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Abstract  

In this paper we present a new exponential accelerated failure time model. Some of its properties and 

characterization results are derived. Different estimation methods are considered for assessing the finite sample 

behavior of the estimators. Simulation studies for comparing the estimation methods are performed. Finally, we 

present a novel modified chi-square test for the novel exponential accelerated failure time model in both complete 

and right censored data cases. The validity of the new model is checked by using the theoretical global of the 

Nikulin-Rao-Robson. The maximum likelihood method is considered for this purpose. Two simulation studies are 

performed for assessing the exponential accelerated failure time model and the efficiency of the Nikulin-Rao-

Robson test statistic, respectively. Three real data sets are considered for illustrating the efficiency of the test 

statistic in validation. 
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1 Introduction 

An appropriate parametric model is often of interest for analyzing survival data since it provides an overview of the 

failure times characteristics and the risk functions. However, when failure rates of the products or death or remission 

of patients or any other diseases can have different causes, simple parametric models cannot measure the influence of 
each cause. In this case, accelerated failure time (AFT) models were proposed in the statistical literature, where the 

stresses (𝑒𝑥𝑝lanatory variable, temperature, pressure, dose of medicine...etc) represented by covariates affect directly 

the functions of interest of the model such as the failure rate and survival functions. The AFT models are primarily 

fully parametric, in contrast to proportional hazards models, where Cox’s semi-parametric proportional hazards model 

is more frequently used than parametric models. Also, The regression parameter estimates from AFT models are 

resistant to omitted covariates, unlike proportional hazards models. Additionally, they are less impacted by the 
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probability distribution of choice. Depending on the values affected to the covariables, by increasing or decreasing 

them, engineers and practitioners can achieve the desired results, this is why the AFT models are widely used in 

reliability studies and survival analysis. The objective of this theory is to know the influence of the stresses (covariates) 

on the life duration of the items. Based on classical distributions called baseline, several AFT models are studied such 

as the exponential, Weibull, log-logistic and log-normal AFT models (Bagdonavicius and Nikulin (2002), Lawless 

(2003), Bagdonavicius et al. (2010)), the generalized inverse Weibull AFT model (Goual and Seddik-Ameur (2014). 

Bagdonavicius and Nikulin (2011), Bagdonavicius et al. (2011), gave chi-squared goodness-of-fit tests for regression 

models such as accelerated failure time, proportional hazards, generalized proportional hazards, frailty models, models 

with cross-effects of survival functions. 

 

The exponential distribution is likely the statistical model that is used the most frequently across a variety of fields 

among the parametric distributions. Its significance is due in part to the exponential model’s constant failure rate 

function. Furthermore, this model was the first lifetime model for which extensive statistical tools were created in the 

literature on life testing. In a random process where events happen at a predetermined pace, the waiting period before 

the first occurrence is distributed using an exponential function. It is a relatively simple distribution; a random 

variable having this distribution is necessarily positive, and it is one of the more important distributions among those 

used for positive random variables. The cumulative distribution function (CDF) of the exponential distribution can 

be written as 𝐺𝜆(𝑥) = 1 − 𝑒𝑥𝑝(−𝜆𝑥) where 𝜆 > 0 and 𝑥 ≥ 0, the moments, the moment generating function (MGF) 

and several other properties of this distribution can be expressed in terms of the elementary functions. In the last 

decANDEs, many new distributions are developed by adding one or more parameters to classical distributions in order 

to and more flexibility to these distributions. 

 

The most popular AFT model is provided by the log-logistic distribution. It can display a non-monotonic hazard 
function that rises early and falls later, unlike the Weibull distribution. Although it has heavier tails, it has a form that 

is relatively comparable to the log-normal distribution. When fitting data with censoring, the log-logistic cumulative 

distribution function’s straightforward closed form plays a crucial computational role. The survival function, which is 

the complement of the cumulative distribution function, is required for the censored observations. It is unique among 

distribution families that the Weibull distribution (which includes the exponential distribution as a special example) 

can be parameterized as either an AFT model or a proportional hazards model. There are two ways to interpret the 

outcomes of fitting a Weibull model. This model’s biological application, however, might be constrained by the danger 

function’s monotonicity, that is, its ability to be either decreasing or growing. The log-normal, gamma, and inverse 

Gaussian distributions are additional distributions appropriate for AFT models; however, they are less common than 

the log-logistic distribution, in part because their cumulative distribution functions do not have a closed form. The 

Weibull, log-normal, and gamma distributions are special examples of the generalised gamma distribution, a three-
parameter distribution. 

 

In this work, we introduce an exponential model dubbed the Burr-Hatke exponential (BHE) distribution and 

investigate its mathematical features in the manner of Yousof et al. (2018). The novel model simply has two 

parameters and can be written as linear combinations of the well-known 𝑒𝑥𝑝onentiated exponential density. Its 

probability distribution function (PDF) also has a straightforward shape. The asymptotics results can be used to assess 

how the two parameters affect the BHE distribution’s tails. The novel PDF, CDF, and hazard rate function (HRF) 

asymptotics results are obtained, correspondingly. Using two truncated moments, the HRF, and the conditional 

expectation of a random variable-based function, various descriptions of the BHE distribution are provided. 
 

The finite sample behaviour of the estimators is evaluated using a variety of estimation techniques, such as the 

maximum likelihood, Cramer-von-Mises, Anderson Darling, right tail-Anderson Darling, left tail-Anderson Darling, 

and method of L-moments. Simulated studies are carried out to compare the estimation techniques. Various sample 

sizes and parameter values are used to accomplish the simulation experiments. The bias, root mean-standard errors, 

the mean of the absolute difference between the theoretical (MADv) and the estimates and the maximum absolute 

difference between the true parameters and estimates (MaxADv) are all taken into consideration when comparing the 

estimates. Then, we propose a new Burr-Hatke exponential accelerated failure time (BHE-AFT) model as a 

parametric accelerated life model when the baseline survival function belongs to BHE model. The new BHE-AFT 

model can be used in reliability modeling and life time testing in many applied fields such as electric insulating, 
medicine and life time studies. For assessing the estimates of the BHE-AFT model and depending on using Barzilai-

Borwein (BZB) algorithm, the averages of the simulated values of the maximum likelihood estimators (MXLEs) and 

their corresponding mean squared errors are reported under different sample sizes. 
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The BHE-AFT model is tested using a novel modified chi-square test in both the complete and right censored data 

situations. The theoretical framework of Nikulin-Rao-Robson (NIKRR) statistics is used to assess the viability of the 

BHE-AFT model (see Nikulin (1973a,b,c) and Rao and Robson (1974)). In several validation procedures, the 

NIKRR test statistic has recently been enhanced (see, for instance, Goual and Yousof (2019), Goual et al. (2019), 
Goual et al. (2020), Yadav et al. (2020), and Yadav et al. (2022)). The modified NIKRR test statistic for the BHE-

AFT model is evaluated using the maximum likelihood approach at a few empirical levels and equivalent theoretical 

levels. In order to evaluate the effectiveness of the NIKRR test statistic in validation, three real data sets are also 

taken into account. For more detials, applications and real-life data, see Salah et al. (2020), Mansour et al. (2020a,b), 

Ibrahim et al. (2019, 2020, 2021), Aidi et al. (2021), Emam et al. (2023), Khalil et al. (2023), Yousof et al. (2021, 

2023a,b). 

 

2 The Burr Hatke exponential model 

2.1 Formulation 

Based on the Burr-Hatke differential equation, Yousof et al. (2018) presented a new family called the BH-G family. 

According to Yousof et al. (2018), the CDF of the BHE distribution can be derived as 

𝐹𝜃,𝜆(𝑥) = 1 −
1

1+𝜆𝑥
𝑒𝑥𝑝(−𝜆𝜃𝑥).                                                                  (1) 

The PDF corresponding to (1) is given by 

𝑓𝜃,𝜆(𝑥) = 𝜆(1 + 𝜆𝑥)
−2[𝜃(1 + 𝜆𝑥) + 1]𝑒𝑥𝑝(−𝜆𝜃𝑥) .                                              (2) 

The HRF of the BHE model can be expressed as 

 

ℎ𝜃,𝜆(𝑥) =
𝜆

1+𝜆𝑥
[𝜃(1 + 𝜆𝑥) + 1].                                                                             (3) 

Mixture representations for Equations (2) and (3) are obtained. Consider the following 𝑒𝑥𝑝ansions,  

(1 −
𝜁1
𝜁2
)
𝜁3

= ∑

∞

𝜁4=0

(−1)𝜁4 (
𝜁3
𝜁4
) (
𝜁1
𝜁2
)
𝜁3

, |
𝜁1
𝜁2
| < 1, 

 

(4) 

 

and 

log (1 −
𝜁1
𝜁2
) = − ∑

∞

𝜁4=0

1

1 + 𝜁4
(
𝜁1
𝜁2
)
1+𝜁4

, |
𝜁1
𝜁2
| < 1. 

 
(5) 

 

Firstly, the CDF (2) can be rewriten as  

𝐹𝜃,𝜆(𝑥) = 1 −
𝐴𝜃,𝜆(𝑥)

𝐵𝜆(𝑥)
, 

where 𝐴𝜃,𝜆(𝑥) = {1 − [1 − 𝑒𝑥𝑝(−𝜆𝑥)]}
𝜃 and 𝐵𝜆(𝑥) = 1 − log{1 − [1− 𝑒𝑥𝑝(−𝜆𝑥)]}. Applying (4) to 𝐴𝜃,𝜆(𝑥). 

Then,  

𝐴𝜃,𝜆(𝑥) = ∑

∞

𝓀=0

𝑎𝓀[1 − 𝑒𝑥𝑝(−𝜆𝑥)]
𝓀 , 

where 𝑎𝓀 = (−1)
𝓀 (
𝜃
𝓀
).  

Now, applying (5) to 𝐵𝜆(𝑥), still in Equation (2), we obtain  

𝐵𝜆(𝑥) = 1 +∑

∞

𝒾=0

1

𝒾 + 1
[1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝒾+1. 

Then, 

𝐵𝜆(𝑥) = ∑

∞

𝓀=0

𝑏𝓀[1 − 𝑒𝑥𝑝(−𝜆𝑥)]
𝓀 , 

where 𝑏0 = 1, 𝓀 ≥ 1 and 𝑏𝓀 =
−1

𝓀
. Then, Equation (2) can be writen as  

𝐹(𝑥; 𝜃, 𝜆) = 1 −
∑∞𝓀=0 𝑎𝓀[1 − 𝑒𝑥𝑝(−𝜆𝑥)]

𝓀

∑∞
𝓀=0 𝑏𝓀[1 − 𝑒𝑥𝑝(−𝜆𝑥)]

𝓀
, 

then,  
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𝐹(𝑥; 𝜃, 𝜆) = 1 −∑

∞

𝓀=0

𝑐𝓀[1 − 𝑒𝑥𝑝(−𝜆𝑥)]
𝓀 

where 𝑐0 =
𝑎𝑜

𝑏0
 and, for 𝓀 ≥ 1, we have 

𝑐𝓀 =
1

𝑏0
(𝑎𝓀 −

1

𝑏0
∑

𝓀

𝓇=1

𝑏𝓇𝑐𝓀−𝓇). 

