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Abstract 

 

A new G family of probability distributions called the type I quasi  Lambert family is defined and applied for 

modeling real lifetime data. Some new bivariate type G families using "Farlie-Gumbel-Morgenstern copula", 

"modified Farlie-Gumbel-Morgenstern copula", "Clayton copula" and "Renyi's entropy copula" are derived. Three 

characterizations of the new family are presented. Some of its statistical properties are derived and studied. The 

maximum likelihood estimation, maximum product spacing estimation, least squares estimation, Anderson-Darling 
estimation and Cramer-von Mises estimation methods are used for estimating the unknown parameters. Graphical 

assessments under the five different estimation methods are introduced. Based on these assessments, all estimation 

methods perform well. Finally, an application to illustrate the importance and flexibility of the new family is 

proposed. 

 

Keywords: Characterizations; Copula; Maximum Product Spacing; Maximum Likelihood; Anderson-Darling 

Estimation. 
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1. Introduction 

In mathematics, the "Lambert function", also called the "omega function" or "product logarithm", is a multivalued 

function, namely the branches of the inverse relation of the function  𝑓(𝑊) = 𝑊 exp(𝑊)  where  𝑊  is any complex 

number and  𝑒𝑥𝑝(𝑊)  is the exponential function. In this paper, we define and study a new G family called the type I 

quasi Lambert (TIQL) family. The cumulative distribution function (CDF) of the TIQL family can be expressed as 

𝐹𝜱(𝑥) = 𝑊𝜱(𝑥) exp[𝑊𝜱(𝑥)] |𝑥∈𝑅 , (1) 

where 𝜱 = (𝛼, 𝜳)|𝛼>0 refers to the parameter vector of the TIQL family. The argument 𝑊𝜱(𝑥) is defined as  

𝑊𝜱(𝑥) = (
2−𝐺𝜳(𝑥)

𝐺𝜳(𝑥)
)

𝛼

,  whereas the argument  𝑊𝜱(𝑥) is defined as  𝑊𝜱(𝑥) = 1 − 𝑊𝜱(𝑥).  The fnction  𝐺𝜳(𝑥)  is the 

CDF of any baseline model and  𝜳  refers to the parameter vector. For  𝛼 = 1 , the TIQL family reduces to the reduced 

TIQL (RTIQL) family. The corresponding probability density function (PDF) can be expressed as 

𝑓𝜱(𝑥) = 2𝛼
𝑔𝚿(𝑥)

𝐺𝜳(𝑥)𝛼+1
[2 − 𝐺𝜳(𝑥)]

𝛼−1
[𝑊𝜱(𝑥) − 1] 𝑒𝑥𝑝[𝑊𝜱(𝑥)] |𝑥∈𝑅 , 

(2) 

where 𝑔𝜳(𝑥) = 𝑑𝐺𝜳(𝑥)/𝑑𝑥  refers to the PDF of the baseline model. Many well-known generators can be cited such 

as beta-G (Eugene et al. (2002)), transmuted exponentiated generalized-G (Yousof et al. (2015)), generalized odd 

generalized exponential family by Alizadeh et al. (2017), exponentiated generalized-G Poisson family (Aryal and 

Yousof (2017)), transmuted Topp-Leone G family (Yousof et al. (2017a)), beta Weibull-G family (Yousof et al. 
(2017b)), Topp-Leone odd log-logistic family (Brito et al. (2017)), Burr XII system of densities (Cordeiro et al. 

(2018)), transmuted Weibull-G family (Alizadeh et al. (2018)), generalized odd Weibull generated family (Korkmaz 
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et al. (2018a)), exponential Lindley odd log-logistic G family (Korkmaz et al. (2018b)), Marshall-Olkin generalized-

G Poisson family (Korkmaz et al. (2018c)) and The Odd Power Lindley Generator (Korkmaz et al. (2019)) and odd 

Nadarajah-Haghighi family (Nascimento et al. (2019)), generalized transmuted Poisson-G family (Yousof et al. 

(2018a)), Marshall-Olkin generalized-G family (Yousof et al. (2018b)), Burr-Hatke G family (Yousof et al. (2018c)), 

Type I general exponential class of distributions (Hamedani et al. (2017)), new extended G family (Hamedani et al. 
(2018)), Type II general exponential class of distributions (Hamedani et al. (2019)), exponential Lindley odd log-

logistic-G family (Korkmaz et al. (2018b)), dd power Lindley generator of probability distributions (Korkmaz et al. 

(2019)), Weibull generalized G family (Yousof et al. (2018d)), Weibull-G Poisson family (Yousof et al. (2020)) and 

Weibull Topp-Leone generated family (Karamikabir et al. (2020)). Using the power series, the CDF in (1) can be 

written as 

𝐹𝜱(𝑥) = 𝑊𝜱(𝑥) ∑
1

𝑖!

∞

𝑖=0

𝑊𝜱(𝑥)𝑖 
 

(3) 

If  |
𝑠1

𝑠2
| < 1 and  𝑠3 > 0 is a real non-integer, the following power series holds  

(1 −
𝑠1

𝑠2

)
𝑠3−1

= ∑
(−1)𝑗𝛤(𝑠3)

𝑗! 𝛤(𝑠3 − 𝑗)

∞

𝑗=0

(
𝑠1

𝑠2

)
𝑗

.  
 

(4) 

Applying (4) to (3) we have 

𝐹𝜱(𝑥) = ∑(−1)𝑗
2𝛼(1+𝑗)𝛤(1 + 𝑖)

𝑖! 𝑗! 𝛤(1 + 𝑖 + 𝑗)

∞

𝑖,𝑗=0

[1 −
1
2𝐺𝜳(𝑥)]

𝛼(1+𝑗)

𝐺𝜳(𝑥)𝛼(1+𝑗)
. 

