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Abstract

After studying the mathematical properties of the Double Burr XII model, we present Bayesian and non-Bayesian
estimation for its unknown parameters. Also, we constructed a new statistical test for goodness-of-fit in case of
complete and censored samples. The modified test is developed based on the Nikulin-Rao-Robson statistic for
validation. Simulations are performed for assessing the new test along with nine applications on real data.
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Introduction

The Double Burr XII (DBrXII) distribution was originally proposed by Cordeiro et al. (2018) by defining its
cumulative distribution function (CDF), probability density function (PDF) and hazard rate function (HRF) as a special
case from the Burr XII -G (BrXII -G) family. In this paper, we study the DBrXII distribution with details by studying
some of its properties, introducing four applications to illustrate its importance, estimating its unknown parameters
via Bayesian and classical methods along with a Markov chain Monte Carlo (MCMC) simulation. Finally, a censored
and uncensored validation for it using a developed Nikulin-Rao-Robson (NRR) goodness-of-fit (GOF) test is proposed
with simulations and other applications to real data sets.

The DBrXII distribution was constructed based on the well-known BrXIl model (Burr (1942)). The CDF of the two-
parameter BrXIl model is given by

Gy (W)l ws0) = 1= (1L +w2)7Fz, (1)
where Y = (a,, B,)- The corresponding PDF of (1) is given by
GpW) =0y = @ Bew (1 + we2)~Fa~1, (2)

where both @, > 0 and 8, > 0 are shape parameters. In equation (1), when a, = 1 the BrXII model reduces to the
Lomax (Lx) or Pareto type Il (Pall) model, when 8, = 1 the BrXII model reduces to the log-logistic (LL) model.
Details and other properties about the BrXIlI model can be found in Burr (1942, 1968 and 1973), Burr and Cislak
(1968), Rodriguez (1977) and Tadikamalla (1980).
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Recently, many authors considered the extension of the BrXII model such as Shao (2004) who discussed the maximum
likelihood estimation for the well-known three parameter (3PBrXIl) model. Shao et al. (2004) studied models for
extremes using the extended 3PBrXII model with application to flood frequency analysis. According to Soliman
(2005) the BrXII distribution covers the curve shape characteristics for many other distributions. Silva et al. (2008)
proposed a location-scale (L-S) regression model based on the BrXII distribution, Silva et al. (2010), Silvaetal. (2011)
defined a residual analysis for the log-Burr XII regression model whose empirical model is close to normality.
Paranaiba et al. (2011) proposed and studied the beta BrXII (B BrXIl) model. Paranaiba et al. (2013) proposed and
studied the Kumaraswamy BrXIl (KumBrXIl) model. Al-Saiari et al. (2014) studied the Marshall-Olkin extended
BrXI1l (MOE BrXII) model. Yousof et al. (2018) derived a new family of Burr-Hatke G (BH-G) models and developed
regression model based on it. Cordeiro et al. (2018) proposed and studied the BrXIl G (BrXIl -G) family for first time
ever, the new BrXII -G family was flexible enough to define many other important BrXIl model with many useful
special cases. Altun et al. (2018a) proposed a new useful BrXIl log-location regression model with influence
diagnostics, residual analysis, and different real data application. Altun et al. (2018b) studied the Zografos-
Balakrishnan BrXIl (ZB BrXIl) distribution, developed its corresponding regression model for prediction and
presented many real data applications with the new model. Nasir et al. (2018) presented a new Weibull BrXIl (W
BrXI1) distribution. Korkmaz et al. (2018) studied the odd Lindley BrXIl (OL BrXIl) model along with Bayesian
analysis, classical inference and some new useful characterizations. Yousof et al. (2019a) introduced a new compound
version of BrXII called the zero-truncated Poisson Topp-Leone Burr XII distribution and presented some new useful
characterizations and applications for the new model. Yousof et al. (2019b) proposed new BrXI| lifetime model based
on the Topp-Leone family with regression models, characterizations, and applications. Gad et al. (2019) investigated
the Burr X11-Burr XI1 (BrXII -BrXII) distribution and characterized it along with an application and some statistical
properties. Elsayed and Yousof (2019) extended the BrXIl model and derived the Poisson generalized Burr X1l (PG
BrXI1) distribution with four applications.

Cordeiro et al. (2018) defined the CDF of the Burr XII-G (BrXIl -G) family as

—ay -P1
1
FayppW) =1~ {[Gz(‘”) - 1] + 1} , (3)
where Gf(w) is the baseline CDF. The PDF corresponding to (3) is given by

—ai;y P11 1
1 Gyp W) Gy (W)*1
= 14+]|——-1 e 4
faLﬁyy(W) alﬁl{ + [GE(W) ] } [1—G¢(w)]a1+1 ( )

where gy, (w) = dGy(w)/dx is the baseline PDF. Cordeiro et al. (2018) defined also the Double BrXII (DBrXIl)
with CDF given as

Flo) = 1—{[(1+wa)p —1] 41}, ®)
where 2 = (a4, 8;, @,, B,)- The PDF corresponding to (5) is given by

floW) = a1 fra,fw™ ™ (1 + we2) @bt [1-(4w?2)"F2]

—ap\B1t1’
1
14| ———————1
{ [1—(1+w"‘2)_ﬁ2 ] }

Equation (5) contains as sub-models several generated distributions. For g, =1 ( 8, =1), we can change the first
(second) name of the model by log-logistic (LL). Clearly, the log-logistic-log-logistic (LL-LL) model follows when
Bi= B, = 1. For a; =1 (a,=1), we can change the first (second) name by Pareto type Il (Pa I1). So, for «; =1 and
3, =1, we obtain the Pareto type I1-log-logistic (Pall-LL) model. If g, — oo (or B, = o), the first (second) name
can be changed by Weibull. If we combine these conditions, we can generate 40 special cases of (5). The DBrXII
density and HRF plots for selected parameter values are displayed in Figure 1. From Figure 1(a), we note that the
DBrXIl PDF can be right skewed (a; = 1,8, = 5,a, = 2,8, = 10), (¢, =0.5,8, =5,a, = 2,8, = 2) and (a; =
1,8, =5a, = 2,8, =2), left skewed (¢, = 10,8, =5,a, = 1,8, = 1.2) and symmetric (¢, = 2,8, =5,a, =
2, B, = 2). From Figure 1(b), we note that the DBrXIl HRF can be J-shape (a; =5,8, = 2,a, = 2,5, =1),
decreasing (a; = 2,8, =5,a, = 0.5,8, = 1) and upside down (a; = 3,8, = 1,a, = 0.4, 5, = 1.25).

;-1
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Figure 1: Plots for the DBrXII PDF and HRF.

2. Properties

In this Section, we will present many important mathematical and statistical properties of the new
distribution, and some of these features have been presented with numerical analyses and with some useful
comments. Itis worth noting that there are lot of algebraic derivations that we have neglected to make room
for numerical and applied results. We shall employ approaches that provide numerical answers due to the
theoretical complexity and the fact that the quantile function is not known in a specific closed form. To
make numerical processes easier, pre-made programs like "R" and "MATHCAD" will be used. Numerous
factors have contributed to the recent rise in popularity of numerical methods. The presence of several
mathematically sophisticated distributions and models, as well as the availability of ready-made statistical
programs, are the two most significant. The complexity of models is no longer the main issue facing
researchers in the fields of statistical analysis and mathematical modelling, as statistical programs and
packages have significantly helped to simplify these complexities by offering numerical solutions. This is
a fact that has come to be identified and cannot be ignored.