At the end, the CDF (2) can be writen as 

𝐹𝜃,𝜆(𝑥) =∑

∞

𝓀=0

𝑑𝓀𝚷1+𝓀(𝑥; 𝜆), 
 
(6) 

where 𝑑0 = 1 − 𝑐𝓀 , for 𝓀 ≥ 1 we have 𝑑0 = −𝑐𝓀 and 𝚷1+𝓀(𝑥; 𝜆) = [1 − 𝑒𝑥𝑝(−𝜆𝑥)]
1+𝓀 is the CDF of the 

𝑒𝑥𝑝onentiated exponential model with power parameter 1 + 𝓀. By differentiating (6), we obtain the same mixture 
representation 

𝑓𝜃,𝜆(𝓍) = ∑

∞

𝓀=0

𝑑𝓀𝛑1+𝓀(𝑥; 𝜆), 
 

(7) 

where 𝛑𝛓(𝑥) = (1 + 𝓀)𝜆𝑒𝑥𝑝(−𝜆𝑥)[1 − 𝑒𝑥𝑝(−𝜆𝑥)]
𝓀 is the PDF of the 𝑒𝑥𝑝onentiated exponential with power 

parameter (𝛓). Equation (7) demonstrates that the 𝑒𝑥𝑝onentiated exponential densities are combined linearly to form 
the BHE density function. As a result, it is possible to derive some structural characteristics of the new model, 

including the generating function, ordinary and incomplete moments, and 𝑒𝑥𝑝-E distribution, right away. Many 

authors have recently 𝑒𝑥𝑝lored the 𝑒𝑥𝑝onentiated exponential distribution’s properties. 

 

2.2 Properties 

Let 𝑎 = inf{𝑥|𝐹𝜃,𝜆(𝑥) > 0}, the asymptotics of CDF, PDF and HRF as 𝑥 → 𝑎 are given by 

𝐹𝜃,𝜆(𝑥) ∼ 1 − 𝑒𝑥𝑝(−𝜆𝑥)|𝑥→𝑎  , 
𝑓𝜃,𝜆(𝑥) ∼ 𝜆𝑒𝑥𝑝(−𝜆𝑥)|𝑥→𝑎 , 

and 

 ℎ𝜃,𝜆(𝑥) ∼ 𝜆𝑒𝑥𝑝(−𝜆𝑥)|𝑥→𝑎 . 
The asymptotics of CDF, PDF and HRF as 𝑥 → ∞ are given by 

 1 − 𝐹𝜃,𝜆(𝑥) ∼
1

𝜆𝑥
𝑒𝑥𝑝(−𝜃𝜆𝑥)|𝑥→∞, 

𝑓𝜃,𝜆(𝑥) ∼
1

𝜆𝑥2
𝑒𝑥𝑝(−𝜃𝜆𝑥)(1 − 𝜃 𝜆𝑥)|𝑥→∞, 

and 

 ℎ𝜃,𝜆(𝑥) ∼  
1

𝑥
(1 − 𝜃 𝜆𝑥)|𝑥→∞. 

The effect of the parameters on tails of distribution can be evaluated by means of the above equations. 

 

Theorem 2.2.1:  

Let 𝑇 be a random variable with the 𝑒𝑥𝑝onentiated exponential distribution with positive parameters 𝜆 and 𝛓. Then, 

for any 𝓇 > −1, the r th ordinary and incomplete moments of 𝑇 are given by  

𝜇𝓇,𝑇
′ = ∑

∞

𝓌=0

 𝐶𝓌
(𝓇,𝛓)

 Γ(1 + 𝓇) 

and  

𝐈𝓇,𝑇(𝑡) = ∑

∞

𝓌=0

   𝐶𝓌
(𝓇,𝛓)

 𝛾(1 + 𝓇, (𝜆𝑡)), 

respectively, where 

𝐶𝓌
(𝓇,𝛓)

= 𝛓𝜆−𝓇
(−1)𝓌

(𝓌 + 1)(1+𝓇)
(
𝛓 − 1
𝓌

) 

and 𝛾(𝜁1, 𝜁2) is the incomplete gamma function which can be expressed as 
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𝛾(𝜁1, 𝜁2) = ∫
𝜁2

0

𝑒𝑥𝑝(−𝓌)𝑑𝓌 =
1

𝜁1
𝜁2
𝜁1{ 1𝐅1[𝜁1; 𝜁1 + 1;−𝜁2]} =∑

∞

𝛋=0

(−1)𝛋

𝛋! (𝜁1 + 𝛋)
𝜁2
𝜁1+𝛋, 

and  1𝐅1[⋅,⋅,⋅] is a confluent hypergeometric function. Based on Theorem 1, the 𝓇𝑡ℎ ordinary moment of 𝑋 is given by 

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) =  ∫

∞

−∞
 𝑥𝓇  𝑓(𝑥)𝑑𝑥. Then, we obtain  

𝜇𝓇,𝑋
′ = ∑

∞

𝓀,𝓌=0

𝐶𝓀,𝓌
(1+𝓀,𝓇)Γ(1 + 𝓇)|𝓇>−1, 

 

(8) 

where 𝐶𝓀,𝓌
(1+𝓀,𝓇) = 𝑑𝓀𝐶𝓌

(𝓇,1+𝓀)
 and  

𝐶𝓌
(𝓇,1+𝓀) = (1 + 𝓀)

(−1)𝓌

(𝓌 + 1)(1+𝓇)
(
𝓀
𝓌
) 

The cumulants, central moment, skewness and kurtosis measures can be calculated from the ordinary moments using 

well-known relationships. Based on Theorem 1, the r 𝑡ℎ incomplete moment of 𝑋, say 𝐈𝓇,𝑋(𝑡) = ∫
𝑡

−∞
 𝑥𝓇  𝑓(𝑥)𝑑𝑥, can 

be determined from (7) and (8) as  

𝐈𝓇,𝑋(𝑡) = ∫
𝑡

−∞

 𝑥𝓇 𝑓(𝑥)𝑑𝑥 = ∑

∞

𝓀,𝓌=0

𝐶𝓀,𝓌
(1+𝓀,𝓇)𝛾(1 + 𝓇, (𝜆𝑡))|𝓇>−1. 

(9) 

The MGF of 𝑋 follows from (7) and (8) as  

𝑀𝑋(𝑡) = ∑

∞

𝓀,𝓌,𝓇=0

 
𝑡𝓇

𝓇!
𝐶𝓀,𝓌
(1+𝓀,𝓇)Γ(1 + 𝓇)|𝓇>−1. 

3 Characterization results 

The characterizations of the BHE distribution are covered in this section in the following ways: 

First: based on two truncated moments. 

Second: in terms of the hazard function. 

Third: based on the conditional expectation of a function of the random variable. 

 

The CDF does not necessarily required to have a closed form for the initial characterization. The next subsections will 

present the different categorizations. Those characterization theorems are considered with more details in Yousof et 

al. (2021) and Yousof et al. (2022). 

3.1 Characterizations based on two truncated moments 

Characterizations based on two truncated moments are often used in statistical analysis to describe probability 

distributions. In this context, a characterization is a set of properties or relationships that uniquely identify a specific 

probability distribution. Characterizations based on two truncated moments can provide insights into the properties of 
a distribution, help identify specific distributions, and guide the selection of appropriate models for statistical analysis. 

In practice, characterizations based on two truncated moments are particularly useful when dealing with data for which 

the theoretical distribution is not known or when the distribution is suspected to deviate from common parametric 

models. By using truncated moments, you can gain insights into the distribution of your data and make informed 

decisions about the appropriate statistical methods to apply. The characterizations of the BHE distribution based on 

the relationship between two truncated moments are the focus of this subsection. The first characterization makes use 

of a Glänzel theorem (1987), Theorem 3.1.1 given below. Clearly, the result holds as well when the interval 𝐻  is not 

a closed. This characterization is stable in the sense of weak convergence, please see reference Glänzel (1990). 

 

Theorem 3.1.1.   

Let (Ω,ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval for some 𝑑 < 𝑒 (𝑑 = −∞,𝑒 =
∞  mightaswellbeallowed). Let 𝑋:Ω → 𝐻  be a continuous random variable with the distribution function 𝐹 and let 

𝑔 and ℎ be two real functions defined on 𝐻 such that 

 

 𝐄[𝑔(𝑋)|𝑋 ≥ 𝑥] = 𝐄[ℎ(𝑋)|𝑋 ≥ 𝑥]𝜉(𝑥),    𝑥 ∈ 𝐻, 
 

is defined with some real function 𝜉. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is twice continuously differentiable 

and strictly monotone function on the set 𝐻. Finally, assume that the equation 𝜉ℎ = 𝑔 has no real solution in the 

interior of 𝐻. Then 𝐹 is uniquely determined by the functions 𝑔, ℎ and 𝜉, particularly 
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 𝐹(𝑥) = ∫
𝑥

𝑎
𝐶 |

1

𝜉(𝑢)ℎ(𝑢)−𝑔(𝑢)
𝜉′(𝑢)| 𝑒𝑥𝑝(−𝑠(𝑢))𝑑𝑢, 

where the function 𝑠 is  a solution of the differential equation 𝑠′ =
𝜉′ℎ

𝜉ℎ−𝑔
 and 𝐶 is the normalization constant, such that 

∫
𝐻
𝑑𝐹 = 1. 

 

Proposition 3.1.1.   

The random variable 𝑋:Ω → (0,∞) is continuous, and assume 

ℎ(𝑥) =
1

𝜃(1 + 𝜆𝑥) + 1
(1 + 𝜆𝑥)2 

and 𝑔(𝑥) = ℎ(𝑥)𝑒𝑥𝑝(−𝜆𝜃𝑥)  for 𝑥 > 0. Then, the density of 𝑋 is given in (2) if and only if the function 𝜉 defined in 

Theorem 3.1.1 is 

𝜉(𝑥) =
1

2
𝑒𝑥𝑝(−𝜆𝜃𝑥), 𝑥 > 0. 

Proof.  If  𝑋  has PDF  (2), then 

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋)|𝑋 ≥ 𝑥] =
1

𝜃
𝑒𝑥𝑝(−𝜆𝜃𝑥), 𝑥 > 0, 

and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋)|𝑋 ≥ 𝑥] =
1

2𝜃
𝑒𝑥𝑝(−2𝜆𝜃𝑥), 𝑥 > 0, 

and finally 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
ℎ(𝑥)𝑒𝑥𝑝(−𝜆𝜃𝑥) < 0, 𝑥 > 0. 

Conversely, if 𝜉 has the above form, then 

𝑠′(𝑥) =
1

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
𝜉′(𝑥)ℎ(𝑥) = 𝜆𝜃, 

and hence 

𝑠(𝑥) = 𝜆𝜃𝑥,    𝑥 > 0. 
 

In view of Theorem 3.1.1, 𝑋  has PDF (2). 
 

Corollary 3.1.1.   

If 𝑋:Ω → (0,∞) is a continuous random variable and ℎ(𝑥) is as in Proposition 3.1.1. Then, 𝑋 has PDF (2) if and only 

if there exist functions 𝑔 and 𝜉 defined in Theorem 3.1.1 satisfying the following first order differential equation 
1

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
𝜉′(𝑥)ℎ(𝑥) = 𝜆𝜃. 

Corollary 3.1.2.  

The general solution of the above differential equation is 

 

𝜉(𝑥) = 𝑒𝜆𝜃𝑥 [−∫ 𝜆𝜃𝑒−𝜆𝜃𝑥(ℎ(𝑥))
−1
𝑔(𝑥) + 𝐷], 

 where 𝐷 is a constant. A set of functions satisfying this differential equation is presented in Proposition 3.1.1 with 

𝐷 = 0. Clearly, there are other triplets (ℎ, 𝑔, 𝜉) satisfying the conditions of Theorem 3.1.1. 

