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Abstract 

 

Outliers in a statistical analysis strongly affect the performance of the ordinary least squares, such outliers need to 

be detected and extreme outliers deleted. This paper is aimed at proposing a redescending M-estimator, which is 

more efficient and robust, compared to other existing redescending M-estimators. The proposed method is applied 

to real life data to verify its effectiveness in detecting and deleting of outliers. The Monte Carlo simulation method 

is also used to investigate the performance of the newly proposed method. The results from the real life data and 

the Monte Carlo simulation method show that the proposed method is effective in the detection and deletion of 

extreme outliers compared to other existing redescending M-estimators. 
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1.   Introduction 

The standard multiple regression model in matrix notation is given as    

 𝑌 = 𝑋+  𝜀                                                                                                                                                                                     (1) 

where 𝑌 = (𝑦1, 𝑦2 ,… , 𝑦𝑛)
  is 𝑛  1 vector of 𝑛 observations, 𝑋 is  𝑛  𝑘 matrix of  𝑛 observations on each of the 𝑘 

explanatory variables, 𝛽 = (𝛽0,𝛽1 , … , 𝛽𝑘)

 is a  𝑘  1 vector of regression coefficients and  = (1, 2, … , 𝑛)

 is a 

𝑛  1 vector of random error components. According to Sokal and Rohlf (2012), Ordinary Least Squares (OLS) 

regression fit a line to bivariate data such that the (squared) vertical distance from each data point to the line is 

minimized across all data points.                                                                                                      

OLS estimates are obtained by minimizing the sum of squared error (SSE) given as 

𝑆𝑆𝐸=∑ 𝑖
2 =  = (𝑌 − 𝑋𝛽) (𝑌 − 𝑋𝛽)𝑛

𝑖=1                                                                                                                                             (2)                                                                                                              

Some of the assumptions of Ordinary Least Squares are: 𝐸 () =  0, 𝐸 () =  21𝑛 , 𝑋 is a non–stochastic matrix and 

𝑁(0,21𝑛).    

In the context of outlier detection, many researchers developed various methods. Aggarwal and Yu (2001) discovered 

a new technique for detecting outliers associated to very high dimensional data sets. Nguyena and Welch (2010) 

studied outlier detection and proposed a new trimmed square approximation. Hadi and Simonoff (1993) introduced 

two test procedures for the detection of multiple outliers in a linear model. Maronna et al. (2006) suggested a more 
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reliable procedure, the graphical procedure, which uses normal Q-Q plots for the detection of outliers. Armin (2008) 

proposed a method for detection of outliers using Dixon’s test statistics. Carling (2000) introduced the median rule 

for identification of outliers through studying the relationship between target outlier percentage and Generalized 

Lambda Distributions (GLDs). Manoj and Kaliyaperumal (2013) compared the performances of five outlier detection 

methods (Grubbs test, Dixon test, Hampel, Quartile method and Generalized ESD). Zhang et al. (2015) proposed an 
enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on normal samples and 

analysing the distribution of prediction errors for dubious samples. Other authors who studied detection of outliers 

include: Tukey (1977), Atkinson (1994), Becker and Gather (1999) and Carling (2000). 

Robust regression is use for improving the results of the least square estimates in the presence of outliers. Some 

methods of robust regression include those of: Huber (1964) who discovered M-estimators which are the 

generalization of the Maximum Likelihood Estimators (MLE). Rousseeuw (1982) discovered the Least Median of 

Squares estimators (LMS). Rousseeuw (1983) also proposed the Least Trimmed Squares (LTS) estimators. Some 

Redescending M-estimators for detection and deletion of outliers are also given in: Andrew et al. (1972), Beaton and 

Tukey (1974), Hampel et al. (1986) and Alamgir et al. (2013). 

This article is aimed at proposing a Redescending M-estimator (that will be differentiable and continuous) which 

includes the objective function (𝜌-function), the corresponding influence function (𝜓-function) and weight function 

(𝑤-function). Secondly, to compare the proposed Redescending M-estimator with some existing Mestimators and 

Redescending M-estimators in terms of efficiency and robustness 

2.  Review of M-estimators 

M-estimators are robust estimators developed to give less weight to the observations that are outliers. It was introduced 

by Huber (1964) and can be regarded as a generalization of Maximum Likelihood Estimation; hence the “M”. The 

Maximum Likelihood Estimator (MLE) is a method of estimating the parameters of a model by maximizing the 

model’s likelihood function.   

Considering the linear model in equation (1), the fitted model is   

�̂�𝑖 = 
0
+ 

𝑖  
𝑥𝑖1 +  2 𝑥𝑖2 + … . +𝑝𝑥𝑖𝑝 = 𝑋𝑖

̂                                                                                                         (3)    

where �̂�𝑖  is the vector of predicted or estimated value of 𝑦 and 𝑝 is the number of explanatory variables.  