(5) 

Applying (4) again to the term  [1 −
1

2
𝐺𝜳(𝑥)]

𝛼(1+𝑗)

,  Equation (5) becomes  

𝐹𝜱(𝑥) = ∑ 𝑐𝑗,𝜅

∞

𝑗,𝜅=0

 𝛱𝜅∗(𝑥;𝜳)|𝜅∗=𝜅−𝛼(1+𝑗), 
(7) 

where  

𝑐𝑗,𝜅 = ∑2𝛼(1+𝑗)−𝜅

∞

𝑖=0

(−1)𝑗+𝜅𝛤(1 + 𝑖)𝛤(1 + 𝛼(1 + 𝑗))

𝑖! 𝑗! 𝜅! 𝛤(1 + 𝑖 + 𝑗)𝛤(1 + 𝛼(1 + 𝑗) − 𝜅)
 

and  𝛱𝜅∗(𝑥;𝜳)  is the CDF of the exp-G family with power parameter 𝜅∗ > 0. Similarly, the PDF of the TIQL family 

can also be expressed as a mixture of exp-G PDFs as  

𝑓𝜱(𝑥) = ∑ 𝑐𝑗,𝜅

∞

𝑗,𝜅=0

 𝜋𝜅∗(𝑥;𝜳), 
(7) 

where  𝜋𝜅∗(𝑥;𝜳) = 𝑑𝛱𝜅∗(𝑥;𝜳)/𝑑𝑥  s the PDF of the exp-G family with power parameter  𝜅∗ > 0.  
2. Properties 

2.1 Moments 

Let  𝑌𝜅∗  be a r.v. having density  𝜋𝜅∗(𝑥;𝜳) . The  𝑟 th ordinary moment of  𝑋 , say  𝜇𝑟,𝑋
′  , follows from (7) as  

𝜇𝑟,𝑋
′ = E(𝑋𝑟) = ∑ 𝑐𝑗,𝜅

∞

𝑗,𝜅=0

 E(𝑌𝜅∗
𝑟 ), 

(8) 

where  

E(𝑌𝜍
𝑟) = 𝜍 ∫ 𝑥𝑟

∞

−∞

 𝑔𝜳(𝑥)𝐺𝜳(𝑥)𝜍−1 𝑑𝑥, 

can be evaluated numerically in terms of the baseline qf  𝑄𝐺(𝑢) = 𝐺−1(𝑢)  as  

E(𝑌𝜍
𝑟) = 𝜍 ∫ 𝑢𝜍−1

1

0

  [𝑄𝐺(𝑢)]𝑟𝑑𝑢. 

Setting  𝑟 = 1  in (8) gives the mean of  𝑋. 

 

2.2 Incomplete moments 

The  𝑟 th incomplete moment of 𝑋 is defined by  𝑚𝑟,𝑋(𝑦) = ∫ 𝑥𝑟𝑦

−∞
𝑓𝜱(𝑥)𝑑𝑥 . We can write from (7)  
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𝑚𝑟,𝑋(𝑦) = ∑ 𝑐𝑗,𝜅

∞

𝑗,𝜅=0

 𝑚𝑟,𝜅∗(𝑦), 
 

(9) 

 

where  

𝑚𝑟,𝛼(𝑦) = ∫ 𝑢𝛼−1
𝐺(𝑦)

0

 [𝑄𝐺(𝑢)]𝑟𝑑𝑢. 
(10) 

The integral  𝑚𝑟,𝛼(𝑦)  can be determined analytically for special models with closed-form expressions for  𝑄𝐺(𝑢)  or 

computed at least numerically for most baseline distributions. Two important applications of the first incomplete 

moment are related to the mean deviations about the mean and median and to the Bonferroni and Lorenz curves. 
 

2.3 Moment generating functions 

The moment generating function (mgf) of  𝑋 , say  𝑀(𝑡) =  𝐸 (exp(𝑡𝑋)) , is obtained from (7) as  

𝑀𝑋(𝑡) = ∑ 𝑐𝑗,𝜅

∞

𝑗,𝜅=0

 𝑀𝜅∗(𝑡), 
 

(11) 

 

where  𝑀𝜍(𝑡)  is the generating function of  𝑌𝜍  given by  

𝑀𝜍(𝑡) = 𝜍 ∫ 𝑒𝑥𝑝(𝑡𝑥)
∞

−∞

𝑔𝜳(𝑥)[𝐺𝜳(𝑥)]
𝜍−1

𝑑𝑥 = 𝜍 ∫ 𝑢𝜍−1
1

0

𝑒𝑥𝑝[ 𝑡𝑄𝐺(𝑢; 𝛼)]𝑑𝑢. 
 

(12) 

The last two integrals can be computed numerically for most parent distributions. 

3. Copula 

In probability theory, a copula is a multivariate CDF for which the marginal probability distribution of each variable 

is uniform on the interval  [0,1] . copulas are used to describe the dependence between random variables. In this 

Section, we derive some new bivariate TIQL (B-TIQL) type distributions using Farlie Gumbel Morgenstern (FGM) 

copula (see Morgenstern (1956), Gumbel (1958), Gumbel (1960), Johnson and Kotz (1975) and Johnson and Kotz 

(1977)), modified FGM copula (see Rodriguez-Lallena and Ubeda-Flores (2004)), Clayton copula and Renyi's entropy 

(Pougaza and Djafari (2011)). The Multivariate TIQL (M-TIQL) type is also presented. However, future works may 

be allocated to the study of these new models. First, we consider the joint CDF of the FGM family, where  

𝐶𝜍(𝜏, 𝑢) = 𝜏𝑢(1 + 𝜍𝜏⋅𝑢⋅)|𝜏⋅=1−𝜏,𝑢⋅=1−𝑢 , 

and the marginal function  𝜏 = 𝐹1 ,  𝑢 = 𝐹2 ,  𝜍  ∈ (−1,1)  is a dependence parameter and for every  𝜏, 𝑢 ∈ (0,1) ,  

𝐶(𝜏, 0) = 𝐶(0, 𝑢) = 0  which is "grounded minimum" and  𝐶(𝜏, 1) = 𝜏  and  𝐶(1, 𝑢) = 𝑢  which is "grounded 

maximum",  𝐶(𝜏1, 𝑢1) + 𝐶(𝜏2, 𝑢2) − 𝐶(𝜏1, 𝑢2) − 𝐶(𝜏2, 𝑢1) ≥ 0 .   

 
3.1 Via FGM family 

A copula is continuous in  𝜏  and  𝑢 ; actually, it satisfies the stronger Lipschitz condition, where 

|𝐶(𝜏2, 𝑢2) − 𝐶(𝜏1, 𝑢1)| ≤ |𝜏2 − 𝜏1| + |𝑢2 − 𝑢1|. 
For  0 ≤ 𝜏1 ≤ 𝜏2 ≤ 1  and  0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1,  we have  

𝑃𝑟(𝜏1 ≤ 𝜏 ≤ 𝜏2, 𝑢1 ≤ 𝑢 ≤ 𝑢2) = 𝐶(𝜏1, 𝑢1) + 𝐶(𝜏2, 𝑢2) − 𝐶(𝜏1, 𝑢2) − 𝐶(𝜏2, 𝑢1) ≥ 0. 
Then, setting  𝜏 ⋅ = 1 − 𝐹𝜱1

(𝑥1)|[𝜏⋅=(1−𝜏)∈(0,1)]  and  𝑢⋅ = 1 − 𝐹𝜱2
(𝑥2)|[𝑢⋅=(1−𝑢)∈(0,1)],  we can esaily get the get the 

joint CDF of the TIQL using the FGM family  

𝐶𝜍(𝜏, 𝑢) = 𝑊𝜱1
(𝜏)𝑊𝜱2

(𝑢) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏) + 𝑊𝜱2

(𝑢)] 

× [1 + 𝜍 (
{1 − 𝑊𝜱1

(𝜏) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏)]}

{1 − 𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)]}
)]. 