 

3.2 Characterization based on hazard function 

Characterization based on the hazard function, also known as the hazard rate, plays a fundamental role in survival 

analysis and reliability theory. The hazard function is a key component in understanding and modeling the behavior 

of time-to-event data. Here are some statistical applications of characterizations based on the hazard function: 

I. The primary application of the hazard function is in survival analysis. Survival analysis involves 

modeling the time until an event of interest occurs, such as failure, death, or event occurrence. The 

hazard function provides insights into how the event rate changes over time and is a fundamental 

component of survival models like the Kaplan-Meier estimator, the Cox proportional hazards model, 

and parametric survival models (e.g., Weibull, exponential, and log-logistic models). 
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II. In reliability engineering, the hazard function is used to analyze the reliability of products or systems. 

The hazard function characterizes the failure rate of a system over time, and reliability engineers use it 

to assess product durability, make predictions about the lifetime of components, and perform 

maintenance planning. 

III. In clinical trials and medical research, the hazard function is employed to compare the effects of 
different treatments or interventions. The hazard ratio, which quantifies the relative hazard rates of two 

groups, is often used to assess the impact of a treatment on survival outcomes. 

IV. In epidemiology, the hazard function is utilized to study the risk of disease onset, transmission, or 

other time-to-event outcomes. It helps epidemiologists understand how the risk of an event varies over 

time and how different factors influence this risk. 

V. In economics and decision analysis, the hazard function can be used to model the 𝑒𝑥𝑝ected time to the 

occurrence of certain events that may have economic consequences. This is valuable in cost-benefit 

analysis and decision-making processes. 

VI. In engineering, the hazard function is employed to study and characterize failure modes of systems or 

components. Engineers use the hazard function to assess the reliability of critical components and to 

make design decisions. 
VII. The hazard function can be used to predict future event occurrences based on historical data. This is 

valuable in forecasting failures, disease outbreaks, and other time-dependent events. 

VIII. In quality control and manufacturing, the hazard function is used to evaluate the time-to-failure of 

products and to assess the reliability of manufactured items. 

IX. Businesses use the hazard function to study customer churn or attrition. By modeling the hazard of 

customers leaving over time, companies can develop retention strategies and improve customer 

loyalty. 

X. The hazard function is applied in demography and population studies to analyze life events such as 

birth, marriage, and mortality. It helps researchers understand patterns of event occurrence and their 

variations over time. 

Characterizations based on the hazard function are essential for understanding time-to-event data and making 

informed decisions in various fields. These characterizations help researchers and practitioners model the risk and 

reliability of systems, assess the impact of interventions, and make predictions about event occurrences over time. 

The hazard function, ℎ𝐹, of a twice differentiable distribution function, 𝐹 with density 𝑓, satisfies the first following 
trivial first differential equation 

𝑓′(𝑥)

𝑓(𝑥)
=
ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

 For many univariate continuous distributions, this is the only hazard function-based characterization that is currently 

available. The BHE distribution is described in detail in the Proposition given below. 

 

Proposition 3.2.1.   

Suppose 𝑋:Ω → (0,∞) is a continuous random variable.  The density of  𝑋 is (2) if and only if the differential equation 

holds 

ℎ𝜃,𝜆
′ (𝑥) + 𝜆(1 + 𝜆𝑥)−1ℎ𝜃,𝜆(𝑥) = 𝜆

2𝜃(1 + 𝜆𝑥)−1,          𝑥 > 0, 

 

with the initial condition lim𝑥→0ℎ𝜃,𝜆(𝑥) = 𝜆(𝜃 + 1). Proof. Is straightforward and hence omitted. 

 

3.3 Characterizations based on conditional expectation 

Characterizations based on conditional expectations are fundamental in statistics and provide a powerful framework 

for understanding, analyzing, and modeling various aspects of data. Conditional expectation plays a central role in 

regression analysis. In simple linear regression, the conditional expectation of the response variable given a predictor 

(covariate) is used to model the relationship between the two. In multiple regression, it extends to modeling the 

conditional expectation of the response variable given multiple covariates. Various regression techniques, such as 

linear regression, logistic regression, and Poisson regression, are based on modeling conditional expectations. 

Conditional expectation is used for making predictions in statistical models. Given a set of predictor variables, you 

can estimate the conditional expectation of the response variable, which represents the 𝑒𝑥𝑝ected value of the response 

variable for a given set of predictors. This is the basis for prediction in regression and machine learning models. In 

survival analysis, conditional expectations are used to estimate quantities such as survival probabilities, hazard rates, 
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and median survival times. Conditional expectations of survival times are key to survival curves and survival models 

like Kaplan-Meier and Cox proportional hazards models. In Bayesian statistics, the posterior distribution is often 

characterized by conditional expectations. The conditional expectation of a parameter given data is a key element 

of Bayesian inference. This expectation is updated as more data becomes available, allowing for iterative and adaptive 

modeling. In 𝑒𝑥𝑝erimental design, conditional expectations are used to optimize the allocation of treatments or 

resources. For example, in response surface methodology, researchers aim to maximize or minimize the conditional 

expectation of a response variable while varying 𝑒𝑥𝑝erimental factors. Characterizations based on conditional 

expectations provide a flexible and powerful framework for understanding and analyzing data in a wide range of 

statistical applications. They are fundamental in building statistical models, making predictions, conducting 

hypothesis tests, and drawing inferences from data. Hamedani (2013) makes the following claim, thus we will make 

use of it to describe the BHE distribution. 

 

Proposition 3.3.1.    

Suppose the random variable  𝑋:Ω → (𝑎, 𝑏) is continuous with  CDF 𝐹.  If  𝜓(𝑥)  is a differentiable function on  (𝑎, 𝑏)  
with  lim𝑥→0+𝜓(𝑥) = 1, then for  𝛿 ≠ 1 , 

  

𝐸[𝜓(𝑋)|𝑋 ≥ 𝑥] = 𝛿𝜓(𝑥),    𝑥 ∈ (𝑎, 𝑏), 
  

if and only if 

𝜓(𝑥) = (1 − 𝐹(𝑥))
1
𝛿
−1
,    𝑥 ∈ (𝑎, 𝑏). 

  

Remark 3.3.1.  Taking  

(𝑎, 𝑏) = (0,∞),𝜓(𝑥) =
1

(1 + 𝜆𝑥)1/𝜃
𝑒𝑥𝑝(−𝜆𝑥) 

 and  

 𝛿 =
𝜃

𝜃+1
, 

 Proposition 3.3.1 presents a characterization of BHE distribution. Clearly, there are other possible function. 

 

4 Different estimation methods 

4.1 Maximum likelihood method 

Maximum likelihood estimation (MXLE) is a widely used method for estimating the parameters of a statistical 

model. It has several important statistical properties: 

I. The MXLE is asymptotically efficient, which means that as the sample size (n) increases, the MXLE 
becomes the most efficient estimator in terms of achieving the smallest possible variance among all 

consistent estimators. In simple terms, for large sample sizes, the MXLE produces parameter estimates 

that are close to the true values and have low variability. 

II. MXLE is a consistent estimator, meaning that as the sample size grows, the MXLE converges in 

probability to the true population parameter. In other words, as you collect more data, the MXLE 

provides parameter estimates that approach the true values. 

III. When the sample size is large, the distribution of the MXLE approximates a normal distribution. This 

property allows you to construct asymptotic confidence intervals and conduct hypothesis tests using 

normal theory. 

IV. MXLE is invariant to transformations of the parameter space. This means that if you reparameterize the 

model (e.g., changing from one set of parameters to another through a one-to-one transformation), the 

MXLE remains consistent and efficient under the new parameterization. 
V. MXLE often results in sufficient statistics, which means that the parameter estimates capture all the 

information about the parameters contained in the data. In other words, the MXLE utilizes the most 

relevant information in the data for parameter estimation. 

VI. In many cases, the MXLE is asymptotically unbiased, meaning that as the sample size becomes large, 

the 𝑒𝑥𝑝ected value of the MXLE approaches the true parameter value. However, MXLE can be biased 

for small sample sizes or in certain situations. 
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VII. MXLE can be sensitive to outliers or deviations from the assumed model. In the presence of outliers, the 

MXLE may provide parameter estimates that are highly influenced by the outliers. To mitigate this, 

alternative estimators like robust M-estimators or Bayesian methods can be considered. 

VIII. In small samples, the efficiency of the MXLE may be compromised, and other estimators, such as 

method of moments or Bayesian estimators, may perform better in terms of mean squared error. MXLE 
efficiency tends to manifest in larger samples. 

IX. MXLE may still be consistent under model misspecification, meaning it can provide reasonable 

estimates even when the assumed model is not entirely correct. However, this depends on the extent of 

the misspecification. 

X. MXLE provides parameter estimates that are straightforward to interpret because they maximize the 

likelihood of the observed data under the assumed model. In many cases, MXLE has well-defined 

closed-form solutions, making it computationally efficient and easy to implement. 

 

The choice to use MXLE as an estimation method depends on the specific problem, the availability of data, and the 

appropriateness of the assumed model. While MXLE has numerous desirable statistical properties, it is not 

universally suitable for all situations, and alternative estimation methods may be more appropriate depending on the 

context and data characteristics. Let 𝑥1, 𝑥2, … , 𝑥𝑛  be a RS from this distribution with parameter vector (𝜃, 𝜆)⊺. The 

log-likelihood function for (𝜃, 𝜆), say ℓ(𝜃, 𝜆), is given by 

 

ℓ(𝜃, 𝜆) = 𝑛log𝜆 − 2𝑛∑

𝒾=0

𝑛

log(1 + 𝜆𝑥𝒾:𝑛) +∑

𝒾=0

𝑛

log[𝜃(1 + 𝜆𝑥𝒾:𝑛) + 1] − 𝜆𝜃∑

𝒾=0

𝑛

log𝑥𝒾:𝑛 

which can be maximized either using the statistical programs or by solving the nonlinear system obtained from ℓ(𝜃, 𝜆) 

by differentiation. The score vector, 𝐔(𝜃, 𝜆) = (
𝜕

𝜕𝜃
ℓ(𝜃, 𝜆),

𝜕

𝜕𝜆
ℓ(𝜃, 𝜆))

⊺

, are easily derived. 

4.2 Cramér-von-Mises method 

The Cramér-von-Mises estimation (CVOME) method is consistent, meaning that as the sample size (n) increases, the 

estimated parameters converge in probability to the true population parameters. In other words, as you collect more 

data, the estimates become more accurate. When the sample size is sufficiently large, the distribution of the Cramér-

von-Mises statistic converges to a normal distribution. This property allows you to construct asymptotic confidence 

intervals for the estimated parameters. The Cramér-von-Mises estimator is efficient if it achieves the Cramér-Rao 

lower bound, which is the smallest possible variance for an unbiased estimator. In some cases, the Cramér-von-Mises 

estimator may be asymptotically efficient, meaning that it attains the smallest possible variance among all consistent 

estimators. The Cramér-von-Mises estimator can be robust to outliers, meaning that it may still provide reasonable 

parameter estimates even when the data contains a small number of extreme values or outliers. However, its robustness 

properties depend on the specific application and the underlying distribution being estimated. The Cramér-von-Mises 
method does not assume a specific underlying distribution for the data. It is a non-parametric method, which means it 

can be applied in a wide range of situations where you do not have a prior distributional assumption. Like all 

estimators, the Cramér-von-Mises estimator may exhibit a bias-variance trade-off. This means that you might need to 

balance the bias (systematic error) and the variance (random error) of the estimator depending on the sample size and 

the properties of the data. The choice to use the Cramér-von-Mises estimation method depends on the specific problem 

and the assumptions you are willing to make about the underlying distribution. It is a valuable tool for non-parametric 

estimation and goodness-of-fit testing in statistics. The CVOME of the parameters 𝜃 and 𝜆 are obtained via minimizing 

the following 𝑒𝑥𝑝ression with respect to the parameters 𝜃 and 𝜆 respectively, where  

𝐶𝑉𝑀(𝜃,𝜆) =
1

12
𝑛−1 +∑

𝑛

𝒾=1

[𝐹𝜃,𝜆(𝑥𝒾:𝑛) − 𝜁(𝒾,𝑛)]
2
, 

where 

𝜁  (𝒾,𝑛) =
2𝒾−1

2𝑛
 

and 

𝐶𝑉𝑀(𝜃,𝜆) =∑

𝑛

𝒾=1

(1 −
1

1 + 𝜆𝑥𝒾:𝑛
𝑒𝑥𝑝(−𝜆𝜃𝑥𝒾:𝑛) − 𝜁(𝒾,𝑛))

2

. 

