08 -20.86 -25.41 0.8409 2.22× 10−16

ENH 1.32× 103 4.5030 - 1.43×10−3 - - - 11.83 -17.67 -12.45 -23.51 0.1644 0.1847
GLE 0.2791 - 8.5879 - - 2.8780 - 10.46 -14.91 -9.70 -20.75 0.1636 0.1889
Ch 3.612 4.1746 - - - - - 14.99 -25.96 -22.49 -29.86 0.1396 0.3530
GE 4.9943 10.6875 - - - - - 6.16 -8.33 -4.85 -12.33 0.1643 0.1851
W 5.5277 3.9407 - - - - - 13.68 -23.35 -19.87 -27.25 0.1505 0.2695
Tau 0.6316 - 3.7681 - - - - 17.95 -31.89 -28.41 -31.58 0.4163 4.16×10−7

TL 3.8782 - - - - - - 13.98 -25.95 -24.21 -25.21 0.1951 0.0710
B - - - - 4.1581 3.0015 - 15.02 -26.05 -22.5 -25.72 0.1403 0.3475
OEU 0.5267 - - - - 1.0000 - 12.70 -21.39 -17.92 -21.07 0.1672 0.1702
Mu-I - - - - 389.83 0.8196 - 8.31 -12.62 -9.15 -12.30 0.9974 2.22×10−16

Kw 3.4355 3.7681 - - - - - 15.63 -27.26 -23.79 -26.94 0.1331 0.4104
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Figure 11: Plots of the histogram (left) and empirical CDF (right) with the fitted GMu-II distribution for the data II
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Figure 12: Quantile-quantile plot of GMu-II for the data II
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Figure 13: Plots of the profile log- likelihood function of the GMu-II for the data II

6. Conclusions

In this article, we proposed three parameter model with increasing and bathtub failure rate functions called generalized
Mustapha type II distribution (GMu-II). Some mathematical and statistical properties of the GMu-II are discussed,
such as moments, entropy, order statistic, and their extreme value distributions; mean deviations, Bonferroni and
Lorenz curves. Further, we consider the bivariate extension of the model. Parameter estimation of the model was
conducted by the maximum likelihood method and discussed by simulation studies; the standard deviations of the
average estimators decreases as the sample size decreases. Applications of the GMu-II model to two data are provided
for illustration. The GMu-II provides a better fit than some other existing distribution as discussed by the AIC, BIC,
CAIC, and KS test. The model’s performance indicated its capability to study failure data that arise in various fields
of studies, especially those with increasing or bathtub failure rates. We hoped that the new model would be useful in
statistics, computer sciences, engineering, social sciences, and related fields.
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