The joint PDF can then be derived from  𝑐𝜍(𝜏, 𝑢) = 1 +  𝜍  𝜏⋅𝑢⋅|(𝜏⋅=1−2𝜏 and 𝑢⋅=1−2𝑢)  or from  𝑐𝜍(𝜏, 𝑢) = 𝑓(𝑥1, 𝑥2) =

𝐶(𝐹1, 𝐹2)𝑓1𝑓2 .  
 

3.2 Via modified FGM family 

The modified FGM copula is defined as 𝐶𝜍(𝜏, 𝑢) = 𝜏𝑢[1 + 𝜍𝐵(𝜏)𝐴(𝑢)]|𝜍∈(−1,1) or 𝐶𝜍(𝜏, 𝑢) = 𝜏𝑢 +

𝜍𝓠(𝜏)𝓠(𝑢)|𝜍∈(−1,1) , where 𝓠(𝜏) = 𝜏𝐵(𝜏), and  𝓠(𝑢) = 𝑢𝐴(𝑢) and  𝐵(𝜏)  and  𝐴(𝑢)  are two continuous functions 

on  (0,1)  with  𝐵(0) = 𝐵(1) = 𝐴(0) = 𝐴(1) = 0.   
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Type I: Consider the following functional form for both  𝑩(𝝉)  and  𝑨(𝒖) . Then, the B-TIQL-FGM (Type I) can be 

derived from  

𝐶𝜍(𝜏, 𝑢) = 𝑊𝜱1
(𝜏)𝑊𝜱2

(𝑢) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏) + 𝑊𝜱2

(𝑢)] 

+𝜍 (
𝑊𝜱1

(𝜏) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏)] {1 − 𝑊𝜱1

(𝜏) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏)]}

𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)] {1 − 𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)]}
) |𝜍∈(−1,1). 

 

Type II: Let  𝑩(𝝉)  and  𝑨(𝒖)  be two functional form satisfying all the conditions stated earlier where  

𝑩(𝝉)⋅|(𝝇𝟏>𝟎) = 𝝉𝝇𝟏(𝟏 − 𝝉)𝟏−𝝇𝟏  and  𝑨(𝒖)⋅|(𝝇𝟐>𝟎) = 𝒖𝝇𝟐(𝟏 − 𝒖)𝟏−𝝇𝟐 .  Then, the corresponding B-TIQL-FGM (Type 

II) can be derived from  𝑪𝝇,𝝇𝟏,𝝇𝟐
(𝝉, 𝒖) = 𝝉𝒖[𝟏 + 𝝇𝑩(𝝉)⋅ 𝑨(𝒖)⋅].  Thus 

𝐶𝜍,𝜍1,𝜍2
(𝜏, 𝑢) = 𝑊𝜱1

(𝜏)𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱1

(𝜏) + 𝑊𝜱2
(𝑢)] 

×

[
 
 
 
 
 

1 + 𝜍

(

 
 
 

{𝑊𝜱1
(𝜏) 𝑒𝑥𝑝[𝑊𝜱1

(𝜏)]}
𝜍1

{𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)]}
𝜍2

(1 − 𝑊𝜱1
(𝜏) 𝑒𝑥𝑝[𝑊𝜱1

(𝜏)])
1−𝜍1

(1 − 𝑊𝜱2
(𝜏) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)])
1−𝜍2

)

 
 
 

]
 
 
 
 
 

 

 

Type III: Let  𝓦(𝝉)⋅ = 𝝉𝐥𝐨𝐠(𝟏 + 𝝉⋅)  and  𝓦(𝒖)⋅ = 𝒖𝐥𝐨𝐠(𝟏 + 𝒖⋅) for all 𝑩(𝝉) and 𝑨(𝒖) which satisfies all the 

conditions stated earlier. In this case, one can also derive a closed form expression for the associated CDF of the B-

TIQL-FGM (Type III) from 𝑪𝝇(𝝉, 𝒖) = 𝝉𝒖[𝟏 + 𝝇𝓦(𝝉)⋅𝓦(𝒖)⋅]. Then 

𝐶𝜍(𝜏, 𝑢) = 𝑊𝜱1
(𝜏)𝑊𝜱2

(𝑢) 𝑒𝑥𝑝[𝑊𝜱1
(𝜏) + 𝑊𝜱2

(𝑢)] 

×

[
 
 
 
 
 

1 + 𝜍

(

  
 

𝑊𝜱1
(𝜏) 𝑒𝑥𝑝[𝑊𝜱1

(𝜏)]

𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)]

[log(2 − 𝑊𝜱1
(𝜏) 𝑒𝑥𝑝[𝑊𝜱1

(𝜏)])] 

[log(2 − 𝑊𝜱2
(𝑢) 𝑒𝑥𝑝[𝑊𝜱2

(𝑢)])])

  
 

]
 
 
 
 
 

. 

 

3.3 Via Clayton copula 

The Clayton copula can be considered as  𝐶(𝑢1, 𝑢2) = [(1/𝑢1)
𝜍 + (1/𝑢2)

𝜍 − 1]−𝜍−1
|𝜍∈(0,∞). Setting 𝑢1 = 𝐹𝜱1

(𝜏)  and 

𝑢2 = 𝐹𝜱2
(𝑥), the B-TIQL type can be derived from  𝐶(𝑢1, 𝑢2) = 𝐶(𝐹𝜱1

(𝑢1), 𝐹𝜱1
(𝑢2)).  Then 

𝐶(𝑢1, 𝑢2) = {𝑊𝜱1
(𝑢1)

−𝜍 𝑒𝑥𝑝[−𝜍𝑊𝜱1
(𝑢1)] + 𝑊𝜱2

(𝑢)−𝜍 𝑒𝑥𝑝[−𝜍𝑊𝜱2
(𝑢)] − 1}

−𝜍−1

|𝜍∈(0,∞) 

Similarly, the M-TIQL can be derived from  

𝐶(𝑢𝑖) = (∑𝑢𝑖
−𝜍

𝑑

𝑖=1

+ 1 − 𝑑)

−𝜍−1

. 