The, CVOME of the parameters 𝜃 and 𝜆 are obtained by solving the two following non-linear equations  
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∑

𝑛

𝒾=1

(1 −
1

1 + 𝜆𝑥𝒾:𝑛
𝑒𝑥𝑝(−𝜆𝜃𝑥𝒾:𝑛) − 𝜁(𝒾,𝑛)) 𝛓(𝜃)(𝑥𝒾:𝑛, 𝜃, 𝜆) = 0, 

and  

∑

𝑛

𝒾=1

(1 −
1

1 + 𝜆𝑥𝒾:𝑛
𝑒𝑥𝑝(−𝜆𝜃𝑥𝒾:𝑛) − 𝜁(𝒾,𝑛)) 𝛓(𝜆)(𝑥𝒾:𝑛, 𝜃, 𝜆) = 0, 

where 𝛓𝜃(𝑥𝒾:𝑛 , 𝜃, 𝜆) and 𝛓𝜆(𝑥𝒾:𝑛, 𝜃, 𝜆) are the first derivatives of the CDF of BHE distribution with respect to 𝜃 and 𝜆 

respectively. 

4.3 Method of L-moments 

The Method of L-Moments is an alternative approach to moments-based estimators, such as the method of moments 

and maximum likelihood estimation. L-Moments are linear combinations of ordered statistics (usually sample 

quantiles) and provide several statistical properties that make them useful in various applications, especially in the 

analysis of heavy-tailed and skewed distributions. Here are some statistical properties of the Method of L-Moments: 

I. L-Moments are less sensitive to outliers and heavy tails compared to traditional moments-based 

estimators. This makes them particularly useful for analyzing data with extreme values or when the 
underlying distribution is not well-behaved. 

II. Like traditional moments, L-Moments are invariant to linear transformations. This means that they 

provide consistent estimates of the parameters regardless of the units in which the data is measured. 

III. L-Moments can be used to estimate traditional moments (mean, variance, skewness, and kurtosis) as 

well as other distribution characteristics. They are often used for estimating these moments in situations 

where traditional methods are not applicable. 

IV. L-Moments are valuable for characterizing the shape of a distribution. In particular, L-Moments can help 

identify the tail behavior and asymmetry of a distribution. 

V. L-Moment ratios can be used for goodness-of-fit tests to assess how well a particular distribution fits a 

dataset. This is useful in distribution selection and model diagnostics. 

VI. L-Moments are helpful in selecting an appropriate distribution for a dataset by comparing the L-Moment 

ratios of different distributions with those estimated from the data. 
VII. L-Moment ratios can be used to estimate the parameters of specific probability distributions, such as the 

Pearson Type III, generalized extreme value (GEV), and generalized logistic distributions, among others. 

This makes the L-Moment method particularly relevant for hydrology, environmental science, and 

engineering applications. 

VIII. L-Moments may be more efficient in the estimation of distribution parameters in certain situations, 

especially for heavy-tailed distributions, compared to traditional moment-based methods. 

IX. L-Moments extend naturally to higher order moments (beyond the fourth moment) and can provide 

information about the entire distribution of a dataset. 

X. L-Moments are commonly used in hydrology and engineering to estimate return periods and design 

floods, as they provide information about the tail of the distribution, which is critical for extreme value 

analysis. 

XI. L-Moment estimators often have simpler closed-form 𝑒𝑥𝑝ressions, making them computationally 

efficient and less prone to numerical issues than maximum likelihood estimation in some cases. 

 
The Method of L-Moments has been widely adopted in various fields, particularly in areas where heavy-tailed and 

skewed distributions are prevalent. It offers valuable alternatives to traditional moment-based and maximum 

likelihood estimation methods, and its robustness and ease of use make it suitable for a range of practical 

applications. The L-moments for the population can be obtained from   

𝛾𝓇 =
1

𝓇
∑

𝓇−1

𝑚=0
(−1)𝑚 (

𝓇 − 1
𝑚

)𝐄(𝑥𝓇−𝑚:𝑚)| (𝓇≥1). 

The first four L-moments are given by  

𝛾1(𝜃, 𝜆) = 𝐄(𝑥1:1) = 𝜇1
′ = 𝕃1, 

and 

𝛾2(𝜃, 𝜆) =
1

2
𝐄(𝑥2:2 − 𝑥1:2) =

1

2
(𝜇2:2
′ − 𝜇1:2

′ ) = 𝕃2, 
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where 𝕃𝒾|(𝒾=1.2.3.4) is the L-moments for the sample. Then, the L-moments estimators 𝜃(LME) and �̂�(LME) of the 

parameters 𝜃 and 𝜆 can be obtained by solving the following four equations numerically 

𝛾1(𝜃(LME), �̂�(LME)) = 𝕃1, 

and 

𝛾2(𝜃(LME), �̂�(LME)) = 𝕃2. 

4.4 Anderson Darling method 

The Anderson Darling estimation (ANDE) of 𝜃(ANDE) and  �̂�(ANDE) are obtained by minimizing the function 

ANDE(𝜃, 𝜆) = −𝑛 − 𝑛−1∑

𝑛

𝒾=1

(2𝒾 − 1) {
log𝐹(𝜃,𝜆)(𝑥𝒾:𝑛)

+log[1 − 𝐹(𝜃,𝜆)(𝑥[−𝒾+1+𝑛:𝑛])]
}. 

The parameter estimates of 𝜃(ANDE) and  �̂�(ANDE) follow by solving the nonlinear equations 

𝜕

𝜕𝜃
[ANDE(𝜃, 𝜆)] = 0, 

and 
𝜕

𝜕𝜆
[ANDE(𝜃, 𝜆)] = 0. 

4.5 Right Tail-Anderson Darling method 

The Tail-Anderson Darling estimation (RT-ANDE) of 𝜃(RT−ANDE) and  �̂�(RT−ANDE) are obtained by minimizing 

RT − ANDE(𝜃, 𝜆) =
1

2
𝑛 − 2∑

𝑛

𝒾=1

𝐹(𝜃,𝜆)(𝑥𝒾:𝑛) 

−
1

𝑛
∑

𝑛

𝒾=1

(2𝒾 − 1){log[1 − 𝐹(𝜃,𝜆)(𝑥[−𝒾+1+𝑛:𝑛])]}. 

The parameter estimates of 𝜃(RT−ANDE) and  �̂�(RT−ANDE) follow by solving the nonlinear equations 

𝜕

𝜕𝜃
[𝑅𝑇𝐴𝐷𝐸(𝜃, 𝜆)] = 0, 

and 
𝜕

𝜕𝜆
[𝑅𝑇𝐴𝐷𝐸(𝜃, 𝜆)] = 0. 

4.6 Left Tail-Anderson Darling method 

The left Tail-Anderson Darling estimation (LTANDE) of 𝜃(LTANDE) and  �̂�(LTANDE) are obtained by minimizing  

𝐿𝑇𝐴𝐷𝐸(𝜃, 𝜆) = −
3

2
𝑛 + 2∑

𝑛

𝒾=1

𝐹(𝜃,𝜆)(𝑥𝒾:𝑛) −
1

𝑛
∑

𝑛

𝒾=1

(2𝒾 − 1)log𝐹(𝜃,𝜆)(𝑥𝒾:𝑛). 

The parameter estimates of 𝜃(LTANDE) and  �̂�(LTANDE) follow by solving the nonlinear equations 

𝜕

𝜕𝜃
[𝐿𝑇𝐴𝐷𝐸(𝜃, 𝜆)] = 0, 

and 
𝜕

𝜕𝜆
[𝐿𝑇𝐴𝐷𝐸(𝜃, 𝜆)] = 0. 

5 Simulation studies for comparing estimation methods 

To compare the traditional estimating techniques, a numerical simulation is run. The BHE distribution’s N=1000 

generated data sets serve as the foundation for the simulation investigation, where 𝑛 = 50,100,200  and 300 and 

 θ λ 

Table 1 1.5 2.0 

Table 2 0.5 0.8 

Table 3 0.7 0.7 

 

The estimates are compared in terms of their 
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1-Bias (BIAS(𝜃,𝜆)): 

BIAS (𝜃) =
1

𝐵
∑𝐵𝒾=1 (𝜃�̂� − 𝜃) 

and  

BIAS (𝜆) =
1

𝐵
∑𝐵𝒾=1 (𝜆�̂� − 𝜆), 

2-Root mean-standard error (RMSE(𝜃,𝜆)): 

RMSE (𝜃) = √
1

𝐵
∑𝐵𝒾=1 (𝜃�̂� − 𝜃)

2
  

and  

RMSE (𝜆) = √
1

𝐵
∑𝐵𝒾=1 (𝜆�̂� − 𝜆)

2
 

3-The MADv (𝐷(abs)): 

D(abs) =
1

𝑛𝐵
∑𝐵𝒾=1 ∑

𝑛
𝑗=1 |𝐹(𝜃,𝜆)(𝑥𝒾𝑗) − 𝐹(�̂�,�̂�)(𝑡𝒾𝑗)|,  

4-The MaxADv (𝐷(max)): 

D(max) =
1

𝐵
∑𝐵𝒾=1 max𝑗|𝐹(𝜃,𝜆)(𝑥𝒾𝑗) − 𝐹(�̂�,�̂�)(𝓌𝒾𝑗)|.  

Table 1 gives simulation results for parameters θ = 1.5 and λ = 2 under the MXLE, CVOM, L-moment, ANDE, RT-

ANDE and LE-ANDE methods. Table 2 presents simulation results for parameters θ = 0.5 and λ = 0.8 under the MXLE, 

CVOM, L-moment, ANDE, RT-ANDE and LE-ANDE methods. Table 3 shows simulation results for parameters θ = 

0.7 and λ = 0.7 under the MXLE, CVOM, L-moment, ANDE, RT-ANDE and LE-ANDE methods. From From Tables 

1, 2 and 3 we note that the BIAS (𝜃,𝜆) tend to zero when 𝑛 increases which means that all estimators are non-biased 

and the RMSE (𝜃,𝜆) tend to zero when 𝑛 increases which means incidence of consistency property. In other ordes: 

based on Table 1, Table 2 and Table 3, the BIAS(θ) approaches zero as the sample size increases for all estimation 

methods that were used. Based on Tables 1, 2 and 3, the RMSE(θ) decreases and approaches zero as the sample size 

increases for all estimation methods that were used.  Based on Table 1, Table 2 and Table 3, the BIAS(λ) approaches 

zero as the sample size increases for all estimation methods that were used. Based on Tables 1, 2 and 3, the RMSE(λ) 

decreases and approaches zero as the sample size increases for all estimation methods that were used. The MXLE is 

the best method for all sample sizes. However, most methods performed well for = 50,100,200  and 300. 