The residuals, 𝑟𝑖,are given by 

𝑟𝑖 = 𝑦𝑖 − �̂�𝑖         
   = yi − Xi

̂                                                                                                                                                                               (4) 

To obtain the parameter   in MLE, we minimize the negative log function given as 

̂
𝑀𝐿𝐸

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ [−𝑙𝑜𝑔 𝑓𝑛
𝑖=1 (𝑦𝑖 ;)]                                                                                                                     (5) 

while Ordinary Least Squares (OLS) minimizes the residual sum of squares, that is, 

̂
𝑂𝐿𝑆

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝑟𝑖
2𝑛

𝑖=1                                                                                                                                            (6)              

Replacing the squared error term in equation (6) by 𝜌(r), M-estimator is given as 

̂
𝑀−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝜌(r)𝑛
𝑖=1                                                                                                                           (7)   

where 𝜌(𝑟) is the objective function of an M-estimator. 

Standardizing the residuals, ri, equation (7) can also be written as 

̂
𝑀−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝜌(
ri

̂
)𝑛

𝑖=1                                                                                                                          (8) 

where ̂ is the scale parameter given as 

̂ = 
𝑀𝐴𝐷

0.674
                                                                                                                                                                        (9) 

and MAD is the Median Absolute Deviation given as   

MAD= 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖 −   𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖)|)                                                                                                                       (10)                               
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Since standard deviation is not resistant to outliers, the Median Absolute Deviation (MAD) is used as a measure of 

spread in robust regression. 

The Objective function of an M-estimator defines the probability distribution of the M-estimator. The properties of 

the objective function include;𝜌(0) = 0, 𝜌(𝑟𝑖) ≥  0, 𝜌(𝑟𝑖) = 𝜌(−𝑟𝑖), 𝜌(𝑟𝑖) ≤ 𝜌(𝑟𝑗) for 0< 𝑟𝑖 < 𝑟𝑗  and lastly, 𝜌(𝑟) 

should be continuous and diffentiable. 

The Influence function describes the sensitivity of the overall estimate on the outlying data. Hampel (1974) disclosed 

that the robustness of an estimator is measured by its influence function. The derivative of equation (8) with respect 

to the regression coefficient  gives rise to the influence function (𝜓-function), that is, 

𝑑[∑ 𝜌(ri)
𝑛
𝑖=1  ]

𝑑
 =   Σ𝜓(𝑟) 𝑋𝑖 

𝜓(𝑟) =  Σ𝜓(
yi− Xi

 ̂ 

̂
) 𝑋𝑖                                                                                                                                                 (11) 

where 𝜓(𝑟) is defined as the influence function and  ̂ is the scale parameter. 

Draper and Smith (1998) defined the weighted function, 𝑤𝑖 , as  

 𝑤𝑖   = 
𝜓(

yi− Xi
 ̂

̂
) 

(
yi− Xi

 ̂

̂
)

                                                                                                                                                           (12) 

2.1    Huber M-estimator 

Huber (1964) proposed the Huber M-estimator and its influence function, 𝜓(𝑟), is  

𝜓(𝑟) = { 
−𝑐             ; 𝑟 < −𝑐
𝑟                  ; −𝑐 ≤ 𝑟 ≤ 𝑐    
𝑐           ;  𝑟 > 𝑐

                                                                                                                     (13)                                                                       

where 𝑐 is arbitrary value known as tuning constant and 𝑟 are the  residuals scaled over Median Absolute Deviation 

(MAD). Its influence function is non-decreasing function with a tuning constant c = 1.345 which yields 95% efficiency 

on a normal distribution (the tuning constant 𝑐, determines the degree of robustness in M-estimators). Huber estimator 

is not robust when the outliers present in the data are in 𝑥-direction (leverage points). 

Redescending M-estimators are estimators with 𝜓-functions redescending to zero. They are those M-estimators that 

reject extreme outliers. Some of these estimators discussed in the literature are:      

2.2    Hampel M-estimator                                                                                                                                                                  

Hampel’s three–part redescending M-estimator was proposed by Hampel et al. (1986) in the Princeton Robustness 

study. It has three tuning constants 𝑎, 𝑏 and 𝑐. Its 𝜓-function is given as 

𝜓(𝑟)  =

{
 
 

 
 

𝑟 ; if |𝑟|  ≤  𝑎
𝑎 sign (𝑟)          ;  if 𝑎 < |𝑟|  ≤  𝑏

(𝑐−|𝑟|)

(𝑐−𝑏)
𝑎 sign (𝑟)           ;  if  𝑏 <  |𝑟| ≤  𝑐 

  0                              ;  if |𝑟|  >  𝑐                 

                                                                                               (14)            

where 𝑎, 𝑏, 𝑐 are positive constants and 0 <  𝑎 ≤  𝑏 <  𝑐 < ∞ and 𝑟 are the residuals scaled over Median Absolute 

Deviation MAD. The drawback of this estimator is that, its influence function is non-differentiable.  

2.3   Tukey’s Biweight M-estimator  

Beaten and Tukey (1974) proposed Tukey’s biweight M-estimator and its 𝜓-function is given as 
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𝜓(𝑟) = {
𝑟{1 − (

𝑟

𝑐
)2}2        ; |𝑟|  ≤  𝑐

0            ; otherwise 
                                                                                                                (15)        

where 𝑐 is arbitrary value known as tuning constant and 𝑟 are the residuals scaled over MAD. For Tukey’s biweight, 

𝑐 = 4.685 gives 95% efficiency on normal distribution. The performance of Tukey’s biweight estimator was 

encouraging, that is, the influence function is differentiable and smooth when compared to the methods proposed by 

Huber (1964) and Hampel et al. (1986). 