2.1 Simple linear representation
Let W ~ DBrXl(ay, By, @5, B) as shown in (5) and (6). The CDF in (5) can be expressed as

1-(14wa2)-P214) P
Fow) =1- {1 + [—(1+waz)-ﬁz ] } . )
AW)
Consider the power series
a2 oo a i 1 axth —a,
(1 +q—z) N Zil:o (qz ) (2) ( iy )’ ®)
a1\ % _ Mlaz+iz) (41"
(1 _q_z) = Liz=o0 I+l (ap) (qz) |(|g—;|<1, >0)! 9)
and
a9 & (an\B_(cDBray)
(1 B q_z) - i3=0 (q_z) r(1+iz)r(a—iz) |(|Z—;|<1and a;>0 realnon-integer)' (10)

Applying (8) for A(W) in (7), we obtain
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az+iz

Fap®) =1- 2{[1 21(1 ;W)%B] } 1}13 G

First, using the binomial expansion, the last equation can be expressed as

az+is

Flgw)=1- Z Z e (1(113;2()_)32] S (ll)( ,31){1 [1-(+ Waz)_ﬁz]}—al(i3—i1).

i3=01i1=

(%)

BW)
Second, applying (9) for B(W) in the last equation, we can write

‘@ ) =1- Z?;’iFO Z;izo Uiniz iz) Hﬁ(i,ocl) W), (11)
where
Hﬁ(ra ) [1 - (1 + W“Z) ﬁz] (Lai)
is the CDF of the exp-BrXII model with power parameter iy = (=i, +is)ay + i, and

el S ()

izlr(a1(i3 - i1)) 2
By differentiating (11) and applying (10), we obtain
f@W) = Z&02@) Iiaz.p, 1401 W), (12)
and gia, g,(1+¢) (W) is the BrXIl PDF with parameters [az,ﬁz(l + ¢)] and
—1 J+1
Equation (12) reveals that the DBrXII PDF isa Ilnear comblnatlon of BrXIl PDF.

Tliyiniy) = (D7

2.2 Ordinary moment
The m™ ordinary moment of w is given by

pm = E(W™) = Zﬂro J W™ Glaypra+01 (W)W
=0 0
Then, we obtain
Hnlimeasprae0) = EW™ = T80 00 B(1 + OB (B(1 + ) = 2, 2 4+ 1), (13)
Setting m =1 in (13), we have the mean of W .

2.3 Moment generating function
The moment generating function (M.G.F) of W, say M,,(t) = E[exp(tW)], can be obtained from (12) as

My (t) = Z 00 Mia, g, 1+ (0)-
=0

Next, we require the Meijer G-function defined by
[ o1 r((ﬁZ)j + t)
1 r(1- (ay); — t)

(m,n) (az)1, (a2)P> — 1 -t
G(p ) ( |(ﬁ2)1,“_’ (ﬁz)q - 2\/__11-[ f(L) [ p F((az)j + t) w~tdt,

j=n+1
l_[§)2=m+1 r(l - (182)1' - t)
where v/—1 is the complex unit and L denotes the path of the integration. The Meijer G-function (MjGF) contains
as particular cases many integrals with elementary and special functions. We now assume that a, = m/p, , where
m and 8, are positive integers. This condition is not restrictive since every positive real number can be approximated
by a rational number. We have the following result, which holds for positive integers mand B,,u >—1landp > 0,

m N BaBorm) (M A(m, =), A(By, v + 1)
1(p,M,E,C)|O _fo exp(—pw) w# <1+wl?z) dw = CG(BZHiBZ) o A(ﬁ2,0§ ,
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where
1
“vmHtz
C= 7531
@2m) 2 T (—v)pk+t
and
ay a,+1 a,+2 a, + B,
Aay, ) =, , .
L X 5
We can write (fort < 0)
m
M (t)—ml( 1,—,— —1).
w "5 E

Hence, the M.G.F of W can be expressed in terms of the MjGF as

m m
M, () = m;!l(ol<—t,ﬁ2(1 R e I ERAC +<)]).

2.4 Incomplete moments
The s™ incomplete moment, say I(sy(t) , of the DBrXII distribution is given by

t
Iisw) () = fy w® fF(w)dw.
We can write from equation (12)

q
I (@) = 9(5)] W* Glay p,(1+1 (W) AW,
=0
and then using the lower incomplete gamma function, we obtain

S S
Iswy O (s<azp1+0)) = ;Q@) B (1+ ) [B[t"‘l] ([5’2(1 +{ - P + 1)]

The first incomplete moment of W, denoted by I,y (t), is simply determined from the above equation by setting

s = 1. The first incomplete moment has important applications related to the mean residual life, Bonferroni and
Lorenz curves.

2.5 Residual and reversed residual life functions
The m™ moment of the residual life (RL), is given by

My () = E[W = O™l wst, m=12,..)-
The m™ moment of the residual life of W is given by

1 (o)
mp,(t) = T(ﬂ_)(t)jt w=1) dF(Q)(W)

Then, we can write
( 1)m—i1m! tm—ia

m m
mm(t)l(m<a2[s’2(1+{)) 1— F(t) Z Z Lr(m—i +1) £, (1+ {)B[taq (,82(1 +{)— a'_'a'_z + 1).

i1=0¢ 2

The m™ moment RRL, say

M, () = E[(t = W)™ [|w=t,t50 and m=1,2,...)
Then, M,,, (t) is defined by

1 t
M, (t) = Fa® fo (t —w)™ dF (D).
The m™ moment of the RRL of W
(- 1)11
m(t)l(m<azl32(1+()) F(t) Z Z il (m— Q(z)ﬁz(l +{)B [£@1] (,82(1 +{)— —2 — + 1)

3. Entropies and numerical analysis
Entropy is a measurable physical characteristic and a scientific notion that is frequently connected to a condition of
disorder, unpredictability, or uncertainty. From classical thermodynamics, where it was originally recognized, through
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the microscopic description of nature in statistical physics, to the fundamentals of information theory, the phrase and
concept are utilized in a variety of disciplines. It has numerous applications in physics and chemistry, biological
systems and how they relate to life, cosmology, economics, sociology, weather science, and information systems,
especially the exchange of information. In this Section, we will present all the algebraic derivations of the three types
of entropy. We will also present the humerical analysis needed to highlight the importance of the three types with
some useful comments.

3.1 Rényi entropy
The Rényi entropy of a continuous random variable (RV) W represents a measure of variation of the uncertainty.
Unlike the discrete case, Rényi entropy can be negative for continuous RVs (see Table 1), and so Rényi entropy is
typically only used for discrete RVs. For a continuous RV, the Rényi entropy is defined by

1 [ee)
o) = 1=510g | FO0)? dWlig50 s 6oy
For 6 = 0 we have the Max-entropy (Hartley entropy). By using Equation (6), we can write

1 SR
10 = mlog[ D D, I?(e)l,
| |

i1,i2=0 i3=0
i1+ip21
where
(11(i2—i3 +9)+i1—P
| dx

18P = [ (aBow™ (L + we) 1) [1 — (1 + wo2)~F

The integration I (P) can be easily simplified and expressed as the m™ ordinary moment. Table 1 gives some
values of the Rényi entropy for some parameter values. From Table 1 we note that the Rényi entropy can have a
wide range in the interval (—17.75737, 1.09352).

The Rényi entropy reaches its maximum value when 6 = 0.5,a; = 2,8, =0.5,¢, = 1.2 and S, = 1.5. The
Reényi entropy reaches its minimum value when 6 = 0.5,a; = 1,8, = 1,a, =5 and S, = 5. The Rényi entropy
decreases as 6 increases.

3.2 § -entropy
The §-entropy, say Hg(W) , is defined by

1
A&(W) = 5—1 lOg [1 - j f(W)(S dx] |((5>0 and §#1)’

and then we have

iz

Ll s \
25(W) = 5_1log\1— [ Y Yawt® /|(5>omw.

i1,i2=0 iz=0
ig+ip=1
Table 2 gives some values of §-entropy for some parameter values. From Table 2 we note that the §-entropy is always
positive. The §-entropy reaches co as 0 increases.