 

3.4 Via Renyi's entropy 

Using the theorem of Pougaza and Djafari (2011) where  𝐶(𝜏, 𝑢) = 𝑥2𝜏 + 𝑥1𝑢 − 𝑥1𝑥2 , the associated B-TIQL can be 

derived from 

𝐶(𝜏, 𝑢) = 𝑥2𝑊𝜱1
(𝑥1)𝑒𝑥𝑝[𝑊𝜱1

(𝑥1)] + 𝑥1𝑊𝜱2
(𝑥2) 𝑒𝑥𝑝[𝑊𝜱2

(𝑥2)] − 𝑥1𝑥2. 

4. Characterizations of the TIQL Distribution 

To understand the behavior of the data obtained through a given process, we need to be able to describe this behavior 

via its approximate probability law. This, however, requires establishing conditions which govern the required 

probability law. In other words, we need to have certain conditions under which we may be able to recover the 

probability law of the data. So, characterization of a distribution is important in applied sciences, where an investigator 

is vitally interested to find out if their model follows the selected distribution. Therefore, the investigator relies on 
conditions under which their model would follow a specified distribution. A probability distribution can be 

characterized in different directions one of which is based on the truncated moments. This type of characterization 

initiated by Galambos and Kotz (1978) and followed by other authors such as Kotz and Shanbhag (1980), Glänzel et 

al. (1984), Glänzel (1987), Glänzel and Hamedani (2001) and Kim and Jeon (2013), to name a few. For example, Kim 

and Jeon (2013) proposed a credibility theory based on the truncation of the loss data to estimate conditional mean 
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loss for a given risk function. It should also be mentioned that characterization results are mathematically challenging 

and elegant. In this section, we present three characterizations of the TIQL distribution based on:  (𝑖)  conditional 

expectation (truncated moment) of certain function of a random variable;  (𝑖𝑖)  the reversed hazard function and  (𝑖𝑖𝑖)  

in terms of the conditional expectation of a function of a random variable. 
 

4.1 Characterizations based on two truncated moments 

This subsection deals with the characterizations of TIQL distribution in terms of a simple relationship between two 

truncated moments. We will employ Theorem 1 of Glänzel (1987) given in the Appendix A.  As shown in Glänzel 

(1990), this characterization is stable in the sense of weak convergence. 

Proposition 4.1.1.  Let  𝑋  is be a continuous random variable and let   

𝓠1(𝑥) = 𝑒𝑥𝑝[𝑊𝜱(𝑥) − 1] |𝑥∈𝑅 , 

and  

𝓠2(𝑥) = 𝓠1(𝑥)[𝑊𝜱(𝑥) − 1]|𝑥∈𝑅 , 

 Then  𝑋  has PDF (2) if and only if the function  𝜉  defined in Theorem 1 is of the form 

 

𝜉(𝑥) =
2

3
[𝑊𝜱(𝑥) − 1]|𝑥∈𝑅 

Proof.  If  𝑋  has PDF  (2), then 

[1 − 𝐹𝜱(𝑥)]𝐸[𝓠1(𝑋) | 𝑋 ≥ 𝑥] =
1

2
[𝑊𝜱(𝑥) − 1]

2
|𝑥∈𝑅 , 

and 

[1 − 𝐹𝜱(𝑥)]𝐸[𝓠2(𝑋) | 𝑋 ≥ 𝑥] =
1

3
[𝑊𝜱(𝑥) − 1]

3
|𝑥∈𝑅 , 

and hence 

𝜉(𝑥) =
2

3
[𝑊𝜱(𝑥) − 1]|𝑥∈𝑅 . 

We also have 

𝜉(𝑥)𝓠1(𝑥) − 𝓠2(𝑥) =
1

3
𝓠1(𝑥)𝑊𝜱(𝑥) < 0|𝑥∈𝑅 . 

Conversely, if  𝜉(𝑥)  is of the above form, then 

𝑠′(𝑥) =
𝜉′(𝑥)𝓠1(𝑥)

𝜉(𝑥)𝓠1(𝑥) − 𝓠2(𝑥)
= −4𝛼

𝑔𝛹(𝑥) (2 − 𝐺𝛹(𝑥))
𝛼−1

𝐺𝛹(𝑥)𝛼+1𝑊𝜱(𝑥)
|𝑥∈𝑅 , 

and 

𝑠(𝑥) = −2 log𝑊
𝜱

(𝑥)|𝑥∈𝑅 ,. 

Now, according to Theorem 1,  𝑋  has density (2) .  
 

Corollary 4.1.1.  Suppose  𝑋  is a continuous random variable. Let  𝓠1(𝑥)  be as in Proposition 4.1.1. Then  𝑋   has 

density (2) if and only if there exist functions  𝓠2(𝑥)  and  𝜉  defined in Theorem 1 for which the following first order 

differential equation holds 

𝜉′(𝑥)𝓠1(𝑥)

𝜉(𝑥)𝓠1(𝑥) − 𝓠2(𝑥)
= −4𝛼

𝑔𝛹(𝑥)[2 − 𝐺𝛹(𝑥)]
𝛼−1

𝐺𝛹(𝑥)𝛼+1𝑊𝜱(𝑥)
|𝑥∈𝑅 . 

Corollary 4.1.2. The differential equation in Corollary 4.1.1 has the following general solution 

𝜉(𝑥) = 𝑊𝜱(𝑥)−1 [∫
4𝛼𝑔𝛹(𝑥) (2 − 𝐺𝛹(𝑥))

𝛼−1

𝐺𝛹(𝑥)𝛼+1
[𝓠1(𝑥)]−1𝓠2(𝑥) + 𝐷], 

where 𝐷 is a constant. A set of functions satisfying the above differential equation is given in Proposition 4.1.1 with  

𝐷 = 0.  Clearly, there are other triplets  (𝓠1(𝑥),𝓠2(𝑥), 𝜉(𝑥))  satisfying the conditions of Theorem 1. 

 

4.2 Characterization based on reverse hazard function 

The reverse hazard function,  𝑟𝐹𝜱
 , of a twice differentiable distribution function,  𝐹  , is defined as 
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𝑟𝐹𝜱
(𝑥) =

𝑓𝜱(𝑥)

𝐹𝜱(𝑥)
,   𝑥 ∈ support of 𝐹. 

In this subsection we present a characterizations of the TIQL which is not of the above trivial form.  

Proposition 4.2.1.  Suppose  𝑋  is a continuous random variable.  Then,   𝑋   has density (2) if and only if its hazard 

function  𝑟𝐹(𝑥)  satisfies the following first order differential equation 

 

𝑟𝐹𝜱
′ (𝑥) −

𝑔′
𝛹
(𝑥)

𝑔𝛹(𝑥)
𝑟𝐹𝜱

(𝑥) = 2𝛼𝑔𝛹(𝑥)
𝑑

𝑑𝑥
{
[2 − 𝐺𝛹(𝑥)]

𝛼
− 𝐺𝛹(𝑥)𝛼

𝐺𝛹(𝑥)𝛼+1[2 − 𝐺𝛹(𝑥)]
} |𝑥∈𝑅 . 