 

6 The BHE-AFT model 

The AFT estimation and reliability analysis are closely related and often used together in engineering, product design, 

quality control, and other fields to assess and improve the durability and performance of systems and components. 
AFT models are a class of survival models used to estimate the time-to-failure or survival time of a system or 

component. These models relate the survival time to covariates or factors, often by assuming a particular probability 

distribution for the survival times. Reliability analysis is the process of assessing the reliability of a system or 

component, which refers to its ability to perform a required function without failure for a specified period under given 

conditions. It includes tasks like designing for reliability, maintaining and improving system reliability, and 

conducting reliability tests. AFT models help in assessing the reliability of a system or component by estimating the 

time-to-failure under different conditions. Engineers can use these estimates to make informed decisions about system 

design and maintenance. AFT models are commonly applied in stress testing to accelerate the failure of components 

or systems. By applying higher levels of stress (e.g., temperature, load), you can estimate how long a component will 

last in real-world conditions. This is crucial for reliability analysis. 
 

In this section, we propose a new Burr-Hatke exponential accelerated failure time model. For this, we suppose that 𝑛 

independent failure time variables are observed and we consider that the hypothesis 𝐻0 stating that the survival 

function given the vector of 𝑒𝑥𝑝lanatory variables 𝑧(𝑡) = (𝑧0(𝑡), 𝑧1(𝑡), . . . , 𝑧𝑚(𝑡)),   𝑧0(𝑡) = 1 (covariates such as 

temperature, stress,...etc) has the form  

𝑆(𝑡|𝑧) = 𝑆0(𝐼0
𝑡[𝛽; 𝑧(𝑢)]; 𝜁), 

where  𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑚)
𝑇  and  

𝐼0
𝑡[𝛽; 𝑧(𝑢)] = ∫

𝑡

0

𝑒−𝛽
𝑇𝑧(𝑢)𝑑𝑢 
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is a vector of unknown regression parameters, the function 𝑆0 is a specified functional of time and does not depend on 

𝑧𝒾. If 𝑒𝑥𝑝lanatory variables are constant over time, the parametric accelerated failure time (AFT) model has the form  

𝑆(𝑡|𝑧) = 𝑆0[𝑒𝑥𝑝(−𝛽
𝑇𝑧)𝑡; 𝜁]. 

Consider the BHE distribution as baseline distribution where  

 𝐻0 = 𝐹(𝑡) = 𝐹AFT(𝑡, 𝜃, 𝜆, 𝛽) = 𝐹AFT. 
So, the CDF of the AFT model can be expressed as  

𝐹AFT = 1−
1

1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)
𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)], 𝑡 > 0; 𝜃, 𝜆 > 0, 

and then, the PDF of the AFT model can be re-expressed as 

 
 

𝑓AFT = 𝜆𝜃
1

1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)
𝑒𝑥𝑝(−𝛽𝑇z)𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)] 

+𝜆
1

(1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z))
2 𝑒𝑥𝑝(−𝛽

𝑇z)𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)]. 

Then, 

𝑓AFT =
𝜆

(1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z))
2 𝑒𝑥𝑝(−𝛽

𝑇z)𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)][𝜃(1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)) + 1]. 

Analogously, the corresponding survival function (SF), HRF and cumulative HRF of the AFT model are given by 

 

𝑆AFT = 𝑆0[𝑡𝑒𝑥𝑝(−𝛽
𝑇z)] =

𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)]

1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)
 

ℎAFT = 𝜆𝑒𝑥𝑝(−𝛽
𝑇z)

{𝜃[1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)] + 1}

1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)
, 

and 

𝐻AFT = −log {
𝑒𝑥𝑝[−𝜆𝜃𝑡𝑒𝑥𝑝(−𝛽𝑇z)]

1 + 𝜆𝑡𝑒𝑥𝑝(−𝛽𝑇z)
}. 

Table 1: Simulation results for parameters θ = 1.5 and λ = 2 

 n BIAS(θ) BIAS(λ) RMSE(θ) RMSE(λ) D(abs) D(max) 

MXLE 50 0.03481 0.02596 0.33077 0.31835 0.00675 0.00992 

CVOM  0.02881 0.02338 0.39524 0.35856 0.00581 0.00854 

L-moment  0.06710 0.06305 0.34102 0.33405 0.01447 0.02119 

ANDE  0.03710 0.03330 0.35057 0.32448 0.00787 0.01153 

RT-ANDE  0.03174 0.02829 0.33610 0.31629 0.00672 0.00984 

LE-ANDE  0.06546 0.05515 0.42992 0.38206 0.01339 0.01961 

MXLE 100 0.02663 0.02087 0.22994 0.22089 0.00530 0.00778 

CVOM  0.01933 0.01578 0.27279 0.24796 0.00393 0.00576 

L-moment  0.02624 0.02424 0.23598 0.23241 0.00566 0.00830 

ANDE  0.01039 0.00894 0.24543 0.22768 0.00217 0.00318 

RT-ANDE  0.00851 0.00704 0.23648 0.22335 0.00174 0.00256 

LE-ANDE  0.02188 0.01795 0.29163 0.25996 0.00446 0.00654 

MXLE 200 0.01482 0.01290 0.15810 0.15293 0.00310 0.00456 

CVOM  0.01685 0.01456 0.19073 0.17375 0.00351 0.00517 

L-moment  0.00839 0.00756 0.15911 0.15695 0.00179 0.00263 

ANDE  0.00844 0.00804 0.17875 0.16662 0.00185 0.00272 
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RT-ANDE  0.00405 0.00393 0.16799 0.15933 0.00090 0.00132 

LE-ANDE  0.02066 0.01776 0.21799 0.19501 0.00429 0.00631 

MXLE 300 0.00235 0.00134 0.12372 0.12083 0.00041 0.00060 

CVOM  0.00253 0.00185 0.15414 0.14073 0.00049 0.00072 

L-moment  0.00480 0.00421 0.12765 0.12603 0.00101 0.00149 

ANDE  -0.00113 -0.00132 0.14436 0.13469 0.00028 0.00041 

RT-ANDE  -0.00184 -0.00206 0.13449 0.12749 0.00044 0.00065 

LE-ANDE  0.00230 0.00145 0.17603 0.15753 0.00042 0.00061 

 

Table 2: Simulation results for parameters θ = 0.5 and λ = 0.8 

 n BIAS(θ) BIAS(λ) RMSE(θ) RMSE(λ) D(abs) D(max) 

MXLE 50 0.03345 0.01650 0.16557 0.14737 0.01115 0.01629 

CVOM  0.01924 0.00936 0.21546 0.16172 0.00642 0.00937 

L-moment  0.03054 0.02507 0.16300 0.15418 0.01282 0.01870 

ANDE  0.01599 0.01109 0.18807 0.15171 0.00621 0.00907 

RT-ANDE  0.01217 0.00810 0.17077 0.14411 0.00464 0.00678 

LE-ANDE  0.03669 0.02133 0.24494 0.17532 0.01304 0.01908 

MXLE 100 0.01451 0.00702 0.11202 0.10085 0.00482 0.00706 

CVOM  0.00959 0.00507 0.14610 0.11144 0.00330 0.00484 

L-moment  0.01568 0.01299 0.11130 0.10585 0.00666 0.00972 

ANDE  0.00737 0.00477 0.12856 0.10421 0.00278 0.00406 

RT-ANDE  0.00918 0.00634 0.11828 0.09987 0.00357 0.00522 

LE-ANDE  0.01576 0.00899 0.16492 0.11935 0.00560 0.00820 

MXLE 200 0.01002 0.00552 0.07808 0.06956 0.00352 0.00515 

CVOM  0.00707 0.00398 0.09938 0.07573 0.00251 0.00367 

L-moment  0.00855 0.00719 0.07638 0.07337 0.00367 0.00536 

ANDE  0.00321 0.00176 0.09171 0.07455 0.00113 0.00165 

RT-ANDE  0.00110 -0.00009 0.08547 0.07271 0.00020 0.00030 

LE-ANDE  0.00630 0.00311 0.11611 0.08448 0.00212 0.00310 

MXLE 300 0.00583 0.00378 0.06414 0.05797 0.00220 0.00322 

CVOM  0.00547 0.00344 0.08248 0.06329 0.00204 0.00298 

L-moment  0.00494 0.00411 0.06020 0.05788 0.00211 0.00308 

ANDE  0.00117 0.00051 0.07289 0.05950 0.00038 0.00055 

RT-ANDE  0.00010 -0.00021 0.06784 0.05797 0.00004 0.00005 

LE-ANDE  0.00352 0.00167 0.09273 0.06750 0.00116 0.00171 
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Table 3: Simulation results for parameters θ = 0.7 and λ = 0.7 

 n BIAS(θ) BIAS(λ) RMSE(θ) RMSE(λ) D(abs) D(max) 

MXLE 50 0.04704 0.02261 0.19687 0.11747 0.01502 0.02200 

CVOM  0.04299 0.02065 0.24119 0.12967 0.01374 0.02013 

L-moment  0.02763 0.01523 0.19791 0.12600 0.00950 0.01389 

ANDE  0.02184 0.01149 0.22493 0.12745 0.00734 0.01075 

RT-ANDE  0.02444 0.01264 0.21413 0.12391 0.00815 0.01192 

LE-ANDE  0.04831 0.02232 0.29671 0.15296 0.01513 0.02218 

MXLE 100 0.01503 0.00511 0.13867 0.08566 0.00419 0.00614 

CVOM  0.00862 0.00303 0.17976 0.09725 0.00244 0.00357 

L-moment  0.01607 0.00915 0.13305 0.08538 0.00563 0.00825 

ANDE  0.01024 0.00540 0.15179 0.08608 0.00346 0.00507 

RT-ANDE  0.00839 0.00423 0.14241 0.08372 0.00278 0.00407 

LE-ANDE  0.02123 0.00952 0.19050 0.09872 0.00662 0.00971 

MXLE 200 0.00838 0.00380 0.09383 0.05793 0.00264 0.00387 

CVOM  0.00691 0.00307 0.1086 0.06563 0.00216 0.00316 

L-moment  0.00955 0.00555 0.09300 0.05971 0.00339 0.00497 

ANDE  -0.00151 -0.00080 0.10628 0.06042 0.00051 0.00075 

RT-ANDE  0.00127 0.00050 0.09830 0.05792 0.00038 0.00055 

LE-ANDE  0.00524 0.00222 0.13188 0.06885 0.00160 0.00235 

MXLE 300 0.00039 -0.00033 0.07453 0.04567 0.00004 0.00006 

CVOM  0.00436 0.00221 0.09410 0.05126 0.00145 0.00212 

L-moment  -0.00029 -0.00057 0.07471 0.04817 0.00023 0.00034 

ANDE  0.00105 0.00052 0.08763 0.04996 0.00034 0.00050 

RT-ANDE  -0.00009 -0.00032 0.08025 0.04749 0.00012 0.00017 

LE-ANDE  0.00502 0.00215 0.10959 0.05739 0.00154 0.00226 
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7 The MXLE for the BHE-AFT model 

In this section, we apply the maximum likelihood method to estimate the parameters of the AFT for the BHE 

distribution. We give a detailed description of the method as well as the score functions and the elements of the FIM. 

7.1 The MXLE derivations 

 

Let 𝑥1, … , 𝑥𝑛 be a RS from the AFT for the BHE model with parameters 𝜃, 𝜆 and 𝛽. Let 𝐕 = (𝜃, 𝜆, 𝛽0 , 𝛽1)
⊺ be the 

4 × 1 parameter vector. For determining the MXLE of 𝐕, we have the log-likelihood function 

 

ℓ(𝑥; 𝐕) =∑

𝑛

𝒾=1

log[𝜆𝑒𝑥𝑝(−𝛽𝑇z𝒾)] − 𝜆𝜃∑

𝑛

𝒾=1

𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z) 

+∑

𝑛

𝒾=1

log[1 + 𝜃(1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z))] − 2∑

𝑛

𝒾=1

log[1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z)]. 