2.4   Alarm M-estimator 

Alamgir et al. (2013) proposed the Alarm’s Redescending M-estimator for robust regression and outlier detection. Its 

𝜓 -function is given as  

𝜓(𝑟) = {
  
16𝑟 (𝑒−(𝑟/𝑐)

2

 (1+𝑒−(𝑟/𝑐)
4                      ;  |𝑟| ≤ 𝑐  

0                  ; |𝑟|   𝑐
                                                                                                            (16)                                   

where 𝑐 is the tuning constant and 𝑟 are the residuals scaled over MAD. 

The Alarm estimator was based on the modified tangent hyperbolic (tan h) type weight function. Its Mean Square 

Errors (MSE) are the smallest when compared with that of Huber (1964), Beaton and Tukey (1974) and Hampel et al. 

(1986), yielding efficient results. For Alarm M-estimator, 𝑐 = 3 gives approximately 95% efficiency at normal 

distribution. 

 

3.   Methodology  

3.1 The Proposed Estimator                                                           

In this section, a new Influence function, 𝜓(𝑟), is proposed (based on modified Tukey’s biweight 𝜓-function) with 

95% efficiency at normal distribution, we introduced a function 𝑔(𝑟) 

𝑔(𝑟)  =   (1 + (
𝑟

𝑐
)
2

)
2

                                                                                                                                                                 (17) 

𝑔(𝑟) is a smooth and differentiable function for all 𝑟, 𝑟 are the residuals scaled over Median Absolute Deviation 

(MAD) and 𝑐  is the tuning constant.                                                                                                                   

In addition, we multiply the function, 𝑔(𝑟), by the Tukey’s biweight 𝜓-function resulting in the proposed influence 

function, 𝜓(𝑟), given as 

𝜓(𝑟)={𝑟 (1 − (
𝑟

𝑐
)
2

)
2

(1 + (
𝑟

𝑐
)
2

)
2

;           |𝑟|  < 𝑐 

0 ;       |𝑟|  ≥   𝑐

                                                                                                 (18)        

where 𝑐 is the tuning constant for the 𝑖𝑡ℎ observation and the variable 𝑟 are the residuals scaled over MAD.                                                    

By integrating the 𝜓(𝑟) with respect to 𝑟, we obtain the corresponding objective function, 𝜌(𝑟), given as 

𝜌(𝑟)  =  {

𝑟6

𝑐4
 + 

𝑟10

2𝑐8
 −  

2𝑟6

𝑐4
 + 

𝑟2

2
  − 

2𝑟6(3𝑟4−5𝑐4)

15𝑐8
; |𝑟|  ≤  𝑐

4𝑐2

15
   ; |𝑟|  >  𝑐

                                                                                   (19)                       

where 𝑐 is the tuning constant for the 𝑖𝑡ℎ observation and the variable, 𝑟, are the residuals scaled over MAD.    

Derivation of equation (19)                             

𝜌(𝑟) =  ∫𝜓(𝑟)𝑑𝑟                                                                                                                                                            (20) 
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where 𝜓(𝑟) and 𝜌(𝑟) are influence and objective functions respectively, 𝑟 are the residuals scaled over MAD (Median 

Absolute Deviation) while 𝑐 is the tuning constant.  

Given:    𝜓 (𝑟) =  𝑟 (1 − (
𝑟

𝑐
)
2

)
2

 (1 + (
𝑟

𝑐
)
2

)
2

 

Using the identity; 

𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏)                                          

Squaring both sides; 

(𝑎2 − 𝑏2)2 = {(𝑎 + 𝑏)(𝑎 − 𝑏)}2  

Where a = 1 and b = (
𝑟

𝑐
)
2

 

⇒ 𝜓 (𝑟) =  𝑟 (1 − (
𝑟

𝑐
)
4

)
2

 

and  

𝜌(𝑟) =  ∫𝜓 (𝑟)𝑑𝑟 

         =  ∫ 𝑟 (1 − (
𝑟

𝑐
)
4

)
2

 𝑑𝑟 

Using integration by parts; 

Let  

u =  (1 − (
𝑟

𝑐
)
4

)
2

,       𝑑𝑢 = - 
8𝑟3(𝑐4−𝑟4)

𝑐8
 𝑑𝑟 

and    

 𝑑𝑣 = 𝑟𝑑𝑟,    𝑣 =
𝑟2

2
 

∫(1 − (
𝑟

𝑐
)
4

)
2

𝑟𝑑𝑟 =  (1 − (
𝑟

𝑐
)
4

)
2

(
𝑟2

2
) + ∫(

𝑟

2

2
) (

−8𝑟3(𝑐4−𝑟4)

𝑐8
)𝑑𝑟 

                                    =  
𝑟2(𝑐4 − 𝑟4)

2𝑐8
+  2 

(5𝑐4𝑟6) − 3𝑟10

15𝑐8
 

           =  
𝑟10

2𝑐8
− 

𝑟6

𝑐4
+

𝑟2

2
− 

2𝑟6(3𝑟4− 5𝑐4)

15𝑐8
                                                                                                                          (21) 

For the second part of (𝑟) , we use the same argument in Beaton and Tukey (1974) by substituting 𝑟 for 𝑐 in equation 

(21).  