Proof.  Is straightforward and hence omitted. 
 

4.3 Characterizations based on the Conditional Expectation of a Function of the Random Variable 

Hamedani (2013) established the following proposition which can be used to characterize the TIQL distribution. 

Proposition 4.3.1.   Suppose   𝑋:𝛺 → (𝑎, 𝑏) is a continuous random variable with CDF   𝐹 .  If 𝜓(𝑥) is a differentiable 

function on  (𝑎, 𝑏)  with   𝑙𝑖𝑚𝑥→𝑏− 𝜓 (𝑥) = 1 .  Then, for   𝛿 ≠ 1, 

𝐸[𝜓(𝑋) | 𝑋 ≤ 𝑥] = 𝛿𝜓(𝑥)|𝑥∈(𝑎,𝑏) , 

implies that 

𝜓(𝑥) = [𝐹𝜱(𝑥)]
1
𝛿
−1

|𝑥∈(𝑎,𝑏) . 

 

Remark 4.3.1.  Let  (𝑎, 𝑏) = 𝑅,  𝜓(𝑥) = (
2−𝐺𝛹(𝑥)

𝐺𝛹(𝑥)
) 𝑒𝑥𝑝 [

1

𝛼
−

1

𝛼
𝑊𝜱(𝑥)] and  𝛿 =

𝛼

𝛼+1
  , then Proposition 4.3.1 presents 

a characterization of TIQL distribution. Clearly, there are other suitable functions than the one we employed for 

simplicity. 

5. Different methods of estimation 

In this section, five different estimation methods have been derived to estimate the parameters of the TIQL distribution. 

The details are given below. 

 

5.1 Maximum likelihood estimation 

In this subsection, we derive estimations of the parameters  𝛼  and  𝚽  via method of the maximum likelihood (ML) 

estimation. Let  𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample from the TIQL distribution with observed values  𝑥1, 𝑥2, … , 𝑥𝑛 . 

Then, the log-likelihood function is given by 

ℓ(𝜱) = 𝑛 log 2 + 𝑛 log 𝛼 + ∑log 𝑔𝜳 (𝑥𝑖)

𝑛

𝑖=1

− (𝛼 + 1)∑log𝐺𝜳 (𝑥𝑖)

𝑛

𝑖=1

 

+(𝛼 − 1)∑ log[2 − 𝐺𝜳(𝑥𝑖)]

𝑛

𝑖=1

+ ∑log[𝑊𝜱(𝑥) − 1]

𝑛

𝑖=1

+ 𝑛 − ∑𝑊𝜱(𝑥𝑖)

𝑛

𝑖=1

. 

Then, the ML estimates (MLEs) of  𝛼  and  𝜳 , say  �̂�  and  𝜳 , are obtained by maximizing  ℓ(𝚽)  with respect to  

𝜱. Mathematically, this is equivalent to solve the following non-linear equation with respect to the parameters:  
𝜕

𝜕𝛼
ℓ(𝜱) = 0 and  

𝜕

𝜕𝜳
ℓ(𝜱) = 0. 

Hence, the numerical methods are needed to obtain the MLEs. Under mild regularity conditions, one can use the 

multivariate normal distribution with mean  𝜇 = (𝛼, 𝜳)  and covariance matrix  𝐼−1 , where  𝐼  denotes the following  

(𝑝 + 1) × (𝑝 + 1)  observed information matrix of real numbers to construct confidence intervals or likelihood ratio 

test on the parameters. The components of  𝐼  can be requested from the authors when it is needed. 

 

5.2 Maximum product spacing estimation 

The maximum product spacing (MPS) method has been introduced by Cheng and Amin (1979). It is based on the idea 

that differences (spacings) between the values of the CDF at consecutive data points should be identically distributed. 

Let  𝑋(1), 𝑋(2), … , 𝑋(𝑛)  be the ordered statistics from the TIQL distribution with sample size  𝑛 , and  𝑥(1), 𝑥(2), … , 𝑥(𝑛)  

be the ordered observed values. Then, we define the MPS function by 
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𝑀𝑃𝑆(𝜱) =
1

𝑛 + 1
∑

𝑛+1

𝑖=1

log[𝐹(𝑥(𝑖),𝜱) − 𝐹(𝑥(𝑖−1),𝜱)], 

where  𝐹(𝑥, 𝜱) = 𝐹𝜱(𝑥) . The MPS estimates (MPSEs), say  �̂�𝑀𝑃𝑆  and  𝜳𝑀𝑃𝑆 , can be obtained by minimizing  

𝑀𝑃𝑆(𝜱)  with respect to  𝜱 . They are also given as the simultaneous solution of the following non-linear equations:  

𝜕𝑀𝑃𝑆(𝜱)

𝜕𝛼
=

1

𝑛 + 1
∑

𝑛+1

𝑖=1

[
𝐹𝛼

′(𝑥(𝑖),𝜱) − 𝐹𝛼
′(𝑥(𝑖−1), 𝜱)

𝐹(𝑥(𝑖),𝜱) − 𝐹(𝑥(𝑖−1),𝜱)
] = 0 

and  

𝜕𝑀𝑃𝑆(𝜱)

𝜕𝜳
=

1

𝑛 + 1
∑

𝑛+1

𝑖=1

[
𝐹𝜳

′ (𝑥(𝑖),𝜱) − 𝐹𝜳
′ (𝑥(𝑖−1),𝜱)

𝐹(𝑥(𝑖),𝜱) − 𝐹(𝑥(𝑖−1),𝜱)
] = 0, 

where  𝐹𝛼
′(𝑥,𝜱) =

𝜕

𝜕𝛼
𝐹(𝑥, 𝜱)  and  𝐹𝜳

′ (𝑥,𝜱) =
𝜕

𝜕𝜳
𝐹(𝑥, 𝜱) . 