3.3 Shannon entropy
The Shannon entropy, say H,;(W),ofaRV W is defined by
H,(X) = lim [Iy(W)] = —E[log f (W)].

Table 3 gives some values of Shannon entropy for some parameter values. From Table 3 we note that the Shannon
entropy is always positive. The Shannon entropy can have a wide range in the interval (0.019911, 1.723628). The
Shannon entropy reaches its minimum value when a; = 2,8, = 0.5,@, = 0.2 and B, = 0.2. The Shannon entropy
reaches its maximum value when @, = 3,8, =1,a, =1 and 8, = 1.

Table 1: Numerical analysis for the Rényi entropy.

0 I,(X)|2 = (2,0.51.2,1.5)
0.5 1.09352

15 0.00843

25 0.00317
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40 0.00129
50 0.00084
100 0.00022
0 I,(X)|2 = (10,10,0.25,2)
0.5 -0.73722
5 -0.01031
30 -0.00019
50 -0.00007
150 -0.00001
0 I,(X)|2 = (1,1,5,5)
0.1 1.646730
0.5 -17.75737
5 -0.065810
30 -0.001030
50 -0.000350
800 -0.000001
0 I,(X))|2 = (1,1,5,5)
0.1 -1.161670
0.5 -2.057420
5 -0.021210
30 -0.000380
50 -0.000130
300 -0.000003
Table 2: Numerical analysis for the 3-entropy.
6 As(X)|2 =(2,0.5,1.2,1.5)
1.5 1.5000
10 4.9500
30 1052.5
50 1)
6 As(X)|2 = (1.6,04,1.5,2)
1.5 1.444327
10 3.712108
30 411.2866
50 1)
6 I,(X)|2 = (0.5,0.3,5,5)
1.5 1.040901
10 0.524755
30 1.042385
50 2.721963
100 36.965389
é I,(X)]2 = (0.2,0.1,3,3)
1.5 14.50
10 5541
30 656.9
50 11376
100 0
Table 3: Numerical analysis for Shannon entropy.
o1 [31 02 Bz Hl(X)
2.0 0.5 0.20 0.20  0.019911
1.5 1.5 0.25 0.10 0.025604
3.0 1.0 1.00 1.00 1.723628
2.5 0.5 0.90 0.60  0.251462
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0.9 0.9 1.10 0.70  0.446482
2.8 0.8 0.20 0.40  0.073508
1.9 1.2 0.50 0.75  0.522898

4. Uncensored Non-Bayesian estimation methods

We will consider the following methods: the maximum likelihood estimation (MLE) method, method of ordinary least
square estimation (OLSE) and the Cramer-Von-Mises estimation (CVME) method. Many authors used different
estimation methods in their work and performed useful simulations and applications such as Ibrahim and Yousof
(2020) (under the transmuted Topp-Leone Weibull lifetime distribution), Ibrahim et al. (2020b) (under the Burr XII
exponentiated exponential model), Salah et al. (2020) (under an expanded Fréchet model), Yousof et al. (2020)
(under the two-parameter xgamma Fréchet distribution), Ibrahim et al. (2021) (under a new three-parameter xgamma
Fréchet distribution) and Alizadeh et al. (2022) (under the odd log-logistic transmuted-G family of distributions).

4.1 The MLE

Maximum MLE is a statistical technique for estimating the parameters of a probability distribution that has been
assumed given some observed data. This is accomplished by maximizing a likelihood function to make the observed
data as probable as possible given the assumed statistical model. The maximum likelihood estimate is in the location
in the parameter space where the likelihood function is maximized. Maximum likelihood is a popular approach for
making statistical inferences since its rationale is clear and adaptable. The derivative test for locating maxima can be
used if the likelihood function is differentiable. When all observed outcomes are assumed to have Normal distributions
with the same variance, the ordinary least squares estimator for a linear regression model maximizes the likelihood.
In some circumstances, the first-order requirements of the likelihood function can be solved analytically. The MLE is
typically equal to maximum a posteriori (MAP) estimation with uniform prior distributions from the standpoint of
Bayesian inference (or a normal prior distribution with a standard deviation of infinity). The MLE is a specific example
of an extremum estimator in frequentist inference, with likelihood as the objective function. As part of the MLE
technique, we represent a collection of observations as a random sample drawn from an unknowable joint probability
distribution that is specified in terms of a number of parameters. Finding the parameters for which the observed data
have the highest joint probability is the aim of maximum likelihood estimation. The log likelihood function (log L)
for the new model is

m m
logL =mlog a; + mlog B, + mloga, + mlogpB, + (a; — 1) Z logWi) + (Bra; — 1) 2 log(&;)

i=1 i=1
+(a, — 1)2 log(—fi_B2 + 1) - (B + 1)2 log [(fiﬁz — 1)0(1 + 1],
i=1 i=1

where w2 +1=¢; and

0
a—logL——+Zlog(Wlm)+ﬁ2210gfl+210g( & ﬁ2+1)

(552—1) log(fﬁz—l)
(ﬁlﬂ); (-1)"+1

m

621 logL = 5 z log [(giﬁz _ 1)a1 + 1],

i=1

m

i} m w2 log w; ~Pa1 az 2 logw;

a—logL_——mlogc+([)’2a1—1) —g (- 1) § Basi . Yo
Z —& P41

l

’

@fﬁz Y= 1) W log w;m
—(ﬁ1+1)z 1
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and

6 -B2 lO ; a B2 lO ; B2 _ 1
5 logl = +cx12:log€l+(a1—1)z:E Bg(f — )Z 18 9(5)(5 )
aﬁz f 2 — 5‘82 1) n 1
Numerical methods can be used in maximizing the above equations.

4.2 The OLSE
Let Fa, g, ay8,) Wim) denote the CDF of DBrXII version and let w; <w, < -+ <w,, bethe m ordered random
sample. The OLSE are obtained by minimizing

2
OLS() = Z[F(abﬁbazfﬁz) (W) — C] ’
i=1

where ¢ = ¢y = ﬁ . Now using CDF of DBrXII we get

OLS(ay, By, @y, By) = i (1 - {[(1 +w)? 1]“1 N 1}_’*1 _ C>2 .

=
The OLSEs of a4, B;, @5, B, can derived by solving
m

Z (1 - [(1 + wl.‘f‘fn)ﬁz - 1]061 +1

-B1
_ C)
i a -P1
B 1
Z (1 - [(1 + Wla;l) ‘- 1] +1 - C) Yp, Wiim, @1, B1, @02, B2) = 0,
-B1 )

Ya1 (Wi:m' aq, ,81; as, .82) = 0;

i=1

i (1 @ +we) —1]" +1

i=1

¢ Yaz Wism, a1, B1, a3, B,) = 0,

and

B ay -P1
Z (1 - [(1 + Wza;q) ‘- 1] +1 - C) Yp, Wiim, @1, B1, @02, B2) = 0,
i=1

where Yo, Wi, @1, B1, @2, B2) = 0F(q, g, ap ) Win) /01, Y, Wi, @1, B, @2, B2) = 0F (4, g, ap. ) W)/ 0B,
Yo, Wi, @1, 1, @2, B2) = 0F(ay gy a5, Wm)/0az and Yp, Wi, @1, B1, @2, B2) = 0F(a, p, az.p,) Wm)/ 0P, are the
first partial derivatives of the CDF of DBrXII distribution with respect to a4, f;, a5, B, respectively.

4.3 The CVME
The CVME are obtained by minimizing

L@ =T +Z[ Flay pricnir) W) = v]

with respect to the parameter a4, B, a, and §, respectlvely, where v = v i) = Py

Leym @) = i (1 - {[(1 + Wl.‘?‘TZn)BZ — 1]“1 + 1}_131 _ U>2.

i=1
The CVMEs are obtained by solving

i (1 - {[(1 +w2 ) - 1]0[1 + 1}_/31 — v) Yo, Wi, @1, B1, @2, 2) = 0,

i=1

i (1 B { (1 + W " 1]a1 + 1}_51 - v) Yg, Wim, @1, b1, @3, B2) = 0,

i=1
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i (1 - {[(1 + Wi?rzn)ﬁz - 1]“1 + 1}_31 - 17) Yo, Wim, @1, B1, @2, B2) = 0,

i=1

and

N AN S
Z 1- {[(1 + Wi:rzn) - 1] + 1} -V Yﬁz (Wi:m' aq, ,31; s, .82) =0.
i=1
5. Uncensored Bayesian estimation
Assume the gamma priors of the parameters a4, 58,, a5, 5, are of the following forms
P17 (@) ~ Gamma(¢y, Y1), m" P (B) ~ Gamma(6,, 1),

§¢3 ¢3)(a2) ~ Gamma(¢s,P3) and n4¢4’w4) (B,) ~ Gamma(¢,,,),

where, Gamma (¢;, ¥;)|(i=1,2,3.4) Stands for standard gamma model with shape parameter ¢; and scale parameter ;.