∫(1 − (
𝑟

𝑐
)
4

)
2

𝑟𝑑𝑟    = 
𝑐10

2𝑐8
− 

𝑐6

𝑐4
+

𝑐2

2
− 

2𝑐6(3𝑐4− 5𝑐4)

15𝑐8
        

                                        =  
4𝑐2

15
                                                                                                                                   (22) 

The proposed 𝜌(𝑟) satisfies the standard properties of the objective function of an M-estimator. 
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Dividing the proposed 𝜓(𝑟) by 𝑟 gives the weight function,  𝑤(𝑟), as follows: 

𝑤(𝑟)={
(1 − (

𝑟

𝑐
)
2

)
2

(1 + (
𝑟

𝑐
)
2

)
2

; |𝑟|  < 𝑐 

0 ; |𝑟|  ≥  𝑐
                                                                                                         (23)     

 

Graphs of the proposed objective, influence and weight functions are shown below: 

Figure 1 : Graph of the Proposed Influence Function  

 

  

Figure 1 shows that the values of the objective function are non- negative. Secondly, the graph indicates that the 

objective function is symmetric, differentiable and a continuous function.  
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Figure 2 : Graph of the Proposed Influence Function  

 

        

In Figure 2, the proposed estimator redescends to zero by assigning zero influence to extreme outliers thereby 

rejecting them. 
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Figure 3: Graph of the Proposed Weight Function                                                                                                                                          

 

 

Figure 3 indicates that, the good observations are assigned bigger weights while outliers have the smaller weights. In 

addition, extreme outliers are assigned zero weights, which implies that they are eliminated from the dataset.                                                                        

3.2  Simulation Design 

Monte Carlo simulation method is used to generate random data from different probability distributions. The purpose 
of the simulation study is to determine the extent our estimates differ from their true values (robustness). We took the 

true parameters to be 1, 2, and 5 for 𝛽0,  𝛽1,  and 𝛽2 respectively. Each simulation case was replicated 𝑀 = 1000 times. 

The estimates of each estimator were calculated in each of the iteration and the mean of the M replicated estimates 

given by 

�̂�𝑗 =
∑ �̂�𝑗𝑖
𝑀
𝑖=1

𝑀
               𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                                                                                                                   (24) 

was recorded for each estimator.  

For comparison, the parameters estimates of the Mean Square Error (MSE) and the absolute bias (BIAS) of the OLS, 

Huber (1964), Hampel et al. (1986), Beaton and Tukey (1974) and Alamgir et al. (2013) alongside the proposed 
Redescending M-estimators are computed. 

Robustness of an estimator is measured using absolute bias given as 

𝐴𝑏𝑠𝐵𝑖𝑎𝑠(�̂�𝑗) = |𝛽𝑗 − �̂�𝑗|                  𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                                                                                           (25) 

Efficiency of an estimator is measured using the MSE (mean square error) defined as  

𝑀𝑆𝐸(�̂�𝑗) =
∑ (𝛽𝑗 − �̂�𝑗𝑖)

2𝑀
𝑖=1

𝑀
          𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                                                                                             (26) 

and the variance of the estimator is defined as 
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𝑉𝑎𝑟(�̂�𝑗) = 𝑀𝑆𝐸(�̂�𝑗) − (𝐵𝑖𝑎𝑠(�̂�𝑗))
2

        𝑓𝑜𝑟 𝑗 = 0, 1, 2,⋯ , 𝑝                                                                                               (27) 

The estimator with lowest MSE is the most efficient; the smaller the MSE the more efficient is the estimator. 

Simulated data were generated (including percentage mixtures of contaminated and uncontaminated data) in both 

simple and multiple regressions, using two sample sizes, 𝑛 = 20 and 200.   
The percentages of outliers considered in the simulation study were as follows:  

For the x- axis, we chose contamination at 20%, and 30%. 

For the y- axis, we chose contamination at 20%, 30% and 40%. 

 

3.3    Algorithm for the Simulation Studies 

1. Compute the initial estimates using the Least Median Squares (LMS). 

2. Obtain the corresponding residuals from our initial estimates. 

3. Compute the corresponding weights based on the proposed weight function. 

4. Calculate the new estimates of the regression coefficients using weighted least squares. 

5. Repeat step 2 to 5 until convergence.  

3.4   Choice of the Tuning Constant 𝒄 

A simulation study was done to determine the choice of the tuning constant. A tuning constant of 𝑐 = 3 gives the best 

result for estimating the true parameters, detecting and delecting of outliers. 

4.   Results 

The Simulated results for the proposed estimator and that of OLS, Huber, Hampel, Bisquare (Biweight) and Alarm 

estimators are discussed as follows:                                                                                   

4.1   Discussion of Simulated results for data without outlier 

Tables 1 and 7 present detailed stimulated results for uncontaminated data from simple and multiple regressions 

respectively. The OLS having the least  MSE, outperformed the Huber, Hampel, Bisquare, Alarm and the proposed 

estimators, that is, the most efficient estimator. Similarly, the OLS, Huber, Hampel, Bisquare, Alarms and the 

proposed estimators are all closer to their true parameters estimates (robustness). 

4.2   Discussion of stimulated results for data with outliers in the 𝒙- direction (leverage points) 

Table 2 presents the stimulated result for 20% outliers in the  𝑥-direction in a simple regression model. The proposed 

and Alarm estimators are more efficient and robust compared to OLS, Huber, Hampel, and Bisquare estimators. 

