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Abstract

In this paper, we propose a new flexible lifetime distribution. The proposed distribution will be referred to as beta
power Muth distribution. It can be used to model increasing, decreasing, bathtub shaped or upside-down bathtub
hazard rates. Some properties of the new model are obtained including moments, quantile function and moments
of the order statistics. The unknown model parameters are estimated by the maximum likelihood method of
estimation. A Monte Carlo simulation study is carried out to assess the performance of the maximum likelihood
estimates. Two reliability data sets are applied to illustrate the usefulness and flexibility of the proposed model. In
addition, we introduce a new location-scale regression model based on the logarithm of the proposed distribution
and provide a real data application.
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1. Introduction

In reliability and lifetime analysis, the hazard function, also called hazard rate, failure rate or instantaneous failure
rate, has a crucial role to characterize real lifetime data. Several real-life data sets have a non-monotone hazard rates
such as the bathtub shapes and upside-down bathtub (unimodal) hazard rates. The most popular traditional
distributions do not provide a good fit for modeling this kind of the data sets. Hence, many parametric probability
distributions have been introduced to analyze real data sets with non-monotone hazard rates.

One of the most recent models is that of Jodra et al. (2017) who have proposed a new two-parameter lifetime
distribution with bathtub-shaped and increasing failure rate called the power Muth (PM) distribution.distribution,
where the Muth distribution was first proposed by Muth (1977) in the context of reliability theory. A random
variable Y is said to follow the Muth distribution, with shape parameter a € ]0,1], if its probability density function
(pdf) has the form:

1,
gy () = (e® — a)e{“y'i(“’ Vo) y > 0.

Since the Muth distribution was introduced, it has been largely overlooked in the literature until the paper of Leemis
and McQueston (2008), where they reffered its relation with the exponential distribution. After seven years, some
mathematical properties of the Muth distribution are derived, for the first time, by Jodra et al. (2015). Then, Jodré et
al. (2017) extend the Muth distribution, by using the transformation X = gY'/¥ where § > 0,y > 0 and Y have the
Muth distribution with parameter a =1. The pdf of X is
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X

9e) = gt (e(%)y - 1) e{(E)y_< (%)y”)} W

and the cumulative distribution function (cdf) of X is

G) = 1— el /P (7 -1)} @

)

where x > 0, B is a scale parameter and y is a shape parameter. Also, Jodra et al. (2017) studied various statistical
properties of this distribution and showed that it gives the best fit for two real data sets than many other
distributions.

The PM distribution does not provide enough flexibility for analyzing different types of lifetime data. To increase
the flexibility for modelling purposes, it will be useful to consider further alternatives to this distribution. Therefore,
the goal of this paper is to introduce a new four-parameter generalization that can capture decreasing, increasing,
unimodal (upside-down bathtub) and bathtub-shaped hazard rate functions. The new distribution will be called the
beta PM (BPM) distribution. We study some properties of the new model, give maximum likelihood estimation of
the parameters, derive the elements of the observed information matrix and apply this model to real-life data sets.
Also, based on this distribution, we present a new regression model.

The rest of the paper is organized as follows. In Section 2, we define the BPM model. In Sections 3, 4 and 5 we
explicit expressions for the quantile function, moments and the moments of the order statistics respectively. In
Section 6, we discuss maximum likelihood estimation of the model parameters. In Section 7, we conduct a
simulation study to check the performance of the maximum likelihood estimates. A new regression model and
residual analysis are presented in Section 8. Three applications are given in Section 9. Conclusions are given in
Section 10.

2. The model definition

Eugene et al. (2002) proposed the beta-generated family of distributions by using the beta random variable. For an
arbitrary baseline cdf G(x), the cdf of the beta generalized family is defined by

1 o a-1 b-1 (3)
F(X) = IG(x)(a, b) = mjo t (1 - t) dt,
By(a,b)
B(a,b)
B,(a,b) = foy t%1(1 — t)P~1dt is the incomplete beta function, B(a,b) =T'(a)T'(b)/T'(a + b) is the complete
beta function and T'(.) is the gamma function. The pdf corresponding to (3) is

where a > 0and b > 0 are two shape parameters, I,(a,b) =

is the incomplete beta function ratio,

X
f&x) = % [G(O]* 1 - G]P (4)

where g(x) = dG(x)/dx is the baseline pdf. By using Equation (3), several authors have defined and studied
many new distributions. For example, Eugene et al. (2002) introduced the beta-normal distribution. Nadarajah and
Kotz (2005) defined and studied the beta exponential. Famoye et al. (2005) introduced the beta-Weibull distribution.
Singla et al. (2012) defined the beta generalized Weibull distribution. Shakhatreh et al. (2016) introduced the beta
generalized linear exponential distribution. Benkhelifa (2017) proposed the beta generalized Gompertz distribution.
Awodutire et al. (2020) introduced the beta type | generalized half logistic distribution. Benkhelifa (2021) proposed
the beta reduced modified Weibull distribution.