We assume that the parameters are independently distributed. The joint prior distribution w(Q2) is given by

¢’1 b2 ¢3 ¢4 ¢1—1 ¢2—1 ¢3—1 ¢4—1
2

Moo @ P2 B2) = oS o5 T () T () explanti + ot + G + Bl
The posterior distribution n(al, By, s, B2|§) of the parameters is defined as
”(apﬁp az:.32|£) « likelihood(ay, By, ay, Bz |x) X (o) (ay, By, a3, B2)-

Under squared error loss, the Bayesian estimators of «;, B;, a, and g, are the means of their marginal posteriors.
It is not possible to get the Bayesian estimates through the above formulae. So, the numerical approximation is needed.
We propose the use of MCMC techniques namely Gibbs sampler and Metropolis Hastings (M-H) algorithm. Since
the conditional posteriors m;(- | -,,-,x) of the parameters «,, f;, a, and B, cannot be obtained in any standard
forms, therefore, using a hybrid MCMC for drawing samples from the joint posterior of the parameters is suggested.
the full conditional posteriors of a4, 3;, @, and B, are given by

1y (| x) pitoyfr yd g g1
1@l D) X S TG T TG

—[Ki exp[—(a, ¥, + Bi, + a3 + Br1hs)]
i=1

7, (.| gy o 0 0 B U g
2P1l(ay,az,B2) X F(p) () () T(py)'

—[Ki exp[—(ay P, + Bi, + ay s + Br,)],
i=1

T3 (2, | x) « (28 ?2 ¢3 (28 m+¢3 1
3(®21(a;,81,82) X r(¢1)F(¢2)F(¢3)F @) "

and

—[Ki exp[—(a ¥, + B, + ayPs + BoPa)],
i=1

W 9P P P g
T Bal o D X TS T TR T TK expl—(aythy + By + s + Frihy)]

where

_ﬁ a;—1
Boai-1 [—(1 +w?) T+ 1]

a, B1+1°
{[(1 +w)” -1+ 1}
The simulation algorithm is given as:
I.  Provide the initial values, say a,, 8, a, and B, thenati™ stage,

1. Using M-H algorithm, generate [a,] ) ~ my ([051](1)|{/31 Ty lazl iy B2l x)

K; = Wial_l(l + Wiaz)

I11. Using M-H algorithm, generate [B;] ;) ~ 7, ([,/31](1)|{0,1 -y lazl B2l ) x)
IV. Using M-H algorithm, generate [a,] ;) ~ 73 ([az](l)|{0,1 -y Balg—1y Bl X )

V. Using M-H algorithm, generate [8,];) ~ my ([ﬁz](l)|{0,1 limay Balg—nylazl ) X )
VI. Repeat steps 2 —5, M = 100000 times to get the samples of size M from the corresponding posteriors of
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interest. Obtain the Bayesian estimates of «4,3;, @, and f, using the following formulae
M M

o __ 1t Z 7 __ 1 2 g
1Bayesian ~ - M, 1 »Flpayesian ~ g - M, 1

j=1+M, j=1+M,
— __1 M 1 M [l
B,

[J] N _
aZBayesian T M-M, j=1+My %2 and 'BZBayesian T M-My ST=1+Mo

respectively, where M,(= 50000) is the burn-in period of the generated MCMC.

6. Simulations for comparing the uncensored Bayesian non-Bayesian estimation methods
The MCMC simulation studies are performed for assessing and comparing the performance of the estimators. This
assessment is performed using the average values (AVs) of estimates and the mean squared errors (MSES). First, we
generated 1000 samples of the DBrXII distribution, where n =50, 100, 200 and 500 choosing
a B a B
I 2 05 1.2 15

II 1.2 15 09 2
The AVs and MSEs are obtained and listed in Tables 4, 5, 6 and 7. Based on Tables 4, 5, 6 and 7 we note that all

methods performed well but the Bayesian method is the best for all sample sizes.

Table 4: AVs and MSEs for m=50.

Bayesian MLE OLS CVM
w=2 1.99209 2.00325 1.95615 2.16442
(0.04776) (0.07030) (0.18154) (0.63099)
B:1=0.5 0.50419 0.50408 0.50421 0.50390
(0.00490) (0.00461) (0.00735) (0.00591)
=12 1.21097 1.20653 1.13861 1.14755
(0.01889) (0.03018) (0.23325) (0.06981)
B=1.5 1.49463 1.50338 1.49828 1.50752
(0.02081) (0.02120) (0.02383) (0.02337)
w=1.2 1.20149 1.22260 1.20758 1.22193
(0.01798) (0.02358) (0.06857) (0.07330)
Bi=1.5 1.58934 1.50721 1.54003 1.51822
(0.06366) (0.07226) (0.08517) (0.06940)
2=0.9 0.88050 0.91284 0.90818 0.90799
(0.00709) (0.00797) (0.01174) (0.00984)
B2=2 2.08309 1.98324 2.03585 2.00733
(0.07041) (0.09195) (0.09730) (0.09185)

Table 5: AVs and MSEs for m=100.

Bayesian MLE OLS CVM
w=2 1.94481 2.00817 1.97742 1.98372
(0.03092) (0.04178) (0.09006) (0.09382)
B:=0.5 0.49713 0.50365 0.49976 0.50239
(0.00250) (0.00261) (0.00294) (0.00302)
=12 1.17579 1.20646 1.14954 1.18303
(0.00984) (0.01726) (0.08246) (0.04404)
B=1.5 1.50445 1.50483 1.50092 1.50442
(0.01336) (0.01204) (0.01167) (0.01131)
w=1.2 1.17109 1.20035 1.19442 1.21642
(0.01024) (0.01111) (0.03250) (0.03860)
Bi=1.5 1.39801 1.50832 1.52894 1.50547
(0.03050) (0.03436) (0.03868) (0.03474)
2=0.9 0.90986 0.90048 0.90066 0.90511
(0.00398) (0.00390) (0.00580) (0.00469)
B=2 1.88030 1.99896 2.02740 2.00009
(0.04235) (0.04469) (0.04573) (0.04318)

Table 6: AVs and MSEs for m=200.

Bayesian MLE OLS CVM
=2 1.92878 2.00270 1.99917 1.99324
(0.01848) (0.02013) (0.05335) (0.05156)
B:=0.5 0.47360 0.50099 0.50142 0.50070
(0.00186) (0.00124) (0.00151) (0.00152)
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=12 1.16534 1.20404 1.17707 1.18015
(0.00623) (0.00828) (0.01158) (0.01123)
B=1.5 1.45561 1.50034 1.50348 1.50164
(0.00527) (0.00586) (0.00582) (0.00578)
=12 1.19933 1.20343 1.20715 1.21240
(0.00476) (0.00568) (0.01796) (0.01757)
Bi=1.5 1.48944 1.50379 1.50644 1.49742
(0.01050) (0.01578) (0.01912) (0.01611)
2=0.9 0.87792 0.90186) 0.90370 0.90408
(0.00179) (0.00197) (0.00303) (0.00229)
B2=2 2.01909 1.99830 2.00498 1.99354
(0.01594) (0.02158) (0.02294) (0.02024)
Table 7: AVs and MSEs for m=500.