5.3 Least squares estimation 

The least square estimates (LSEs)  �̂�𝐿𝑆𝐸  and  𝜳𝐿𝑆𝐸  of  𝛼  and  𝜳 , respectively, are obtained by minimizing the 

following function:  

𝐿𝑆𝐸(𝜱) = ∑

𝑛

𝑖=1

(𝐹(𝑥(𝑖),𝜱) − 𝐸[𝐹(𝑋(𝑖) ,𝜱)])
2
, 

with respect to  𝜱 , where  𝐸[𝐹(𝑋(𝑖),𝜱)] = 𝑖/(𝑛 + 1)  for  𝑖 = 1,2,… , 𝑛 . Then,  �̂�𝐿𝑆𝐸   and  𝜳𝐿𝑆𝐸  are solutions of the 

following equations:  

𝜕𝐿𝑆𝐸(𝜱)

𝜕𝛼
= 2∑

𝑛

𝑖=1

𝐹𝛼
′(𝑥(𝑖),𝜱)(𝐹(𝑥(𝑖) ,𝜱) −

𝑖

𝑛 + 1
) = 0, 

and  

𝜕𝐿𝑆𝐸(𝜱)

𝜕𝜳
= 2∑

𝑛

𝑖=1

𝐹𝜳
′ (𝑥(𝑖),𝜱) (𝐹(𝑥(𝑖), 𝜱) −

𝑖

𝑛 + 1
) = 0, 

respectively, where  𝐹𝛼
′(𝑥(𝑖) ,𝜱)  and  𝐹𝜳

′ (𝑥(𝑖),𝜱)  are mentioned before. 

 

5.4 Anderson-Darling estimation 

The Anderson-Darling minimum distance estimates (ADEs)  �̂�𝐴𝐷   and  𝜳𝐴𝐷   of  𝛼  and  𝜳 , respectively, are obtained 

by minimizing the following function:  

𝐴𝐷(𝜱) = −𝑛 − ∑

𝑛

𝑖=1

2𝑖 − 1

𝑛
[log 𝐹 (𝑥(𝑖), 𝜱) + log{1 − 𝐹(𝑥(𝑛+1−𝑖),𝜱)}], 

with respect to  𝜱 . Therefore,  �̂�𝐴𝐷   and  �̂�𝐴𝐷   can be obtained as the solutions of the following system of equations:  

𝜕𝐴𝐷(𝜱)

𝜕𝛼
= −∑

𝑛

𝑖=1

2𝑖 − 1

𝑛
[
𝐹𝛼

′(𝑥(𝑖),𝜱)

𝐹(𝑥(𝑖)𝜱)
−

𝐹𝛼
′(𝑥(𝑛+1−𝑖),𝜱)

1 − 𝐹(𝑥(𝑛+1−𝑖),𝜱)
] = 0 

and  

𝜕𝐴𝐷(𝜱)

𝜕𝜳
= −∑

𝑛

𝑖=1

2𝑖 − 1

𝑛
[
𝐹𝜳

′ (𝑥(𝑖),𝜱)

𝐹(𝑥(𝑖),𝜱)
−

𝐹𝜳
′ (𝑥(𝑛+1−𝑖),𝜱)

1 − 𝐹(𝑥(𝑛+1−𝑖), 𝛼, 𝛽)
] = 0. 

 

5.5 The Cramer-von Mises estimation 

The Cramer-von Mises minimum distance estimates (CVMEs)  �̂�𝐶𝑉𝑀  and  𝜳𝐶𝑉𝑀  of  𝛼  and  𝛽 , respectively, are 

obtained by minimizing the following function:  

𝐶𝑉𝑀(𝜱) =
1

12𝑛
+ ∑

𝑛

𝑖=1

[𝐹(𝑥(𝑖), 𝜱) −
2𝑖 − 1

2𝑛
]
2

, 

with respect to  𝜱 . Therefore, the estimates  �̂�𝐶𝑉𝑀  and  𝜳𝐶𝑉𝑀  can be obtained as the solution of the following system 

of equations:  
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𝜕𝐶𝑉𝑀(𝜱)

𝜕𝛼
= 2∑

𝑛

𝑖=1

(𝐹(𝑥(𝑖),𝜱) −
2𝑖 − 1

2𝑛
)𝐹𝛼

′(𝑥(𝑖),𝜱) = 0 

and  

𝜕𝐶𝑉𝑀(𝜱)

𝜕𝜳
= 2∑

𝑛

𝑖=1

(𝐹(𝑥(𝑖), 𝜱) −
2𝑖 − 1

2𝑛
)𝐹𝜳

′ (𝑥(𝑖),𝜱) = 0. 

We note that it may be seen \cite{chen1995general} for the information about the AD and CVM goodness-of-fits 

statistics. Since all estimating equations except those of the MLE method contain non-linear functions, it is not possible 

to obtain explicit forms of all estimators directly. Therefore, they have to be solved by using numerical methods such 

as the Newton-Raphson and quasi-Newton algorithms. In addition, the Equations (13), (14), (15) and (16) can be also 

optimized directly by using the software such as R (constrOptim, optim and maxLik functions), S-Plus and 

Mathematica to numerically optimize  ℓ(𝜱)  and  𝑀𝑃𝑆(𝜱) , LSE (𝜱) ,  𝐴𝐷(𝜱)  and  𝐶𝑉𝑀(𝜱)  functions. 

6. Simulations for comparing methods 

In this section, we perform a graphical simulation study to see the performance of the above estimates of the special 

member of the new family with respect to varying sample size  𝑛 . We take Topp-Leone (TL) distribution (Topp and 

Leone (1955)) as baseline model. Hence, the CDF of the extended TL distribution, called by TIQLTL distribution, is 
given by  

𝐹𝛼,𝛽(𝑥) = [
2 − 𝑥𝛽(2 − 𝑥)𝛽

𝑥𝛽(2 − 𝑥)𝛽
]

𝛼

𝑒𝑥𝑝 {1 − [
2 − 𝑥𝛽(2 − 𝑥)𝛽

𝑥𝛽(2 − 𝑥)𝛽
]

𝛼

}, 

where,  0 < 𝑥 < 1 ,  𝛼, 𝛽 > 0 . We generate  𝑁 = 1000  samples of size  𝑛 = 20,30, … ,500  from the TIQLTL 

distribution based on the actual parameter values. We take them as the  𝛼 = 0.1 ,  𝛽 = 0.25  for simulation study. The 

random numbers generation is obtained by the solution of the its CDF via uniroot function in R software as well as all 

the estimations based on the estimation methods have been obtained by using the optim function in the same software. 

Further, we calculate the empirical mean, bias and mean square error (MSE) of the estimations for comparisons 

between estimation methods. For  𝜀 = 𝛼  and  𝛽 , the bias and MSE are calculated by  

𝐵𝑖𝑎𝑠𝜀(𝑛) =
1

𝑁
∑(𝜀𝑖 − 𝜀�̂�),

𝑁

𝑖=1

𝑀𝑆𝐸𝜀(𝑛) =
1

𝑁
∑(𝜀𝑖 − 𝜀�̂�)

2

𝑁

𝑖=1

, 

respectively. We expect that the empirical means are close to true values when the MSEs and biases are near zero. 