Moreover, outliers strongly affect the slopes of OLS, Huber, Hampel, and Bisquare estimators. 

With the increase of the percentage of outliers in the 𝑥-direction in a simple regression model to 30% as shown in 

table 3, all the estimators performed badly for both MSE and BIAS. For comparison, the proposed and Alarms 

estimators are more efficient and robust compared to OLS, Huber, Hampel, and Bisquare estimators. 

Table 8 presents the result for 20% outliers in the 𝑥-direction in a multiple regression analysis. The proposed, Hampel 

and Alarm estimators are more efficient and robust compared to OLS, Huber, and Bisquare estimators. Moreover, 

outliers strongly affect the slopes of the OLS, Huber, and Bisquare estimators. 

Based on data generated from 30% outliers in 𝑥- direction in a multiple regression, shown in table 9, the result indicates 

that the Alarm estimator is the most efficient having the smallest MSE among others while Hampel estimator is the 

second. The third most efficient is the proposed estimator followed by the remaining three estimators (OLS, Huber, 

and Bisquare estimators). Furthermore, outliers strongly affect the slopes of all the estimators (The proposed, Hampel, 

Alarm, OLS, Huber, and Bisquare estimators). All the estimators performed badly in this category. 
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4.3   Discussion of stimulated results for data with outliers at the response, that is, in the 𝒚-direction 

Furthermore, the results from tables 10 and 4 (20% outliers in the 𝑦-direction for simple and multiple regressions 

respectively), indicate that the proposed estimator is the most efficient and robust, followed closely by the Bisquare 

estimator. The Alarm, Hampel and Huber estimators follow thereafter, while OLS is the least.  

Tables 5 and 11, present the results for 30% outliers in the 𝑦-direction for simple and multiple regressions respectively. 

The proposed estimator competes favourably with the Bisquare estimator as the most efficient estimator but Bisquare 

estimator gets better with an increase in the sample size. The least efficient is the OLS followed by the Huber, then, 

the Hampel’s estimator. Nevertheless, the proposed and Bisquare estimators are more robust compared to the Hampel, 

Alarm, OLS and Huber estimators. 

Nevertheless, in tables 6 and 12 (results for 40% outliers in the 𝑦-direction for simple and multiple regressions 

respectively), the proposed and Bisquare estimators are also more efficient and robust compared to the Hampel, Alarm, 

OLS and Huber estimators. 

                     Table 1: Simulated MSE and BIAS on Simple Regression for data with no outlier. 

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 0.0033 0.0020 0.0017 0.0031 0.0018 0.0031 

 𝛽0   MSE 0.0509 0.0547 0.0565 0.0521 0.0540 0.0604 

   20 𝛽1   BIAS 0.0071 0.0063 0.0060 0.0072 0.0086 0.0173 

 𝛽1   MSE 0.1526 0.1586 0.1630 0.1542 0.1585 0.1866 

 200 𝛽0   BIAS 0.0027 0.0036 0.0038 0.0032 0.0033 0.0040 

 𝛽0   MSE 0.0049 0.0051 0.0051 0.0049 0.0049 0.0052 

 200 𝛽1   BIAS 0.0047 0.0050 0.0051 0.0052 0.0052 0.0062 

 𝛽1   MSE 0.0147 0.0155 0.0156 0.0148 0.0149 0.0156 

 

                Table 2: Simulated MSE and BIAS on Simple Regression for 20% outliers in x-axis. 

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 0.0107 0.0112 0.0117 0.0103 0.0006 0.0002 

 𝛽0   MSE 0.1391 0.1585 0.1625 0.1436 0.1052 0.1120 

   20 𝛽1   BIAS 1.9871 1.9867 1.9860 1.9869 0.0702 0.6573 

 𝛽1   MSE 3.9516 3.9504 3.9479 3.9511 1.6876 1.5633 

 200 𝛽0   BIAS 0.0377 0.0403 0.0400 0.0382 0.0024 0.0021 

 𝛽0   MSE 0.0150 0.0169 0.0168 0.0153 0.0061 0.0062 
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 200 𝛽1   BIAS 1.9841 1.9831 1.9831 1.9839 0.0285 0.0391 

 𝛽1   MSE 3.9370 3.9329 3.9328 3.9360 0.0699 0.0932 

 

            Table 3: Simulated MSE and BIAS on Simple Regression for 30% outliers in x-axis. 

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 0.0300 0.0302 0.0288 0.0286 0.0066 0.0090 

 𝛽0   MSE 0.1563 0.1756 0.1840 0.1633 0.1462 0.1653 

   20 𝛽1   BIAS 1.9899 1.9898 1.9896 1.9899 1.2578 1.2324 

 𝛽1   MSE 3.9620 3.9619 3.9613 3.9621 2.7002 2.6389 

 200 𝛽0   BIAS 0.0334 0.0353 0.0354 0.0339 0.0102 0.0150 

 𝛽0   MSE 0.0168 0.0189 0.0188 0.0172 0.0140 0.0122 

 200 𝛽1   BIAS 1.9911 1.9906 1.9906 1.9910 0.6651 0.9326 

 𝛽1   MSE 3.9646 3.9628 3.9628 3.9642 1.3739 1.9144 

 

                   Table 4: Simulated MSE and BIAS on Simple Regression for 20% Outliers in 𝑦-axis. 