Bayesian MLE OLS CVvM
w=2 2.02876 2.00289 1.99057 1.999986
(0.00736) (0.00856) (0.02392) (0.02538)
B:=0.5 0.49749 0.50093 0.49914 0.50009
(0.00052) (0.00052) (0.00062) (0.00064)
=12 1.23210 1.20253 1.18356 1.18828
(0.00327) (0.00359) (0.00516) (0.00491)
B=1.5 1.48453 1.50133 1.49756 1.50024
(0.00224) (0.00245) (0.00218) (0.00231)
=12 1.22057 1.19975 1.20634 1.20424
(0.00236) (0.00209) (0.00743) (0.00813)
Bi=1.5 1.52407 1.50313 1.49908 1.50289
(0.00486) (0.00632) (0.00666) (0.00737)
2=0.9 0.90584 0.89985 0.90261 0.90134
(0.00074) (0.00074) (0.00109) (0.00115)
B2=2 2.02922 2.00135 1.99823 2.00326
(0.00720) (0.00867) (0.00807) (0.00861)

7. Four applications for comparing uncensored Bayesian non-Bayesian methods

Four examples with real data sets are introduced for comparing Bayesian and classical estimators. We consider the
Cramér-Von Mises (W*) and the Anderson-Darling (A*) statistic. The 1% data is the breaking stress data (see [29]).
The 2" data presents survival times of guinea pigs see [30]. The 3" data are taxes revenue data see [20-21]. The 4™
data called leukemia data see [ 28]. For data sets I, 111 and 1V, all methods perform well (see Table 8, Table 9, Table
10 and Table 11). For data set 11, the CVM is the best method with W*= 0.12782 and A*= 0.75961, however, all
other methods preform well (see Table 9).

Table 8: Estimators, W* and A* for the 1% data set.

Method ol Bl o2 Bz W* A*
ML 7.90802 11.08759 0.44455 0.57891 0.06830 0.39622
Bayesian 9.18110 17.49517 0.37689 0.60070 0.06415 0.39325
OLS 8.80655 16.73587 0.39450 0.59011 0.06464 0.39325
CVM 8.27016 19.51729 0.43308 0.55734 0.06363 0.39346
Table 9: Estimators, W* and A* for the 2" data set.
Method o1 B o2 B2 W* A*
ML 18.12813 0.6688842 0.10887 0.79877 0.15900 0.93678
Bayesian 3.63440 50.69499 0.71415 0.30328 0.12794 0.76187
OoLS 8.91991 13.11140 0.25657 0.72190 0.15064 0.88425
CVM 3.26713 51.00056 0.86068 0.26390 0.12782 0.75961
Table 10: Estimators, W* and A* for the 3" data set.
Method o1 B1 o2 Bz W* A*
ML 6.64754 0.71808 7.54324 0.04047 0.05501 0.33235
Bayesian 6.55043 0.59917 6.96374 0.04552 0.04680 0.29956
OoLS 7.44767 0.44835 7.86524 0.04194 0.04392 0.31066
CVM 7.70330 0.44299 0.75780 0.04347 0.04469 0.31757
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Table 11: Estimators, W* and A* for the 4" data set.

Method oLt Bs 02 B2 W* A*
ML 3.91956 127.23786 0.31499 0.18368 0.09489 0.63921
Bayesian 6.06638 244.81409 0.16265 0.33376 0.09423 0.64148
OLS 8.74562 7.10599 0.08498 0.68958 0.09788 0.65752
CVvM 5.49470 244.95433 0.16053 0.30677 0.09459 0.63855

8. Four uncensored applications for comparing the competitive models

For all data sets, we compare the DBrXII distribution, with BrXII distributions as listed below. We consider the well-
known GOF statistics: the Akaike Information Criterion (C,;) , Bayesian Criterion (CBayes) , Hannan-Quinn Criterion
(CHQ) , Consistent Akaike Criterion (C.,) . Tables 12, 13, 14 and 15 give the MLEs, standard errors (SEs), confidence
interval (CL) with Cy;, Cgayes» Crg and Cco Values for the four data set respectively. Based on the values in Tables
12, 13, 14 and 15 DBrXII model has the best fits as compared to BrXII other models in the four applications with small
values for Ca;, Cpayes » Cug and Cca. Other useful data sets are given in Aryal and Yousof (2017), Aryal et al.
(2017), Ali et al. (2021a,b), Alizadeh et al. (2018, 2020a,b), Almazah et al. (2021), Chesneau and Yousof (2021),
Elgohari and Yousof (2020a,b,c), Elgohari et al. (2021), Hamedani et al. (2017, 2018,2019,2022), Karamikabir et al.
(2019), Korkmaz et al. (2018a,2018b,2020), Merovci et al. (2017,2020), Nascimento et al. (2019). Figures 2-5 gives
the plots for data set I, I, 111 and IV respectively.

Table 12: MLEs, SEs and CL with Cy;, Cpayes s Cug and Cc, for the data set I.
Model i,é\,(’l\,ﬁ,}’/\ CAI! CBayesv CHQ and CCA
B XII --,-,5.941,0.187,-- 382.94, 388.15, 383.06, 385.05
-, (1.279) ,(0.044),--
--,--, (3.43,8.45),(0.10,0.27),--

MOB X -~ 1.192,4.834,838.73 305.78, 313.61, 306.03, 308.96
-, (0.952),(4.896),(229.34)
-, 0,3.06),(0,14.43),(389.22,1288.24)
TLB XII -~ 1.350,1.061,13.728 32352, 331.35, 323.77, 326.70

-, 0.378) ,(0.384) ,(8.400)
-, (0.61,2.09), (0.31,1.81) (0, 30.19)
KwB Xl 48.103,79.516 ,0.351 ,2.730, -- 303.76, 314.20, 304.18, 308.00
(19.348) ,(58.186) ,(0.098) ,(1.077) ,--
(10.18,86.03) ,(0,193.56) ,(0.16,0.54), (0.62,4.84),-
BBXII 359.683 ,260.097 ,0.175 ,1.123 ,-- 305.64, 316.06, 306.06, 309.85
(57.941) ,(132.213),(0.013),(0.243),-
(246.1,473.2), (0.96,519.2), (0.14,0.20), (0.65,1.6),-
BE BXII 0.381, 11.949, 0.937, 33.402, 1.705 305.82, 318.84, 306.46, 311.09
(0.078), (4.635), (0.267), (6.287),(0.478)
(0.23,0.53) ,(2.86,21), (0.41,1.5), (21,45), (0.8,2.6)
FKw BXII 0.542,4.223, 5.313, 0.411, 4.152 305.50, 318.55, 306.14, 310.80
(0.137), (1.882), (2.318), (0.497), (1.995)
(0.3,0.8), (0.53,7.9), (0.9,9), (0, 1.7), (0.2,8)
ZB BXII 123.101,--,0.368, 139.247,-- 302.96, 310.78, 303.21, 306.13
(243.011), -, (0.343), (318.546),--
(0, 599.40), --,(0, 1.04), (0, 763.59),--
DBrXII 7.91,11.09, 0.445, 0.58, -- 290.55, 300.97, 290.97, 294.77
(15.8), (30.64), (1.04), (0.79), --
(0,39.9), (0, 71), (0, 3.3), (0, 2.16), --