The score vector 

𝐈(𝐕) =
𝜕

𝜕𝐕
ℓ(𝑥; 𝐕) = (

𝜕

𝜕𝜃
ℓ(𝑥; 𝐕) ,

𝜕

𝜕𝜆
 ℓ(𝑥;𝐕),

𝜕

𝜕𝛽0
 ℓ(𝑥; 𝐕),

𝜕

𝜕𝛽1
 ℓ(𝑥; 𝐕))

⊺

 

is given by 

𝐈(𝜃) = −𝜆∑

𝑛

𝒾=1

𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z) +∑

𝑛

𝒾=1

1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z)

1 + 𝜃(1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z))

, 

 

𝐈(𝜆) =
𝑛

𝜆
− 𝜃∑

𝑛

𝒾=1

𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z) 

+𝜃∑

𝑛

𝒾=1

𝑥𝒾

1 + 𝜃(1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z))

𝑒𝑥𝑝(−𝛽𝑇z) − 2∑

𝑛

𝒾=1

𝑥𝒾
1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽

𝑇z)
𝑒𝑥𝑝(−𝛽𝑇z), 

 

𝐈(𝛽0) = 𝜃𝜆∑

𝑛

𝒾=1

𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z) 

−𝜃𝜆∑

𝑛

𝒾=1

𝑥𝒾
1 + 𝜃[1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽

𝑇z)]
𝑒𝑥𝑝(−𝛽𝑇z) + 2𝜆∑

𝑛

𝒾=1

𝑥𝒾
1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽

𝑇z)
𝑒𝑥𝑝(−𝛽𝑇z) − 1, 

 

𝐈(𝛽1) = −∑

𝑛

𝒾=1

z𝒾 + 𝜃𝜆∑

𝑛

𝒾=1

z𝒾𝑥𝒾𝑒𝑥𝑝(−𝛽
𝑇z) 

+2𝜆∑

𝑛

𝒾=1

z𝒾𝑥𝒾
1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽

𝑇z)
𝑒𝑥𝑝(−𝛽𝑇z) − 𝜃𝜆∑

𝑛

𝒾=1

z𝒾𝑥𝒾
1 + 𝜃[1 + 𝜆𝑥𝒾𝑒𝑥𝑝(−𝛽

𝑇z)]
𝑒𝑥𝑝(−𝛽𝑇z). 

 

Setting the nonlinear system of equations 𝐈(𝜃) = 0, 𝐈(𝜆) = 0, 𝐈(𝛽0) = 0 and 𝐈(𝛽1) = 0 and solving them simultaneously 

yields the MXLE 𝐕 = (𝜃, �̂�, 𝛽0̂, 𝛽1̂)
⊺. To solve these equations, it is usually more convenient to use nonlinear 

optimization methods such as the quasi-Newton algorithm to numerically maximize ℓ. Since, we can not find the 

𝑒𝑥𝑝licit formulas for the MXLEs of the parameters, we use numerical methods such as the Newton Raphson method, 

the Monte Carlo method, the BB algorithm or others. 

7.2 Assessing the BHE-AFT model via a simulation study 

We carry out an important study by simulation using the R programming software. In the following, we present the 

results obtained by means of numerical method (the method of Newton Raphson). Suppose that the AFT for the BHE 

distribution is considered. The data is iterated 𝑁 = 5000 times, with 𝜃 = 2.5, 𝜆 = 1.89, 𝛽0 = 0.5, 𝛽1 = 0.38 as values 

of the parameters. Using BZB algorithm (see Ravi (2009)) in R software for calculating the averages of the simulated 

values of the MXLEs 𝜃, �̂�, �̂�0, �̂�1 parameters and their mean squared errors (MSE), sample sizes are 𝑛 = 15, 𝑛 = 30,
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𝑛 = 50, 𝑛 = 150, 𝑛 = 300  and  𝑛 = 500. Table 4 lists the square mean errors for the parameters’ MXLEs (SME). 

These methods’ results are definitive, as can be seen in the table. For confirming the fact that the MXLEs are √𝑛 - 

consistent, we use the simulation results in Figure 1, we can be seen that all estimates converge faster than 𝑛−0.5. 

 
Figure  1: Simulated average absolute errors for MXLEs 𝜃, �̂�, �̂�0 and �̂�1 vs  

their true values as a function of sample size 𝑛. Number of runs for every 𝑛 was 𝑁 = 5000. 

   

8 Validation of the BHE-AFT model 

Any traditional test, such as Pearson’s chi-square, Kolmogorov-Smirnov statistic, Anderson Darling statistic, and 
other statistics, can be used to validate the selection of model employed in analysis in the case of a well-defined 

distribution. However, when the parameters are unknown and must be estimated from the sample, the classical tests 

are no longer appropriate, and the test statistical distributions rely on the model put forth and the estimation technique 

utilised. In case of complete data, various techniques are used to verify the ANDEquacy of mathematical models to 

data from observation. The most  ommon tests are those based on Pearson’s Chi-square statistics. Nevertheless, these 

can not be applied in all situations, especially when the data is censored or when the the parameters of the model are 

unknown. Nikulin (1973) and Rao and Robson (1974) each independently presented a statistic for the whole data that 

is now known as the NIKRR statistic. At the limit, this statistic, which is based on the MXLEs on the initial data, 

likewise exhibits a Chi-square distribution. For more details on the construction of these statistics, we can see Voinov 

et al. (2013) and Goual et al. (2019).These methods were used to adapt observations to the distribution of Lomax 

inverse Weibull (Goual et al., 2020), the Burr XII inverse Rayleigh model (Goual et al., 2019), and the Lindley 

𝑒𝑥𝑝onentiated model (Goual et al., 2019). In this section, we build a modified chi-square type test based on the NIKRR 

test statistic for the BHE model. 

Table 4: 𝑀𝐿𝐸𝑠(𝜃, �̂�, �̂�0, �̂�1) of the parameters and their mean squared errors. 

N = 5000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500 

θ̂ 2.5696 2.5629 2.5612 2.5580 2.5566 2.4992 

SME 2.9145×10−3 2.4007×10−3 2.2343×10−3 1.9871×10−3 1.8087×10−3 5.6424×10−4 

λ̂ 1.9318 1.9149 1.9067 1.8889 1.8826 1.8911 

SME 5.5383×10−3 3.5428×10−3 2.7556×10−3 1.2543×10−3 7.8799×10−4 2.0873×10−4 

β̂0 0.5085 0.5046 0.5039 0.5011 0.5006 0.4988 

SME 2.0453×10−3 1.6179×10−3 1.4261×10−3 1.1747×10−3 1.0710×10−3 6.3154×10−4 

β̂1 0.3807 0.3835 0.3838 0.3837 0.3837 0.3802 

SME 1.1364×10−3 4.5229×10−4 2.7133×10−4 9.2021×10−5 6.0664×10−5 4.2128×10−6 
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8.1 The NIKRR statistic test for the BHE-AFT model 

To test the hypothesis 𝐻0 according to which 𝑇1 , 𝑇2 , ⋯ , 𝑇𝑛, an 𝑛-sample comes from a parametric family 𝐹𝐕(𝑡) 

𝐻0: Pr{𝑇𝒾 ≤ 𝑡} = 𝐹𝐕(𝑡),    𝑡 ∈ ℝ, 

where 𝐕 = (𝐕1, 𝐕2, ⋯ , 𝐕𝑠)
𝑇 represents the vector of unknown parameters, Nikulin (1973) and Rao and Robson (1974) 

proposed 𝒦2 the NIKRR statistic defined as below. Observations 𝑇1 , 𝑇2, ⋯ , 𝑇𝑛 are grouped in 𝓇 subintervals 

𝐈1, 𝐈2, ⋯ , 𝐈𝓇 mutually disjoint 𝐈𝑗 =]𝑎𝑗-1; 𝑎𝑗]; where 𝑗 = 1;𝓇. The limits 𝑎𝑗  of the intervals 𝐈𝑗  are obtained such that 

𝑝𝑗(𝐕) = 𝑝𝑗(𝐕; 𝑎𝑗−1, 𝑎𝑗) = ∫
𝑎𝑗

𝑎𝑗−1

𝑓𝐕(𝑡)𝑑𝑡|(  𝑗=1,2,⋯,𝓇) , 

so 

𝑎𝑗 = 𝐹
−1 (

𝑗

𝓇
)|(𝑗=1,⋯,𝓇−1). 

If 𝜈𝑗 = (𝜈1 , 𝜈2 ,⋯ , 𝜈𝓇)
𝑇  is the vector of frequencies obtained by the grouping of data in these 𝐈𝑗  intervals  

 𝜈𝑗 = ∑
𝑛
𝒾=1 1{𝑡𝒾∈𝐈𝑗}|(𝑗=1,...,𝓇) . 

The NIKRR statistic is given by 

𝒦2(�̂�𝑛) = 𝑋𝑛
2(𝐕𝑛) +

1

𝑛
𝐋𝑇(�̂�𝑛)(𝐈(𝐕𝑛) − 𝐉(𝐕𝑛))

−1𝐋(�̂�𝑛), 

where 

𝑋𝑛
2(𝐕) = (𝑃(𝜈1, 𝑝1; 𝐕), 𝑃(𝜈2 , 𝑝2; 𝐕),⋯ ,𝑃(𝜈𝓇 , 𝑝𝓇 ; 𝐕))

𝑇

 

where 

𝑃(𝜈1 , 𝑝1; 𝐕) =
1

√𝑛𝑝1(𝐕)

[𝜈1 − 𝑛𝑝1(𝐕)], 

 

𝑃(𝜈2, 𝑝2; 𝐕) =
1

√𝑛𝑝2(𝐕)
[𝜈2 − 𝑛𝑝2(𝐕)], 

 

𝑃(𝜈𝓇 , 𝑝𝓇 ; 𝐕) =
1

√𝑛𝑝𝓇(𝐕)
[𝜈𝓇 − 𝑛𝑝𝓇(𝐕)] 

and 𝐉(𝐕) is the information matrix for the grouped data defined by 

 𝐉(𝐕) = 𝐵(𝐕)𝑇𝐵(𝐕), 
with 

𝐵(𝐕) = [
1

√𝑝
𝒾

𝜕

𝜕𝜇
𝑝𝒾(𝐕)]

𝓇×𝑠

|(𝒾=1,2,⋯,𝓇  and𝓀=1,⋯,𝑠), 

then 

𝐋(𝐕) = (𝐋1(𝐕), . . . , 𝐋𝑠(𝐕))
𝑇   with    𝐋𝓀(𝐕) =∑

𝓇

𝒾=1

𝜈𝒾
𝑝𝒾

𝜕

𝜕𝐕𝓀
𝑝𝒾(𝐕), 

where 𝐈𝑛(𝐕�̂�) represents the estimated FIM and 𝐕�̂� is the maximum likelihood estimator of the parameter vector. The 

𝒦2 statistic follows a distribution of chi-square 𝛘𝓇−1
2  with (𝓇 − 1) degrees of freedom. 