The results of this simulation study are shown in the Figure 1 

Figure 1 shows that all estimates are consistent since the MSE and biasedness decrease to zero with increasing sample 

size as expected. All estimates are asymptotic unbiased also. According to the simulation study, the empirical biases 

and MSEs are closing each other on the increasing sample size. Generally, the performances of all estimates are close. 

Therefore, all methods can be chosen as more reliable than another estimate of the newly defined model. The similar 

results can be also obtained for different parameter settings.  

 

7. Modeling data for comparing competitive models 

In this section, a real data set is analyzed to prove the empirical importance and modeling ability of a special member 

of the I-QL family. The used data set consist of the times between successive failures (in thousands of hours) in events 

of secondary reactor pumps studied by Salman et al. (1999), Bebbington et al. (2007) and Lucena et al. (2015).  

 

The data are: 2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347,0.150, 0.358, 0.101, 1.359, 3.465, 1.060, 0.614, 

1.921,4.082 ,0.199 ,0.605 ,0.273 ,0.070, 0.062, 5.320. Using Weibull (W) baseline model, we will explore the data 

modeling ability of the TIQLW distribution on above data set. Corresponding pdf of the TIQLW distribution is given 

by  

𝑓𝛼,𝛽,𝜃(𝑥) = 2𝛼𝛽𝜃𝛽
𝑥𝛽−1 𝑒𝑥𝑝[−(𝜃𝑥)𝛽] {1 + 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}

𝛼−1

{1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}𝛼+1
 

× ({
1 + 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]

1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]
}

𝛼

− 1)𝑒𝑥𝑝(1 − {
1 + 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]

1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]
}

𝛼

), 

where,  0 < 𝑥  and  𝛼, 𝛽, 𝜃 > 0 . We compare performance of the real data fitting of the the TIQLW distribution under 

the MLE method with well know unit distribution in the literature. These competitor distributions are: 

• Modified Weibull (MW) distribution (Lai et al. (2003)):  

𝑓𝛼,𝛽,𝜃(𝑥) = 𝜃(𝛼 + 𝛽𝑥)𝑥𝛼−1 𝑒𝑥𝑝(𝛽𝑥 − 𝜃𝑥𝛼𝑒𝛽𝑥), 



Pak.j.stat.oper.res.  Vol.17  No. 3 2021 pp 545-558  DOI: http://dx.doi.org/10.18187/pjsor.v17i3.3562 

 
The Type I Quasi Lambert Family: Properties, Characterizations and Different Estimation Methods 553 

 

where,  0 < 𝑥  and  𝛼, 𝛽, 𝜃 > 0 . 

 

• Beta Weibull (BW) distribution (Famoye et al. (2005)):  

𝑓𝛼,𝛽,𝜃,𝛾(𝑥) = 𝛽𝜃𝛽
𝑥𝛽−1 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]

𝐵(𝛼, 𝛾)
{1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}

𝛼−1
𝑒𝑥𝑝[−𝛾(𝜃𝑥)𝛽], 

where,  0 < 𝑥  and  𝛼, 𝛽, 𝜃, 𝛾 > 0  and  𝐵(𝛼, 𝛾)  is the beta function. 
 

• Odd log-logistic Weibull (OLLW) distribution (Gleaton and Lynch (2006)):  

𝑓𝛼,𝛽,𝜃(𝑥) = 𝛽𝜃𝛽
𝑥𝛽−1 𝑒𝑥𝑝[−𝛼(𝜃𝑥)𝛽] {1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}

𝛼−1

({1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}𝛼 + 𝑒𝑥𝑝[−(𝜃𝑥)𝛽])2
, 

where,  0 < 𝑥  and  𝛼, 𝛽, 𝜃 > 0 . 

 

• Kumaraswamy Weibull (KwW) distribution (Cordeiro et al. (2010)):  

𝑓𝛼,𝛽,𝜃,𝛾(𝑥) = 𝛼𝛾𝛽𝜃𝛽𝑥𝛽−1 𝑒𝑥𝑝[−(𝜃𝑥)𝛽] {1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}
𝛼−1

(1 − {1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]}
𝛼
)
𝛾−1

. 

 

where,  0 < 𝑥  and  𝛼, 𝛽, 𝜃, 𝛾 > 0 . The  ℓ̂  values, Akaike Information Criteria (AIC), Bayesian information criterion 

(BIC), Kolmogorov-Smirnov ( 𝐾𝑆 ), Cramer-von-Mises, ( 𝑊∗ ) and Anderson-Darling ( 𝐴∗ ) goodness of-fit statistics 

have been obtained based on all distribution models to determine the optimum model In general, it can be chosen as 

the optimum model the one which has the smaller the values of the AIC, BIC, KS,  𝑊∗  and  𝐴∗  statistics and the 

larger the values of  ℓ̂  and p-value of the goodness-of-statistics. 

 

Firstly, we fit the Weibull distribution, which has the CDF  𝐹𝛽,𝜃(𝑥) = 1 − 𝑒𝑥𝑝[−(𝜃𝑥)𝛽]  for  0 < 𝑥  and  𝛽, 𝜃 > 0 

,to this data set. For this model, we obtained the ℓ̂ value and  𝐾𝑆 statistics as −32.5139  and 0.1184 (with p-

value=0.8667) respectively. We give the data analysis results belong to other competitor models in Table 1. Table 1 

shows that the TIQLW distribution has the has the biggest  ℓ̂  value as well as it has the lowest values of the AIC, 

BIC,  𝐴∗  and  𝑊∗  statistic among application models. The BW distribution has the lowest  𝐴∗  and KS statistics with 

the biggest p-value. However, the TIQLW model has fever parameters than the BW model. This is the advantage of 

the TIQLW model. It implies that the TIQLW model will be the best choice for the modeled data set.  

 

Figure 2 displays the fitted pdfs and CDFs for all models. It is clear that proposed TIQLW model captures shapes of 

the data set graphically and its CDF fitting is sufficient. Figure 3 shows that the plotted lines of the probability-
probability (PP) is very closer the diagonal line which indicates that the performance of the TIQLW distribution is 

acceptable for the modeled data.  