Table 13: MLEs, SEs and CL With Cy;, Cpayess Cug and Ceafor the data set II.
Model 10.687 Cas Chayess Cug and Cea
B Xl --,--, 3.102, 0.465, -- 209.60, 214.15, 209.77, 211.40
--,--, (0.538), (0.077),--
--,--, (2.05,4.16), (0.31,0.62),--
MO BXII --,--, 2.259,1.533, 6.760 209.74, 216.56, 210.09, 212.44
--,--, (0.864), (0.907), (4.587)
--,--, (0.57,3.95), (0,3.31), (0, 15.75)
TL BXII --,--, 2.393,0.458,1.796 211.80, 218.63, 212.15, 214.52
--,--, (0.907), (0.244),(0.915)
--,--, (0.62,4.17),(0, 0.94),(0.002,3.59)
TL BXII --,--, 2.393,0.458,1.796 211.80, 218.63, 212.15, 214.52
--,--, (0.907), (0.244),(0.915)
--,--, (0.62,4.17),(0, 0.94),(0.002,3.59)
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Kw BXII 14.105,7.424, 0.525, 2.274,-- 208.76, 217.86, 209.36, 212.38
(10.805), (11.850), (0.279),(0.990),--
(0, 35.28), (0.30.65), (0, 1.07),(0.33, 4.21),--
FBB XII 0.621, 0.549,3.838, 1.381, 1.665 206.80, 218.20, 207.71, 211.30
(0.541), (1.011), (2.785), (2.312), (0.436)
(0,1.7), (0, 2.5), (0,9.3),(0,5.9), (0.8,4.5)
FKwB XII 0.558,0.308, 3.999, 2.131, 1.475 206.50, 217.90, 207.41, 211.00
(0.442), (0.314), (2.082), (1.833), (0.361)
(0, 1.4), (0, 0.9), (0, 3.1), (0, 5.7), (0.76, 2.2)
DBrXIl 3.329, 1.465, 0.872, 0.688, -- 205.44, 214.55, 206.04, 209.07
(2.83), (1.05), (0.8), (0.3), --
(0, 8.9), (0, 3.6), (0, 2.47), (1.3), --
Table 14: MLEs, SEs and CL with Cal Cpayes s Cug and Cc, for the data set 111.
Model A6.aB7 Cat+ Cpayes» Cug and Ccp
B XIl --,--, 5.615, 0.072,-- 518.46, 522.62, 518.67, 520.08
--,--, (15.048), (0.194),--
--,--, (0, 35.11), (0, 0.45),--
MOB XII --,--, 8.017,0.419, 70.359 387.22, 389.38, 387.66, 389.68
--,--, (22.083), (0.312), (63.831)
--,--, (0, 51.29), (0, 1.03), (0, 195.47)
TLB XII --,--,91.320, 0.012, 141.073 385.94, 392.18, 386.38, 388.40
--,--, (15.071), (0.002), (70.028)
--,--, (61.78,120.86) (0.008, 0.02) (3.82,278.33)
KwB XII 18.130, 6.857, 10.694, 0.081,-- 385.58, 393.90, 386.32, 388.86
(3.689), (1.035), (1.166), (0.012),--
(10.89,25.36), (4.83,8.89), (8.41,12.98), (0.06,0.10),--
BB XII 26.725,9.756, 27.364, 0.020,-- 385.56, 394.10, 386.30, 389.10
(9.465), (2.781), (12.351), (0.007),--
(8.17,45.27), (4.31,15.21), (3.16,51.57), (0.006,0.03),--
BEB XII 2.924,2.911, 3.270, 12.486, 0.371 387.04,397.42, 388.17, 391.09
(0.564), (0.549), (1.251), (6.938), (0.788)
(1.82,4.03), (1.83,3.99), (0.82,5.72), (0, 26.08), (0, 1.92)
FBB XII 30.441,0.584, 1.089, 5.166, 7.862 386.74, 397.14, 387.87, 390.84
(91.745), (1.064), (1.021), (8.268), (15.036)
(0, 210.26), (0, 2.67), (0, 3.09), (0, 21.37), (0, 37.33)
FKwB XII 12.878, 1.225, 1.665, 1.411, 3.732 386.96, 397.36, 388.09, 391.06
(3.442), (0.131), (0.034), (0.088), (1.172)
(6.1,19.6), (0.9,1.48), (1.56,1.73), (1.24,1.58), (1.4,6.03)
DBrXIl 6.65,0.72,7.5,0.04,-- 386.57, 394.88, 387.31, 389.81
(1.74), (0.44), (4.95), (0.03)--
(3.2,10), (0, 1.6), (9, 17.3), (0, 0.1), --
Table 15: MLEs, SEs and CL With Ca;, Cpayes s Cng a@nd Cc, for the data set IV.
Model 10,687 Cats Chayes s Cug and Cea
B XIl --,--,58.711,0.006,-- 328.20, 331.19, 328.60, 329.19
--,--, (42.382), (0.004),--
--,-, (0, 141.78), (0, 0.01),--
MOB XII --,--, 11.838,0.078, 12.251 315.54,320.01, 316.37, 317.04
--,--, (4.368), (0.013), (7.770)
--,--, (0, 141.78), (0, 0.01), (0, 27.48)
TLB XII --,--,0.281, 1.882 ,50.215 316.26, 320.73, 317.09, 317.76
--,--, (0.288), (2.402), (176.50)
--,--, (0, 0.85), (0, 6.59), (0, 396.16)
KwB XII 9.201, 36.428, 0.242,0.941,-- 317.36, 323.30, 318.79, 319.34
(10.060), (35.650), (0.167), (1.045),--
(0, 28.912), (0, 106.30), (0, 0.57), (0, 2.99),--
BB XII 96.104, 52.121, 0.104, 1.227,-- 316.46, 322.45, 317.89, 318.47
(41.201), (33.490), (0.023), (0.326),--
(15.4,176.8),(0, 117.8), (0.6, 0.15), (0.59,1.9),--
BEB XII 0.087, 5.007, 1.561, 31.270, 0.318 317.58, 325.06, 319.80, 320.09
(0.077), (3.851), (0.012), (12.940), (0.034)
(0,0.3), (0, 12.6), (1.5, 1.6), (5.9, 56.6), (0.3,0.4)
FBB XII 15.194, 32.048, 0.233, 0.581, 21.855 317.86, 325.34, 320.08, 320.36
(11.58), (9.867), (0.091), (0.067), (35.548)
(0, 37.8), (12.7,51.4), (0.05,0.4), (0.45,0.7), (0, 91.5)
FKwB XlI 14.732, 15.285, 0.293, 0.839, 0.034 317.76, 325.21, 319.98, 320.26

(12.390), (18.868), (0.215), (0.854), (0.075)
(0,39.02), (0, 52.27), (0, 0.71), (0, 2.51), (0, 0.18)
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ZBB XIlI 41.973, --,0.157, 44.263, -- 313.86, 318.35, 314.39, 315.36
(38.787), --, (0.082), (47.648), --
(0,117.99), --, (0, 0.32,) (0, 137.65),-
DBrXIl 2.94,56.347,0.514, 0.117, -- 315.13, 321.12, 316.56, 317.15
1.19, 78.45,0.39, 0.12, --
(0.5,5,.3), (0, 212), (0, 1.3), (0, 0.36), --
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Figure 2: Plots for data set I.
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Figure 3: Plots for data set 11.
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Figure 4: Plots for data set I11.
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Figure 5: Plots for data set V.
8. Censored Validation
Generally, there are several criteria that may be applied to determine if a statistical model is legitimate. For the
uncensored data, the most popular tests are those based on the empirical functions, such as the likelihood ratio test,
Akaike information criteria, Bayesian information criteria, or chi-square tests. These tests include Kolmogorov-
Smirnov, Anderson-Darling, and other statistics. The NRR statistic, based on the MLEs on initial non-grouped data,

The Double Burr Type XII Model: Censored and Uncensored Validation Using a New Nikulin-Rao-Robson Goodness-of-Fit Test with Bayesian and Non-Bayesian Estimation Methods 918



Pak.j.stat.oper.res. VVol.18 No. 4 2022 pp 901- 927 DOI: http://dx.doi.org/10.18187/pjsor.v18i4.3600

is of particular importance among these goodness-of-fit evaluations. This Nikulin (1973a,b,c) and Rao and Robson
(1974) statistic restores information lost during data grouping and has a chi-square distribution. However, the
existence of censorship renders all the conventional goodness-of-fit tests invalid and leads to several practical issues.
As a result, several researchers offered various revisions of current goodness-of-fit tests.