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 1.8531 0.3405 0.0336 0.1299 0.0527 0.0315 

 𝛽0   MSE 4.1726 0.2057 0.0752 0.1340 0.0819 0.0772 

   20 𝛽1   BIAS 0.8329 0.1530 0.0035 0.0436 0.0079 0.0020 

 𝛽1   MSE 2.0266 0.2214 0.1813 0.2103 0.1942 0.1883 

 200 𝛽0   BIAS 2.0044 0.3597 0.0319 0.1083 0.0523 0.0250 

 𝛽0   MSE 4.0958 0.1393 0.0084 0.0218 0.0110 0.0081 

 200 𝛽1   BIAS 0.1453 0.0483 0.0173 0.0259 0.0198 0.0160 

 𝛽1   MSE 0.3063 0.0308 0.0218 0.0292 0.0245 0.0216 

 

               Table 5: Simulated MSE and BIAS on Simple Regression for 30% Outliers in 𝑦-axis. 

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 2.9036 0.9170 0.1008 1.2486 0.1619 0.0860 
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 𝛽0   MSE 9.5809 1.2896 0.1452 3.6198 0.1700 0.1172 

   20 𝛽1   BIAS 0.3581 0.1170 0.0045 0.1599 0.0091 0.0027 

 𝛽1   MSE 1.7931 0.2551 0.1970 0.4807 0.2225 0.2072 

 200 𝛽0   BIAS 3.0142 0.8234 0.0773 0.4167 0.1534 0.0743 

 𝛽0   MSE 9.2003 0.7147 0.0164 0.3854 0.0387 0.0172 

 200 𝛽1   BIAS 0.2589 0.1076 0.0218 0.0702 0.0304 0.0216 

 𝛽1   MSE 0.4556 0.0623 0.0304 0.0702 0.0434 0.0331 

 

           Table 6: Simulated MSE and BIAS on Simple Regression for 40% Outliers in 𝑦-axis.  

Sample 

Size  

Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

   20 𝛽0   BIAS 3.7895 2.3770 1.2854 2.9863 0.7094 0.3102 

 𝛽0   MSE 15.8511 7.5439 4.4558 11.8804 1.4118 0.4626 

   20 𝛽1   BIAS 1.3977 1.0138 0.6583 1.1816 0.3185 0.1331 

 𝛽1   MSE 4.4199 2.1769 1.6292 3.2272 0.7103 0.3782 

 200 𝛽0   BIAS 4.0119 2.2093 0.2309 3.2384 0.5412 0.2731 

 𝛽0   MSE 16.2480 5.1134 0.0851 10.9361 0.3561 0.1095 

 200 𝛽1   BIAS 0.0871 0.0731 0.0241 0.0852 0.0302 0.0268 

 𝛽1   MSE 0.5570 0.2131 0.0606 0.4004 0.1229 0.0934 

 

             Table 7: Simulated MSE and BIAS on Multiple Regression for Data with no Outliers. 

Sample Size Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 0.0100 0.0100 0.0098 0.0096 0.0092 0.0151 

 𝛽0 MSE 0.0520 0.0556 0.0576 0.0529 0.0549 0.0677 

  20 𝛽1 BIAS 0.0006 0.0021 0.0048 0.0006 0.0021 0.0041 

 𝛽1 MSE 0.1537 0.1660 0.1771 0.1576 0.1670 0.2225 

  20 𝛽2 BIAS 0.0085 0.0105 0.0113 0.0093 0.0111 0.0130 

 𝛽2 MSE 0.0462 0.0471 0.0499 0.0460 0.0487 0.0622 
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  200 𝛽0 BIAS 0.0014 0.0011 0.0014 0.0016 0.0016 0.0016 

 𝛽0 MSE 0.0050 0.0052 0.0053 0.0050 0.0050 0.0052 

  200 𝛽1 BIAS 0.0037 0.0027 0.0028 0.0034 0.0034 0.0031 

 𝛽1 MSE 0.0144 0.0149 0.0150 0.0145 0.0145 0.0151 

  200 𝛽2 BIAS 0.0016 0.0007 0.0008 0.0013 0.0013 0.0009 

 𝛽2 MSE 0.0033 0.0035 0.0035 0.0034 0.0034 0.0035 

 

                   Table 8: Simulated MSE and BIAS on Multiple Regression for 20% Outliers in 𝑥-axis.  

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 0.0412 0.0400 0.0377 0.0078 0.0095 0.0082 

 𝛽0 MSE 0.1631 0.1814 0.1900 0.1150 0.1266 0.1484 

  20 𝛽1 BIAS 1.9871 1.9872 1.9871 0.8225 0.8270 0.8325 

 𝛽1 MSE 3.9521 3.9528 3.9527 1.9240 1.9260 1.9626 

  20 𝛽2 BIAS 0.0206 0.0205 0.0197 0.0175 0.0174 0.0180 

 𝛽2 MSE 0.1053 0.1145 0.1198 0.0778 0.0826 0.1033 

  200 𝛽0 BIAS 0.5143 0.5684 0.5684 0.1693 0.1349 0.1593 

 𝛽0 MSE 0.0162 0.0182 0.0180 0.0073 0.0067 0.0068 

  200 𝛽1 BIAS 2.0000 2.0000 2.0000 0.9744 0.5278 0.4601 

 𝛽1 MSE 3.9467 3.9433 3.9434 0.1702 0.1042 0.0961 

  200 𝛽2 BIAS 2.4397 0.0485 0.0623 0.1722 0.0896 0.0846 

 𝛽2 MSE 0.0097 0.0106 0.0106 0.0049 0.0049 0.0049 

 

                   Table 9: Simulated MSE and BIAS on Multiple Regression for 30% Outliers in 𝑥-axis.  