 

8.2 Simulation studies under the NIKRR statistic 𝑲𝟐 

For simulation studies to make use of the NIKRR statistic, it is necessary to both generate data and carry out statistical 

analyses that are predicated on the NIKRR statistic. Both of these steps must be completed before the simulation 
studies can begin. A probability distribution and the data that has been seen are compared using these tests in order to 

determine the degree of similarity between the two. The NIKRR statistic is a test that determines whether or not a 

particular distribution accurately portrays the data. The test's name stands for the number of times the statistic was 

used. This is accomplished by analyzing the data in relation to the distribution that is under scrutiny. tests to identify 

whether or not a given distribution accurately represents the data that have been seen, in addition to tests to establish 

whether or not a distribution is a good fit for the data. tests to assess whether or not a particular distribution accurately 

captures the data that have been seen. They give researchers and statisticians with aid in generating well-informed 

decisions regarding the selection of models and the selection of probability distributions for use in a variety of 
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applications by assisting with the selection of models and the selection of probability distributions. These choices can 

be made in regards to the models that are used and the probability distributions that are used. 

 

Consider a sample 𝑇1:𝑛 where 𝑇 = 𝑇1:𝑛 = (𝑇1 , 𝑇2 , ⋯ , 𝑇𝑛)
𝑇. If these data are distributed in accordance with the BHE 

model, then 𝑃{𝑇1:𝑛 ≤ 𝑡} = 𝐹𝐕(𝑡); with unknown parameters 𝐕 = (𝜃, 𝜆, 𝛽0, 𝛽1)
𝑇, by fitting the NIKRR statistic created 

in the preceding section, a chi-square goodness-of-fit test is created. The MXLEs 𝐕�̂� of the unknown parameters of 

the AFT-BHE model are computed on the initial data. Since, the statistic 𝒦2 not dependent on the parameters, we can 

therefore use the estimated Fisher information matrix (FIM) 𝐼𝑛(𝐕�̂�).  
 

All the components of the statistic 𝒦2, for the distribution BHE are provided, therefore 𝒦2 can be deduced easily. In 

order to support the results obtained in this work, a numerical simulation is performed. Therefore, in order to test the 

null hypothesis 𝐻0 of the BHE model, we calculated 5000 sample data simulations (𝑛 = 15, 𝑛 = 30, 𝑛 = 50, 𝑛 =
150, 𝑛 = 300 and 𝑛 = 500) from BHE distribution, after calculating the value of the criterion statistic 𝒦2, we count 

the number of rejected cases of the null hypothesis 𝐻0. When 𝒦2 > 𝒦2(𝓇), the significance is different level 𝛼 
(𝛼 = 0.01, 𝛼 = 0.05, 𝛼 = 0.1). The simulation results of the significance level of 𝒦2 and its theoretical value are 

shown in Table 5 below. It can be seen that the calculated empirical level value is very close to the corresponding 

theoretical level value. Therefore, we conclude that the proposed test is very suitable for the BHE distribution. 

  

Table 5: Empirical levels and corresponding theoretical levels (𝜖 = 0.01,0.05,0.1)  

N = 5000 n = 15 n = 30 n = 50 n = 150 n = 300 n = 500 

α = 0.01 0.005 0.013 0.016 0.019 0.017 0.018 

α = 0.05 0.037 0.049 0.053 0.059 0.051 0.054 

α = 0.1 0.096 0.097 0.103 0.103 0.109 0.105 

 

It is used to prove that the 𝒦2 statistics follow in the limit; a chi-squared distribution; the degree of freedom is 𝓀 =
𝓇 − 1. We calculate 𝑁 = 10000 times, under the null hypothesis 𝐻0, with different parameter values of parameters 

BHE 𝐕 = (𝜃, 𝜆, 𝛽0, 𝛽1)
𝑇 , and different 𝓇 interval values, versus the chi-squared distribution with 𝓀 degrees of 

freedom. Their histograms are shown in Figure 2,, compared with the chi-square distribution with 𝓀 degrees of 

freedom. 

 

Figure 2 shows the statistical distribution of 𝒦2 for various parameter values and k grouping units. The restriction is 

based on the chi-square with 𝓀 degrees of freedom within the simulated statistical error. The same findings are 

achieved for various parameter values and various intervals of equal probability grouping. As a result, the generalised 

chi-square 𝒦2 statistic’s limit distribution is distribution-free. 
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Figure 2: Simulated distribution of the 𝑌2 statistic under the null hypothesis 𝐻0, 
with different parameters of �̂� versus the chi-squared distribution with 𝓀 degrees of freedom, with 𝑁 = 10000. 
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8.3 Applications to real data 

 

We take into account the following real data sets and confirm the presumption that their distribution is consistent with 

the BHE model in order to demonstrate the applicability of the proposed modified chi-square goodness-of-fit test. 

8.3.1 Electric insulating fluid data 

The failure times of 76 electrical insulating fluids tested at voltages ranging from 26 to 38 kilovolts are provided in 

Lawless (2003), from which this information was derived. Bagdonavicius and Nikulin (2011) used this data and 

examined its fit with the exponential and Weibull AFT power-rule models. In this part, we evaluate how well these 

data fit our suggested BHE model. The data are: 

Voltage level (zi) ni Breakdown time xi 

26 3 5.79,1579.52,2323.7 

28 5 68.85,426.07,110.29,108.29,1067.6 

30 11 17.05,22.66,21.01,175.88,139.07,144.12, 

  20.46,43.40,194.90,47.30,7.74 

32 15 0.40,82.85,9.88,89.29,215.10,2.75,0.79, 

  15.93,3.91,0.27,0.69,100.58,27.80,13.95,53.24 

34 19 0.96,4.15,0.19,0.78,8.01,31.75,7.35,6.50,8.27,33.91, 

  32.52,3.16,4.85,2.78,4.67,1.31,12.06,36.71,72.89 

36 15 1.97,0.59,2.58,1.69,2.71,25.50,0.35,0.99, 

  3.99,3.67,2.07,0.96,5.35,2.90,13.77 

38 8 0.47,0.73,1.40,0.74,0.39,1.13,0.09,2.38 

 

1- In case of 𝜑(𝑧) = 𝑧 log linear assumption:  

Using R statistical software (the BB package) we find the values of the MXLEs of BHE distribution parameters:  

 �̂� = 0.05072, 𝜃 = 0.00638, �̂�0 = 0.05072, �̂�1 = −0.03033, 
 we choose 𝓇 = 8 intervals and the estimated FIM can be expressed as : 

 

 𝐼(𝐕) = (

344.21671 131.60389 −6.67623 −179.14691
131.60389 106.72439 −6.34703 −207.22261
−6.67623 −6.34704 0.32198 10.51235
−179.14691 −207.22261 10.51235 347.00979

), 

 

and then the NIKRR statistic : 𝒦2 = 15.64587. For the critical value : 𝛼 = 0.01, we find 𝒦2 < 𝛘0.01
2 (7) =

18.47531. 
 

2- In case of 𝜑(𝑧) = log(𝑧) power-rule assumption: 

We find the values of the MXLEs of the BHE distribution parameters:  

 �̂� = 8.53485, 𝜃 = 0.00416, �̂�0 = 0.51921, �̂�1 = 1.05652, 
 we take 𝓇 = 8 intervals and the estimated FIM can be: 

 𝐼(𝐕) = (

−700.37417 1.04630 −8.93004 −29.28962
1.04630 0.00394 −0.03542 −0.12322
−8.93004 −0.03542 0.30232 1.05171
−29.28962 −0.12322 1.05171 3.66217

) 

the NIKRR statistic is 𝒦2 = 12.62459. For the critical values : 𝛼 = 0.01 and 𝛼 = 0.05, we find  

 𝒦2 < 𝛘0.01
2 (7) = 18.47531 

and  

 𝒦2 < 𝛘0.05
2 (7) = 14.06714 

respectively. 
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3- In case of 𝜑(𝑧) = 1/𝑧 arrehnius model: 

We fit these data by the BHE model. Using R statistical software (the BB package) we find the values of the MXLEs 

of the BHE distribution parameters :  

 �̂� = 2.45748, 𝜃 = 0.01388, �̂�0 = 3.30941, �̂�1 = 1.98948, 
 we take 𝓇 = 8 intervals and the estimated FIM expressed as : 

 

 𝐼(𝐕) = (

−113.58757 2.27628 −5.59395 −0.20885
2.27628 0.06663 −0.13973 −0.00446
−5.59395 −0.13973 0.34338 0.01097
−0.20885 −0.00446 0.01097 0.00035

), 

 

the NIKRR statistic is: 𝒦2 = 18.05936. For the critical value : 𝛼 = 0.01, we find 𝒦2 < 𝛘0.01
2 (7) = 18.47531. We 

can assume that electric insulating fluid data of Lawless (2003) correspond appropriately to the BHE model. 

8.3.2 Body fat data set 

The data of Neter et al. (1996) provides information on (𝑛 = 20) body fat, triceps skinfold thickness, thigh 

circumference, and mid-arm circumference for twenty healthy females aged 20 to 34. The data are  

zi1 (triceps skinfold measurement) zi2 (thigh circumference) xi(body-fat) 

19.5, 24.7, 30.7 43.1, 49.8, 51.9 11.9, 22.8, 18.7 

29.8, 19.1, 25.6 54.3, 42.2, 53.9 20.1, 12.9, 21.7 

31.4, 27.9, 22.1 58.5, 52.1, 49.9 27.1, 25.4, 21.3 

25.5, 31.1, 30.4 53.5, 56.6, 56.7 19.3, 25.4, 27.2 

18.7, 19.7, 14.6, 29.5 46.5, 44.2, 42.7, 54.4 11.7, 17.8, 12.8, 23.9 

27.7, 30.2, 22.7, 25.2 55.3, 58.6, 48.2, 51.0 22.6, 25.4, 14.8, 21.1 

 

For 𝜑(𝑧) = 𝑧 as a log linear assumption: We fit these data by the BHE model. Using R statistical software (the BB 

package) we find the values of the MXLEs of BHE distribution parameters :  

 �̂� = 10.01547, 𝜃 = 0.0938, �̂�0 = −1.50143, �̂�1 = 0.0068, �̂�2 = −0.16031, 
 we take 𝓇 = 4 intervals and the estimated FIM expressed as 

 

 𝐼(𝐕) =

(

 
 

−1.27654 0.00515 −0.05150 −1.13224 −2.44240
0.00515 0.00911 −0.02890 −0.68339 −1.42468
−0.05150 −0.02890 0.28907 6.83392 14.24688
−1.13224 −0.68339 6.83392 168.76973 343.64429
−2.44240 −1.42468 14.24688 343.64429 709.74424)

 
 
, 

and then the NIKRR statistic : 𝒦2 = 6.170162. For different critical values : 𝛼 = 0.01, 𝛼 = 0.05 and 𝛼 = 0.1, we 

find  

 𝒦2 < 𝛘0.01
2 (3) = 11.34487,𝒦2 < 𝛘0.05

2 (3) = 7.81472 

and  

 𝒦2 < 𝛘0.1
2 (3) = 6.25138 

respectively. 

8.3.3 Johnson’s data set 

Johnson (1996) used a dataset with a response variable (the estimated percentage of body fat) and 13 continuous 

covariates (age, weight, height, and 10 measurements of the body circumference) in 252 males to illustrate some 

problems with multiple regression analysis. The aim was to predict percentage body fat from the covariates. These 

dataset is available on the ’mfp’ package in 𝑅 software. 
 

Variable Name Details Variable Name Details 

z1 age Age (years) z8 thigh Circumference (cm) 

z2 weight Weight (lb) z9 knee Circumference (cm) 
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z3 height Height (in) z10 ankle Circumference (cm) 

z4 neck Circumference (cm) z11 biceps Circumference (cm) 

z5 chest Circumference (cm) z12 forearm Circumference (cm) 

z6 ab Circumference (cm) z13 wrist Circumference (cm) 

z7 hip Circumference (cm) x pcfat Body fat (%) 

 

In our case, we used two covariates density (Density determined from underwater weighing 𝑔𝑚/𝑐𝑚3) and age (years). 