A modified NRR statistic was created by Bagdonavicius and Nikulin (2011) for statistical distributions with unknown
parameters and right censoring. This version of the NRR statistic may be used to fit data from domains like survival
analysis, dependability, and others where data is often censored since it recovers all the information lost during data
regrouping. In this study, we will provide modified NRR chi-square goodness-of-fit test statistics for fitting full and
right-censored data to the suggested model, following Nikulin (1973a,b,c) and Rao and Robson (1974). The NRR
statistic is a well-known variant of the traditional chi-squared tests in the situation of full data. It is based on differences
between two estimators of the probability for falling into grouping intervals. One estimate is based on the empirical
distribution function, and the other on maximum likelihood estimates of the tested model's unobserved parameters
using ungrouped initial data, (see Nikulin (1973a,b,c), and Rao and Robson (1974) for more details and see Goual and
Yousof (2020a), Goual et al. (2019), Goual and Yousof (2020b), Yousof et al. (2021a,b) for more relevant applications
under uncensored schemes).

8.1 Maximum likelihood estimation
LetT ~DBrXII (ay, B1, @z, B>), for a certain individual (i), lifetime (T7;;) and censorship time (V;;) where Ty;; and V7
are independent R.V.s. and the data consists of m independent observations, where

tili=1,2.,my = min(Ty, Vi)
Let the model of V; does not depend on Tj;; which have the unknown parameters (case of non-informative
censorship), the likelihood function (L(t, a4, By, @3, B,)) isgiven as
m

Lty B @ ) = | [ 490 (0 S, i (80 (
i=1
Then, the loglikelihood function is

t=tta b =—fy nfue[(+ez)”-1]")

i=1
m In(ay) + In(By) + In(ay) + In( B) + (@, — 1) In(t; ) + (Bray — D In(1+¢,2)
Z ' oy - Din[1 - (1+62) "] - ln{1 +[(a+e) - 1]“1} ’

S5il=
e 1{T[i]5‘7[i]}>

or

¢ =m[ln(a,) + In(py) + In(az) + In(B)] + (a; — 1) Z In(t;m)
[ieF]

+(ﬂ2a1—1)z ln(1+t“2)+(al—1)z 1—(1+t )ﬁz]

[i€F] [i€F]

= mfre @) -1 - a Y mfi [y 1],
fiec]

[ieF]
where C is the set of censored observations, r is the number of failures. Then the score functions can be derived as

ﬂzl_z ln(ti,m)+/?22[n(1+t )+Zln[1—(1+t )BZ]

- (ier] =
e o o)

[ieF) [(1 n tfrzn)ﬁz e
[(1+t$2n)52_1]a1 ln{1+[ (1+¢22)7 - ]}
N N

;—;:%—Z l{1+[(1+t )/32_ ]al}

[iec]
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. Z Baayti 2 In(t;) (¢2 + 1) [(1 + tL._m)ﬁ2 - 1]
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8.2 Simulation
We can simulate the DBrXII model where M = 10000, m = 30,100,250,500 and «a; = 2.5,8;, = 0.9,a, =
1.5,8, = 2.0 . The AVs and their mean MSEs are presented in Table 16 from which one can note that the MLEs are
convergent.

Table 16: AVs and their MSESs (censored data).

M=10000 m=30 100 250 500
ol 2.5438 2.5374 25163  2.5048
MSE 0.0477 0.0433 0.0298  0.0021
B 0.9446 0.9307 0.9183  0.9051
MSE 0.0428 0.0278 0.0164  0.0030
02 1.5481 1533 15127  1.5049
MSE 0.0439 0.0324 0.0209  0.0027
B2 2.1847 2.0943 2.0477  2.0115

MSE 0.0449 0.0267  0.0195  0.0017

9. The developed Nikulin-Rao-Robson GOF test for censored validation

9.1 Nikulin-Rao-Robson statistic NRR GOF test (Y?)
To test the hypothesis Hy,; (see Nikulin (1973a,b,c), Rao and Robson (1974), Goual and Yousof (2020), Goual et al.

(2012,2020)) we have

H[O] : Pr{Ti = t} = F(Oll‘ﬁl‘az‘ﬁz) (t)l[tER. (61,02,+,05)T]"
For defining the NRR test, consider that Tj;y, Tpz), -+, Ty are grouped in p subintervals which are mutually disjoint
I]- =]a(]-)_1; a(]-)],j = 1,2, e P
The limits a;y of the intervals I; are obtained such that

0]
P BBl s = | S pranin Ot
, aG-1)
where a(j)|(}-=14_.p_1) =F1 (ﬁ) Letv; = (v, v,,-+,v,)" be a frequencies vector which obtained via the grouping

.....

YZ(gm) = 22 (@) + m (@) (1@0) - 1(@2)) €(@0),
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where 1(Q,, ) is the estimated Fisher information matrix (FIM), where
22(2) = (ul —mpy(ay, Br, @y, B2) Uy —mpy(ay, By, az, B,) U —mpr(ay, By, a’z'ﬁz))T
" \/mp1(a1'ﬁ1'a2'ﬁz) \/mpz(al'ﬁl'az'ﬁz) \/mpr(a’pﬁpaz'ﬁz)
and J(£2) is the FIM but for the grouped data, where J(2) = B(2)TB(£2), and

1 dpn(ay, By, @z Br)
B(al.ﬁl,aZ,ﬁz)kh:l,z,...,r)=[ e

AT

ll(al'ﬂl'az'ﬁz); ’
1y, By, @3, By) = lz(%ﬂ_uaz,ﬂz),

ls(al' .81' ay, .82)

rXs

then

)

with
B(ay, By, 3, ) L @By )
A1, P1, A2, P2)|(i=1,2,-,p and k=1,-,5) — 3P\, P11, A3, B2
' Pw a'u pXs
where

Ly (ay, By ety BN
L(ali Bl: az;ﬁz) = Ll(al’ﬂl'abﬂz);

Ls(ay, 1, az, B2)
and

p
_ Vi 0
Li(ay, By, az,B,) = Z o 20, p(i)(a1..81, ay, Bs).

i=1
The Y?2 statistic follows a chi-square y2 distribution with (o — 1) degrees of freedom.

9.2 NRR. statistic for the DBrXII model
For testing H|,) that a certain R.S. belongs to the DBrXII model, the Y2 (NRR. statistic) is calculated for M = 10000
simulated samples with sizes m = 30,50,100,250,500 and & = 0.02,0.05,0.01,0.1 then, the average humber of the
non-rejection of H, is calculated, when Y2 < xZ(p — 1). Table 17 show that the values of the empirical levels
calculated are very close to those of their corresponding theoretical levels.

Table 17: Empirical levels and corresponding theoretical levels.

M=10000 £=0.02 0.0500 0.0100 0.100
m; =30 0.9848 0.9536 0.9930 0.903
m, =50 0.9840 0.9533 0.9925 0.903
ms; =100 0.9819 0.9521 0.9918 0.902
m, =250 0.9808 0.9504 0.9905 0.901
ms =500 0.9802 0.9502 0.9903 0.900

So, we conclude that the modified test provides a good fit to the DBrXII model.

9.3 Real data modeling (Taxes revenue data)

Using the BB algorithm, we compute the MLEs and since [Y? = 12.51847] < [x&,5(7 — 1) = 12.59159], we say
that taxes revenue data arise appropriately from the DBrXII model.

10. Validation of DBrXII model in case of censored data via Y,

Consider the modified NRR statistic (Y(fn)) presented above. Suppose Hpop: Tj;; ~ DBrXII, where survival function

1S (e praa ) () = 1= Flay g0, (0)- Then Q(T, @y, By, @2, B2) = —~InSia, ., (7) Where
E, = Z [Q(a(x) A Th'Q) - Q(a(K—l)'Q)]'

(h:zh>a(K))

Under such choice of intervals, we have a constant value of

E
eK=7ka.
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10.1 Simulation study
We calculate NRR statistic (Y(fn)) for M =10000, m =30, 100, 250, 500 and & =0.02, 0.05, 0.01, 0.1,
and after calculating the mean of the number of no rejections of Hgwhen Y(,, < xZ(p) (see Table 18), we find that
the ¢; levels of the Y(fn) synchronize with those corresponding to the theoretical ¢; levels of the chi-square model at
degrees of freedom = p.
Table 18: Empirical and theoretical levels.