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 0.0430 0.0461 0.0479 0.0364 0.0439 0.0471 

 𝛽0 MSE 0.1773 0.1983 0.2099 0.1667 0.1809 0.2113 

  20 𝛽1 BIAS 1.9904 1.9903 1.9901 1.4550 1.4457 1.3603 

 𝛽1 MSE 3.9642 3.9640 3.9636 3.0673 3.0473 2.8826 

  20 𝛽2 BIAS 0.0081 0.0082 0.0088 0.0079 0.0055 0.0098 
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 𝛽2 MSE 0.1017 0.1116 0.1168 0.0970 0.1056 0.1303 

  200 𝛽0 BIAS 0.0453 0.0480 0.0482 0.0265 0.0233 0.0299 

 𝛽0 MSE 0.0183 0.0197 0.0198 0.0129 0.0122 0.0144 

  200 𝛽1 BIAS 1.9910 1.9895 1.9895 0.9721 0.8087 1.0685 

 𝛽1 MSE 3.9609 3.9583 3.9584 1.9867 1.6560 2.1805 

  200 𝛽2 BIAS 0.0031 0.0030 0.0033 0.0008 0.0016 0.0023 

 𝛽2 MSE 0.0087 0.0095 0.0095 0.0071 0.0071 0.0075 

     

                       Table 10: Simulated MSE and BIAS on Multiple Regression for 20% Outliers in 𝑦-axis.  

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 1.7370 0.3018 0.0149 0.0948 0.0365 0.0123 

 𝛽0 MSE 3.7599 0.1805 0.0709 0.0985 0.0754 0.0758 

  20 𝛽1 BIAS 0.6647 0.0782 0.0109 0.0083 0.0084 0.0108 

 𝛽1 MSE 2.1465 0.2271 0.2026 0.2269 0.0280 0.2201 

  20 𝛽2 BIAS 0.5552 0.1733 0.0425 0.0880 0.0507 0.0329 

 𝛽2 MSE 1.4471 0.1305 0.0852 0.1316 0.1000 0.1000 

  200 𝛽0 BIAS 2.0080 0.3556 0.0279 0.1044 0.0486 0.0218 

 𝛽0 MSE 4.1176 0.1366 0.0079 0.0202 0.0103 0.0077 

  200 𝛽1 BIAS 0.0188 0.0301 0.0026 0.0021 0.0071 0.0033 

 𝛽1 MSE 0.3028 0.0281 0.0233 0.0282 0.0257 0.0238 

  200 𝛽2 BIAS 0.1287 0.0286 0.0034 0.0101 0.0059 0.0039 

 𝛽2 MSE 0.0681 0.0063 0.0047 0.0058 0.0050 0.0047 

  

                Table 11: Simulated MSE and BIAS on Multiple Regression for 30% Outliers in 𝑦-axis.  

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 2.6733 1.0070 0.2159 0.5721 0.1781 0.0764 

 𝛽0 MSE 8.3023 1.6545 0.4679 1.2216 0.2081 0.1200 
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  20 𝛽1 BIAS 0.0159 0.1784 0.0952 0.0754 0.0576 0.0345 

 𝛽1 MSE 2.2758 0.4384 0.3291 0.4289 0.2970 0.2803 

  20 𝛽2 BIAS 1.0262 0.6365 0.2144 0.3277 0.1498 0.0804 

 𝛽2 MSE 2.5571 0.8740 0.4153 0.5396 0.2389 0.1888 

  200 𝛽0 BIAS 3.0213 0.8221 0.0765 0.3375 0.1528 0.0729 

 𝛽0 MSE 9.2560 0.7156 0.0157 0.1739 0.0381 0.0166 

  200 𝛽1 BIAS 0.2577 0.0871 0.0046 0.0304 0.0107 0.0057 

 𝛽1 MSE 0.4520 0.0563 0.0314 0.0526 0.0409 0.0355 

  200 𝛽2 BIAS 0.1929 0.0689 0.0059 0.0282 0.0119 0.0044 

 𝛽2 MSE 0.1234 0.0158 0.0068 0.0129 0.0091 0.0076 

 

                   Table 12: Simulated MSE and BIAS on Multiple Regression for 40% Outliers in 𝑦-axis.  