Table 1: MLEs, standard errors of the estimates (in parentheses), ℓ̂ and goodness-of-fits statistics 

for the data set (p-value is given in [.]) 
 Estimates Goodness-of-fits statistics 

Model 𝛼 �̂� 𝜃 𝛾 ℓ̂ AIC BIC 𝐴∗ 𝑊∗ KS 

[p-value] 

TIQL

W  

0.1645  2.0450  0.1043  -30.984  67.9681  71.3746  0.2470  0.0275  0.1023 

 (0.2505)  (3.1421)  (0.0621)       [0.9494] 

           

MW  0.7922  0.0093  0.7517  -32.508 71.0165  74.4230  0.4160  0.0643 0.1199 

 (0.1925)  (0.0850)  (0.2199)       [[0.8565] 

           

OLLW  1.3160  0.6362  0.6855  -32.475  70.9504 74.3569 0.3412 0.0462 0.1028 

 (1.5414)  (0.6725)  (0.3050)       [0.9479] 

           

BW  30.2595  0.0027  0.1353 55.8427 -31.8016  71.6033  76.1453  0.2406  0.0286  0.0981 

 (1.4132)  (0.0026)  (0.0202)  (1.4365)      [0.9641] 

           

Kw-W  5.4565  0.6823  25.8738  0.1077 -31.487 70.9740 75.5160 0.4428 0.0626 0.1111 

 (0.0001)  (0.0003)  (0.0006)  (0.0224)      [[0.9096] 
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Figure 1: The results of on the parameters 𝛼 (top) and 𝛽 (bottom) for the simulation study. 
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Figure 2: PP plots for the fitted models based on the data set. 
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Figure 3: PP plots for the fitted models based on the data set. 
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8. Concluding remarks 

A new G family of continuous probability distributions called the type I quasi Lambert family is defined and studied. 

Some new bivariate type G families using "copula of Farlie-Gumbel-Morgenstern", "modified Farlie-Gumbel-
Morgenstern copula", "Clayton copula" and "Renyi's entropy copula" are derived. Three characterizations based on 

conditional expectation (truncated moment) of certain function of a random variable; the reversed hazard function and 

in terms of the conditional expectation of a function of a random variable are presented. Some of its statistical 

properties including moments, incomplete moments and moment generating functions are derived and studied. The 

maximum likelihood estimation, maximum product spacing estimation, least squares estimation, Anderson-Darling 

estimation and Cramer-von Mises estimation methods are used for estimating the unknown parameters. A graphical 

assessment under the five different estimation methods is introduced. Graphical assessments under five different 

estimation methods are introduced. Based on these assessments, all estimation methods perform well. Finally, an 

application to illustrate the importance and flexibility of the new family is proposed. 
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Appendix A 

Theorem 1.  Let  (𝛺, 𝐹, 𝑃)  be a given probability space and let 𝐻 = [𝑎, 𝑏] be an interval for some 𝑑 < 𝑏    
(𝑎 = −∞,𝑏 = ∞  might as well be allowed).  Let  𝑋:𝛺 → 𝐻   be a continuous random variable with the distribution 

function  𝐹  and let  𝓠1(𝑥)  and  𝓠2(𝑥)  be two real functions defined on  𝐻  such that 

 

𝐸[𝓠2(𝑋) | 𝑋 ≥ 𝑥] = 𝐸[𝓠1(𝑋) | 𝑋 ≥ 𝑥]𝜉(𝑥),   𝑥 ∈ 𝐻, 
 

is defined with some real function  𝜉(𝑥) . Assume that  𝓠1(𝑥), 𝓠2(𝑥) ∈ 𝐶1(𝐻) ,  𝜉(𝑥) ∈ 𝐶2(𝐻)  and  𝐹  is twice 

continuously differentiable and strictly monotone function on the set  𝐻. Finally, assume that the equation  

𝜉(𝑥)𝓠1(𝑥) = 𝓠2(𝑥)  has no real solution in the interior of 𝐻. Then 𝐹 is uniquely determined by the functions  

𝓠1(𝑥), 𝓠2(𝑥)  and  𝜉(𝑥)  , particularly 

 

𝐹𝜱(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜉′(𝑢)

𝜉(𝑢)𝓠1(𝑢) − 𝓠2(𝑢)
| 𝑒𝑥𝑝(−𝑠(𝑢))  𝑑𝑢 , 

 

where the function   𝑠   is  a solution of the differential equation  𝑠′ =
𝜉′ 𝓠1

𝜉𝓠1−𝓠2
  and  𝐶  is the normalization constant, 

such that  ∫
𝐻

𝑑𝐹 = 1 . 

 

Note: The goal is to have the function  𝜉(𝑥)  as simple as possible. 

 

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the sense of 

weak convergence (see, Glänzel, 1990), in particular, let us assume that there is a sequence {𝑋𝑛}  of random variables 

with distribution functions   {𝐹𝑛}   such that the functions  𝓠1𝑛 (𝑥) ,  𝓠2𝑛 (𝑥)  and 𝜉𝑛 (𝑥) (𝑛 ∈ 𝑁)   satisfy the conditions 

of Theorem 1 and let   𝓠1𝑛 (𝑥) → 𝓠1(𝑥), 𝓠2𝑛 (𝑥) → 𝓠2(𝑥) for some continuously differentiable real functions   𝓠1(𝑥)  

and   𝓠2(𝑥).   Let, finally,   𝑋   be a random variable with distribution 𝐹. Under the condition that 𝓠1𝑛 (𝑋) and  𝓠2𝑛 (𝑋)   

are uniformly integrable and the family   {𝐹𝑛}  is relatively compact, the sequence   𝑋𝑛   converges to   𝑋   in distribution 

if and only if   𝜉𝑛 (𝑥)  converges to   𝜉(𝑥)  , where 

 

𝜉(𝑥) =
𝐸[𝓠2(𝑋) | 𝑋 ≥ 𝑥]

𝐸[𝓠1(𝑋) | 𝑋 ≥ 𝑥]
. 

This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding 

convergence of the functions   𝓠1(𝑥) ,   𝓠2(𝑥)   and   𝜉(𝑥) , respectively.  It guarantees, for instance, the 'convergence' 

of characterization of the Wald distribution to that of the Lévy-Smirnov distribution if   𝛼 → ∞ . A further consequence 

of the stability property of Theorem 1 is the application of this theorem to special tasks in statistical practice such as 

the estimation of the parameters of discrete distributions.  For such purpose, the functions 𝓠1(𝑥),   𝓠2(𝑥) and, 

specially, 𝜉(𝑥) should be as simple as possible.  Since the function triplet is not uniquely determined it is often possible 

to choose   𝜉(𝑥)   as a linear function.  Therefore, it is worth analyzing some special cases which helps to find new 

characterizations reflecting the relationship between individual continuous univariate distributions and appropriate in 

other areas of statistics. In some cases, one can take 𝓠1(𝑥) ≡ 1, which reduces the condition of Theorem 1 to  

𝐸[𝓠2(𝑋) | 𝑋 ≥ 𝑥] = 𝜉(𝑥),   𝑥 ∈ 𝐻.  We, however, believe that employing three functions  𝓠1(𝑥),   𝓠2(𝑥)  and  𝜉(𝑥)  
will enhance the domain of applicability of Theorem 1. 