We consider the log linear assumption (𝜑(𝑧) = 𝑧)  and we fit this data by the BHE model. The values of the MXLE 

of BHE distribution parameters :  

 �̂� = 1.61415, 𝜃 = 2.81693, �̂�0 = −2.07192, �̂�1 = 0.86928, �̂�2 = 2.15662. 
 We take 𝓇 = 15 intervals and the estimated FIM 𝐼(𝐕) expressed as : 

 

 𝐼(𝐕) =

(

 
 

−7.28659 0.16146 −1.61463 −1.70273 −44.50611
0.16146 0.00483 −0.04377 −0.04617 −1.64298
−1.61463 −0.04377 0.43777 0.46172 16.42980
−1.70273 −0.04617 0.46172 0.48713 17.31200
−44.50611 −1.64298 16.42980 17.312008 662.80368)

 
 
, 

The NIKRR statistic test: 𝒦2 = 3.31332. For different critical values : 𝛼 = 0.01, 𝛼 = 0.05 and 𝛼 = 0.1, we find  

 𝒦2 < 𝛘0.01
2 (14) = 29.14124,𝒦2 < 𝛘0.05

2 (14) = 23.68479 

and  

 𝒦2 < 𝛘0.1
2 (14) = 21.06414, 

respectively. This data can be fitted by our proposed BHE model with the log linear assumption (𝜑(𝑧) = 𝑧). One can 

affirm that our proposed BHE model can be an appropriate distribution of this data. 

9 Conclusions 

Validation of chosen models for any statistical analysis is necessary if we want to obtain reliable results. This is why 

methods and techniques of adjustment tests are in perpetual development. When the distribution is specified, we can 

use any conventional test, however, to accept a composite hypothesis when parameters are unknown and must be 

estimated from the sample in a censoring data case, these tests are more suitable and the distributions of the test 

statistics depend on the estimation method used and the proposed model.  In this paper we presented a new 

exponential model called the Burr-Hatke exponential. Two truncated moments, the hazard function, and the 

conditional expectation of a function of the random variable are used to offer some conclusions for characterizing 

the BHE distribution. Different estimation methods are considered for assessing the finite sample behavior including 

the maximum likelihood, Cramer-von-Mises, Anderson Darling, right tail-Anderson Darling, left tail-Anderson 

Darling and method of L-moments. Simulation studies for comparing the estimation methods are performed. A new 

Burr-Hatke exponential accelerated failure time model is presented as a parametric accelerated life model when the 

baseline survival function belongs to BHE model. In both the complete and right censored data instances, we provide 

a novel modified chi-square test for the Burr-Hatke exponential accelerated failure time model. The validity of the 

Burr-Hatke exponentially accelerated failure time model is investigated using the Nikulin-Rao-Robson theoretical 

global. The maximum likelihood method is considered in this. For evaluating the Burr-Hatke exponential accelerated 

failure time model and evaluating the efficacy of the Nikulin-Rao-Robson test statistic, respectively, two simulation 

studies are presented. Additionally, three actual data sets are taken into account to demonstrate the Nikulin-Rao-

Robson test statistic’s effectiveness in validation. 

 

For the electric insulating fluid data, we have the following results:  

• Under the log linear assumption: (𝒦2 = 15.64587) < (𝛘0.01
2 (7) = 18.47531), decision: accept 𝐻0|𝛼 = 0.01. 

• Under the power-rule assumption:  (𝒦2 = 12.62459) < (𝛘0.01
2 (7) = 18.47531), decision: accept 𝐻0|𝛼 = 0.01. 

Also, (𝒦2 = 12.62459) < (𝛘0.05
2 (7) = 14.06714), decision: accept 𝐻0|𝛼 = 0.05; 

• Under the arrehnius model: (𝒦2 = 18.05936) < (𝛘0.01
2 (7) = 18.47531), decision: accept 𝐻0|𝛼 = 0.01.  

 

For the body fat data set, we have the following results: 

• For 𝛼 = 0.01: (𝒦2 = 6.170162) < (𝛘0.01
2 (3) = 11.34487), decision: accept 𝐻0|𝛼 = 0.01; 

• For 𝛼 = 0.05: (𝒦2 = 6.170162) < (𝛘0.04
2 (3) = 7.81472), decision: accept 𝐻0|𝛼 = 0.05 

• For 𝛼 = 0.1: (𝒦2 = 6.170162) < (𝛘0.1
2 (3) = 6.25138), decision: accept 𝐻0|𝛼 = 0.1.  
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For the Johnson’s data set: 

• For 𝛼 = 0.01: (𝒦2 = 3.31332) < (𝛘0.01
2 (14) = 29.14124), decision: accept 𝐻0|𝛼 = 0.01; 

• For 𝛼 = 0.05: (𝒦2 = 3.31332) < (𝛘0.04
2 (14) = 23.68479), decision: accept 𝐻0|𝛼 = 0.05; 

• For 𝛼 = 0.1: (𝒦2 = 3.31332) < (𝛘0.1
2 (14) = 21.06414), decision: accept 𝐻0|𝛼 = 0.1.  

Below, we suggest some future points: 

I. Accelerated failure time estimation under some discrete distributions. Estimating AFT models under 

discrete distributions typically involves using appropriate regression techniques. The specific estimation 

method may vary based on the distribution chosen and the software package used. Common estimation 

methods for AFT models include maximum likelihood estimation, moment-based estimation, and 

Bayesian estimation. In practice, when dealing with discrete survival data and AFT models, it's crucial 

to select the appropriate distribution based on the characteristics of your data and the research question 

you want to answer. Additionally, software tools like R, Python (with libraries like lifelines or survival), 

or specialized survival analysis software can help you implement and estimate AFT models for discrete 

survival data. 

II. Accelerated failure time estimation under some heavy tailed distributions. Estimating AFT models under 

heavy-tailed distributions typically involves using appropriate regression techniques, often with 
maximum likelihood estimation or moment-based methods. The choice of the distribution should be 

based on the characteristics of the data and the research question at hand. Keep in mind that heavy-tailed 

distributions tend to capture extreme values more accurately than lighter-tailed distributions like the 

exponential or normal distribution. However, the choice of distribution should be guided by the 

theoretical considerations, domain knowledge, and model fit criteria. Analyzing survival times under 

heavy-tailed distributions can be especially relevant in fields where rare, extreme events are of interest, 

such as finance, insurance, and environmental science. 

III. Accelerated failure time estimation under some extreme value distributions. Estimating AFT models 

under extreme value distributions typically involves using regression techniques, often with MXLE or 

moment-based methods. The choice of the distribution should be based on the characteristics of the data, 

the behavior of the extreme values, and the specific research question. AFT models under extreme value 
distributions are particularly useful when the focus is on modeling and predicting extreme events, such 

as rare natural disasters, extreme financial market events, or the durability of products that 𝑒𝑥𝑝erience 

rare but critical failures. The selection of the appropriate extreme value distribution should be guided by 

domain knowledge and model fit criteria. 

IV. Accelerated failure time estimation under some bivariate distributions. The bivariate normal distribution 

is an extension of the univariate normal distribution to two dimensions. It is often used in AFT models 

to describe the joint survival times of two events when their logarithms follow a bivariate normal 

distribution. AFT models using bivariate distributions allow you to capture the dependence between two 

survival times. The choice of the distribution should be guided by the nature of the dependence and the 

specific application. These models have applications in fields such as finance, actuarial science, 

reliability engineering, and medical research, where understanding the joint behavior of two events or 
variables is critical for making informed decisions and predictions. 

V. Accelerated failure time estimation under some multivariate distributions. The choice of a multivariate 

distribution for AFT modeling should be guided by the nature of the interdependencies between the 

events and the goals of the analysis. It is essential to select an appropriate distribution that accurately 

captures the underlying data and relationships among the variables. These models are widely used in 

various fields, including epidemiology, finance, actuarial science, and engineering, where understanding 

the joint survival times of multiple events or individuals is crucial for making informed decisions and 

predictions. 

VI. In survival analysis, estimating survival times under mixed distributions typically involves considering 

a mixture of two or more component distributions. Mixed distributions are used to account for situations 

where the data comes from different subpopulations or has a complex structure that cannot be adequately 
represented by a single distribution. The AFT models can be used to estimate survival times under mixed 

distributions by modeling the effects of covariates on the time-to-event while considering the mixture 

components. The choice of a specific mixed distribution for AFT modeling should be guided by the 

underlying characteristics of the data and the research question. Mixed distribution models are valuable 

when dealing with heterogeneous populations, complex data structures, or the presence of distinct 

subgroups within the dataset. Accurate estimation under mixed distributions can help provide a better 
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understanding of survival times in real-world applications in fields such as medicine, engineering, and 

finance. 

VII. Accelerated failure time estimation under some weighted distributions. The choice of the weighted 

distribution should be guided by the research question and the nature of the data. Weighted AFT models 

are useful in scenarios where the survival analysis needs to account for varying importance of different 
observations in a systematic and principled manner. 

VIII. 𝑒𝑥𝑝lore the applicability of the novel exponential model to different fields and domains. Investigate 

whether the model can be extended or adapted to various types of data beyond its original context. 

IX. Assess the robustness of the accelerated failure time estimation methods under different conditions, such 

as the presence of outliers, censored data, or non-proportional hazards. Develop methods to handle such 

challenges effectively. 

X. Conduct extensive simulation studies to evaluate the performance of the novel model and estimation 

methods under controlled conditions. Investigate how sample size, censoring, and other factors impact 

the accuracy and precision of parameter estimates. 

XI. Compare the novel exponential model with existing models in terms of goodness-of-fit, predictive 

accuracy, and interpretability. 𝑒𝑥𝑝lore methods to statistically validate the model's assumptions. 

XII. Apply the novel model and estimation methods to real-world data sets from different fields, such as 

healthcare, finance, engineering, and social sciences. Investigate whether the model provides valuable 

insights and predictive power in these domains. 

XIII. Investigate the use of Bayesian methods for parameter estimation in the novel exponential model. 

𝑒𝑥𝑝lore the advantages and limitations of Bayesian approaches compared to classical frequentist 

methods. 

XIV. Develop techniques for variable selection and model simplification within the context of the novel 

exponential model. This could help in identifying the most influential covariates and improving model 
interpretability. 

XV. 𝑒𝑥𝑝lore the integration of machine learning techniques, such as deep learning or ensemble methods, 

with accelerated failure time estimation. Investigate whether these approaches can enhance prediction 

accuracy. 

XVI. Conduct sensitivity analysis to assess the impact of variations in model assumptions and estimation 

methods on the results. Provide guidance on when and how to use the model in practice. 

XVII. Develop user-friendly software packages or tools for implementing the novel exponential model and 

estimation methods. This can facilitate its adoption by researchers and practitioners in various fields. 

XVIII. Consider extending the novel exponential model to incorporate time-varying covariates, frailty 
models, or other complex features that may be relevant in specific applications. 

XIX. Investigate methods for combining results from multiple studies that apply the novel model. Develop 

meta-analytical approaches to synthesize findings and assess the overall impact of the model across 

different research contexts. 

XX. 𝑒𝑥𝑝lore the ethical and regulatory considerations associated with the use of the novel model, 

particularly in fields like healthcare and finance where the model may have significant implications for 

decision-making and policy. 

These research points should help advance the understanding, applicability, and robustness of the accelerated failure 

time estimation for the novel exponential model, contributing to the field of survival analysis and statistics. 
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