Sample Size  Beta Criteria OLS Huber Bisquare Hampel Alarm Proposed 

  20 𝛽0 BIAS 3.9455 2.6372 1.8229 2.3304 0.9315 0.4042 

 𝛽0 MSE 17.3861 9.3040 6.6230 9.5266 2.3911 0.8166 

  20 𝛽1 BIAS 1.6181 1.5173 1.4029 1.1184 0.5720 0.2760 

 𝛽1 MSE 6.5166 5.7200 5.8235 4.4222 3.0762 1.7525 

  20 𝛽2 BIAS 0.6502 0.8344 0.8935 0.5206 0.3212 0.1689 

 𝛽2 MSE 3.0760 2.8364 3.6828 2.3742 2.1760 1.4693 

  200 𝛽0 BIAS 4.0250 2.2330 0.2428 3.0746 0.5587 0.2715 

 𝛽0 MSE 16.3720 5.2455 0.1187 10.3992 0.3834 0.1057 

  200 𝛽1 BIAS 0.0841 0.0420 0.0039 0.0646 0.0018 0.0060 

 𝛽1 MSE 0.5241 0.2049 0.0617 0.3634 0.1239 0.0871 

  200 𝛽2 BIAS 0.3261 0.2437 0.0313 0.2937 0.0695 0.0340 

 𝛽2 MSE 0.2172 0.0999 0.0148 0.1646 0.0297 0.0186 

 

4.4   Data Analysis  

In this section, we applied the proposed estimator to real-life data to verify its effectiveness in detecting and deleting 

of outliers. These datasets had been extensively used by other researchers in the area of robust regression. 

Example 1: Telephone-Call Data (Simple Regression Case) 
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This is a real regression data with few outliers in 𝑦-direction. The data set is taken from Belgium Statistical Survey 

(Rousseeuw and Leroy, (1987)). The data contains 24 data points and 2 variables. The dependent variable is the 

number of telephone calls made from Belgium and the independent variable is the year. 

                       Table 13: Estimates of the Model Parameters for Telephone Calls Data 

Parameter OLS Huber Hampel Biweight Alarm Proposed 


0
 -260.059 -99.905 -52.389 -52.348 -52.454 -52.456 


1
 5.041 1.987 1.101 1.100 1.102 1.102 

Data points 

used 

24 24 18 17 17 17 

Residual 
standard 

error 

56.22 19.51 1.62 1.24 1.38 1.39 

 

The summary of the results for estimates of the model parameters for Telephone Calls Data for the estimators are 

presented in Table13. The Biweight, Alarm, Hampel and the proposed estimators, performed better than OLS and 

Huber estimators. In addition, OLS and Huber estimators used all the data in the analysis while Alarm, Biweight and 

the proposed method detected and deleted 7 outliers in the robust fit.  

Example 2: The Hawkins, Bradu, and Kass data (Multiple Regression Case) 

The Hawkins et al. (1984) (Rousseeuw and Leroy, (1987)) generated artificial data for testing the performance of 

robust estimators. The data contains 75 observations in four dimensions (one response and three explanatory 

variables). The first 10 observations are bad leverage points, and the next four points are good leverage points (i.e., 

their xi are outlying, but the corresponding  yi  fit the model quite well).  

                      Table 14: Estimates of the model parameters for Hawkins, Bradu and Kass data. 

Parameter OLS Huber Hampel Biweight  Alarm Proposed 


0
 -0.388 -0.776 -0.181 -0.946 -0.181 -0.181 


1
 0.239 0.167 0.081 0.145 0.082 0.081 


2
 -0.335 0.007 0.040 0.197 0.040 0.040 


3
 0.383 0.274 -0.052 0.180 -0.052 -0.052 

Data points 

used 

75 75 65 71 65 65 

Residual 

standard 

error 

2.25 1.13 0.77 0.63 0.56 0.56 

The summary of the results for estimates of the model parameters for Hawkins, Bradu and Kass data for the estimators 

are presented in Table 14. With smaller Residual Standard Error (RSE), the Alarm, Hampel, Biweight and the 

proposed estimators, performed better than OLS and Huber estimators. In addition, OLS and Huber used all the data 

in the analysis while Alarm, Hampel and the proposed method detected and deleted 10 outliers in the robust fit. The 

Biweight estimator detected and deleted 4 outliers in the analysis.  

5. Conclusion 

A redescending M-estimator was proposed and the graphs of its objective, influence and weight functions satisfied 

the various properties of these functions. Simulation studies were done to ascertain the effectiveness of the proposed 
redescending M-estimator and for comparison with other existing methods. Mean square error (MSE) and BIAS were 

used for comparison under two different sample sizes.                                                                                                                                                 

From the Stimulated results, it was obvious that Ordinary least squares estimator outperformed other estimators in an 

uncontaminated data (clean data). On the other hand, all the estimators performed very well when outliers are in the 
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𝑦-direction but the proposed estimator tops the list as the most efficient and robust estimator while the Biweight, 

Alarm and Hampel estimators followed closely. Consequently, when outliers are in the leverage points, the proposed 

and Alarm estimators take the lead as the most efficient and robust estimators among others.                                                                                                                        

In addition, robust regression analysis was fitted using the Telephone call data and the Hawkins, Bradu and Kass data 

to illustrate the ability of the proposed estimator to detect and delete outliers and to compare with the existing ones. 

The results from the two robust fits showed that the proposed method can successively detect and delete outliers and 

for comparison, the proposed estimator alongside the Alarm, Hampel and Biweight (only when outliers are in the 

response) estimators showed great resistance to outliers. 

6.  Future Research 

This work can be extended in future to handle outliers effectively on x-axis with higher percentages, that is, 30% and 

40%. 
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