M=10000 &=0.02 0.05 0.01 0.1

m; =30  0.9836 0.9525 0.9921 0.9027

m, =100  0.9829 0.9514 0.9915 0.9020

m; =250 0.9818 0.9507 0.9907 0.9006

m, =500 0.9805 0.9501 0.9902 0.9003
From Table 19 we can say that the empirical ¢; of the Y7, synchronize with those corresponding theoretical ¢;
which means that the proposed GOF test can properly fit censored data drawn from the DBrXII model.

10.2 Application to real censored data (times of failure data)

Considered the data of [37]. The data are "0.4680, 0.7250, 0.8380, 0.8530, 0.9650, 1.1390, 1.1420, 1.3040, 1.3170,
1.4270, 1.5540, 1.6580, 1.764, 1.7760, 1.990, 2.010, 2.2240, 2.2790%, 2.2440*, 2.2860*" (* censored). Then, the value
of the test statistic Y2, =9.31854, on the other hand, the critical value is [YZ, =9.31854] <

[x205(4) = 9.48773]. Hence, the times of failure data is compatible with the DBrXII model.

13. Conclusions

In this work, we studied the four-parameter DBrXII model. First, we examined its PDF and HRF. It is noted that the
DBrXII PDF can be right skewed, left skewed and symmetric and its HRF can be J-shape, decreasing and upside
down. Some of its mathematical properties are presented. However other works may be allocated to characterize this
model. We presented the Bayesian and non-Bayesian estimation for its unknown parameters along with MCMC
simulations. Further future works may be allocated for using other estimation methods. We constructed a modified
test for goodness-of-fit in case of completeness and censorship. The new test is formed based on the Nikulin-Rao-
Robson statistic for validation. Simulations are performed for assessing the new test in case of completeness and
censorship. Nine applications on real data are presented, four of them for comparing methods, four for comparing
models however the final one is employed for NRR validation. For data set | (breaking stress data), 111 (taxes revenue
data) and 1V (leukemia data), all methods perform well. For data set Il (survival times), the Cramer-Von-Mises
method is the best method however all other methods perform well. Below some important results and findings of this
work:

1. Depending of (5), for B, =1 ( 8, =1), we can replace the 1°t (2"%) name of the model by log-logistic (Log-L). The
log-logistic-log-logistic (LogL-LogL) model obtained when g;= 8, = 1. For a; =1 (a,=1), we can change the
15 (2"%) name by Pareto type 11 (Pa I1). So, for a; =1and B, =1, we obtain the Pareto type I1-log-logistic (Pall-
LogL) model. If B, - o (or B, — o ), the 1% (2") name can be changed by Weibull. If we combine these
conditions, we can get fourteen special cases of (5).

2. The PDF of the DBrXII PDF is a linear combination of BrXII PDF (see Subsection 2.1).

3. The DBrXII PDF can be right skewed (¢, = 1,8, =5,a, = 2,8, = 10), (@¢; = 0.5,8, =5,a, = 2,5, = 2) and
(¢, =1,B, =5,a, = 2,8, = 2), left skewed (a; = 10,8, =5,a, = 1,5, = 1.2) and symmetric (a; = 2,5, =
5 a, = 2,8, = 2) (see Figure 1 the left panel).

The DBrXII HRF can be can be “decreasing (@, = 2,8, = 5,a, = 0.5,8, = 1)”, “reversed J-shape (¢; = 1,5, =
1,a, =0.25,8, = 1)?, “constant (a; = 1.25,8;, = 2,a, = 1,5, = 0.25)”, “upside down (a¢; = 3,8, =1, a, =
0.4, B, = 1.25)” and “J-shape (a; = 5,8, = 2,a, = 2,8, = 1)” (see Figure 1 the right panel).

4. The Rényi entropy can have a wide range in the interval (—17.75737, 1.09352) and reaches its maximum value
whend = 0.5,a;, = 2,8, = 0.5,a, = 1.2, B, = 1.5 (see Subsection 3.1). The Rényi entropy reaches its minimum
value when 6 = 0.5,a; = 1,8, = 1,a, =5, B, = 5 and decreases as 8 increases (see Subsection 3.1).

5. The §-entropy is always positive and reaches o as 6 increases (see Subsection 3.2).

6. The Shannon entropy is always positive and can range in the interval (0.019911, 1.723628) (see Subsection 3.2).
The Shannon entropy reaches its minimum value when a; = 2,8, = 0.5,a, = 0.2, 8, = 0.2 and reaches its
maximum value when a; = 3,8, = 1,a, = 1, B, = 1 (see Subsection 3.3).

7. Based on the simulation studies we note that all estimation methods perform well but the Bayesian method is the
best for all sample sizes (see Tables 4, 5, 6 and 7).
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8. For data sets I, 111 and 1V, all methods perform well (see Table 8, Table 9, Table 10 and Table 11). For data set
11, the CVM is the best method with W*= 0.12782 and A*= 0.75961, however, all other methods preform well
(see Table 9).

9. Based on the values in Tables 12, 13, 14 and 15, the DBrXII model has the best fits as compared to BrXII other
models in the four applications with small values for C,;, Cpayess Cug and Cea.

10. The MLEs (uncensored case) for the DBrXII model is convergent using the Barzilai-Borwein (BB) algorithm (see
Table 16).

11. The MLEs (censored case) for the DBrXII model is convergent (see Table 17).

12. The values of the empirical levels calculated are very close to those of their corresponding theoretical levels. So,
we conclude that the modified GOF test provides a good fit to the DBrXII distribution (see Table 18).

13. The empirical significance levels of the Y(fn) synchronize with those corresponding theoretical ones which means
that the proposed GOF test can properly fit censored data drawn from the DBrXII model. The same result is proofed
via an application to real data set (see Subsection 12.2).

To model count real-life data, it is suggested that a novel discrete DBrXIl model be presented; for more details, see
Aboraya et al. (2020,2022), Chesneau et al. (2022), Yousof et al. (2021c), and Ibrahim et al. (2022b). Additionally,
using the Bagdonaviius-Nikulin, see, for example, Ibrahim et al. (2019, 2020a), Goual et al. (2019, 2020), Yadav et
al. (2020 and 2022), Goual and Yousof (2020), Ibrahim et al. (2022a), Aidi et al. (2021) and Yousof et al. (2022)).
Following Altun et al. (2018a,b) and Yousof et al. (2019) and under the DBrXI| distribution, some new developments
of certain new regression models for modelling censored data sets. The generalized stress-strength parameter under
the DBrXII model could be inferred using Bayesian and classical methods due to Saber and Yousof (2022) as well as
reliability estimation for the remained stress-strength model under the DBrXII distribution due to Saber et al.
(2022a,b). A single acceptance sampling strategy with its associated application in quality and risk decisions might be
given in the manner of Ahmed and Yousof (2022) and Ahmed et al. (2022a,b). Finally, one might follow Mohamed
etal. (2022a,b,c) and Salem et al. (2022) to find applications for more insurance studies under some time series models
such as Autoregressive models, moving average models, autoregressive moving average modes and autoregressive
integrated moving average models. Many bivariate versions can be derived following Al-babtain et al. (2020a,b) and
Mansour et al. (2020a-f), Shehata and Yousof (2022), Shehata et al. (2021,2022), Yousof et al. (2020) and Ali et al
(2022b). In fact, the new distribution can be generalized using many new families, and these generalizations will have
their importance in statistical and mathematical modeling processes and applications in many applied fields (see Ali
etal. (2022a), Altun et al. (2020) and Chesneau and Yousof (2022)).
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