By substituting (2) in (3), the cdf of the BPM distribution with four parameters (8 > 0, y > 0, a > 0 and b > 0) can
be defined by

| ameler )

F(X) = 11_8{()(/5)],_(3(,(/5)1/_1)}(a, b) = m . ta—l(l _ t)b_ldt. (5)
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The pdf of the BPM distribution is given by

flx) = ]W;(/;(—(X/i):_l) eb{(x/ﬁ)y—(e("/ﬁ)y—l)] (1 _ e{(x/ﬁ)y_(e(x/g)v_l)})a—l. ©
a,

It is clear that the PM distribution with parameters g and y is a special sub-model for a=b=1. For b=1, we obtain
the exponentiated PM (EPM) distribution, which is proposed by Irshad et al. (2021). Hereafter, a random variable X
with pdf (6) will be denoted by X ~ BPM(B,y, a, b).

Figure 1 shows some possible shapes of the pdf (6) of the BPM distribution for some parameter values of g, y,a and
b. Then, we observe that the density function (6) can take various forms depending on the parameter values. It is
evident that the BPM distribution is much more flexible than the PM distribution.
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Figure 1: Plots of the BPM density for some parameter values.

The hazard function of the BPM distribution is given by

1 (e(x/ﬁ)y_1)eb{(x/ﬁ)y*(9("/ﬁ)yfl)} <1_e{(x/ﬁ)y7(e(X/ﬁ)yfl)}>a71
h(x) =

4 VB(“‘b)<1_113{(x/ﬁ)v(e(x/ﬁ)V1)}(“"’))

In Figure 2, we plot the hazard rate function of the BPM distribution for selected values of g, y,a and b.
We observe that the hazard rate function of the BPM distribution can be increasing, decreasing, and
bathtub shaped or unimodal shaped depending on the values of the parameters. Therefore, the BPM
distribution is quite flexible and can be used to fit various types of data sets in different domains.
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Figure 2: Plots of the hazard rate function of the BPM distribution for some parameter values.

3. Quantile function

From Proposition 3 of Jodréa et al. (2017), we have the quantile function of the PM distribution

o =pnfw, ()7 o<u<t

where W_; is the negative branch of the Lambert W function. Then, by inverting BPM cdf (5), we obtain the
quantile function of the BPM distribution as follows

0w = 6 [In{w., (=", 0 <u<t, ™

where Q, , (w) is the uth quantile of a beta distribution with parameters a and b. Therefore, it is easy to simulate the
BPM distribution. Let V be a beta random variable with parameters a >0 and b >0. Then, the random variable

= nfor, ()] ®

follows the BPM distribution. From Equation (8), we can generate a random variable X having the BPM distribution
when the parameters are known. The median can be derived from (7) by setting u=1/2.

4, Moments

Here, we give the moments of the BPM distribution. We can determine the skewness, kurtosis and the expected life
time of a device in lifetime data. The following theorem gives the rth moment of the BPM distribution in terms of
the generalized integro-exponential function, which is defined by (see Milgram, 1985):

E¥(z) = Tt D)
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wherezeR,seRandk > -1.

Theorem 1. If X ~ BPM(f,y, a, b), then the rth moment of X is given by

) _°° a—1\ freutd L
E(“—;(—”’( ;)T @ Fma U

Proof. The rth moment of X is

[oe]

E(X™) =f x" f(x)dx.

0

From (6) we have
E(X") =

a-1

m[mxr+y—l (e(x/ﬁ)y _ 1)eb{(x/ﬁ)y—(e(X/B)y_1)} (1 _ e{(%/ﬁ)y_(e(X/B)y_l)}) dx.
a, 0

By making use of the binomial series expansion, if > 0 is real non-integer and |z| < 1,
-1 C i 77 - 1
- =077 ©
=0

14 i -(a— 1) j Y byt (/B G+b){Ce/B)Y ~(e /B -1)}
EX") = —— —1)/ . r+y x/BY _ 1)eY )
&N =55 b)jzo( () e Je dx

we obtain

By setting u = e®*/#" in the above integral, we get

E(X™) = Z ]< > (j”’)J Inwy (u — Dul+D-1e-G+ohugy,
&) = B( ) =D : (Inwr ( )
Then
E(X™) = Z(—l)f (a R 1) eU+b) j (In u)$ uU+blg=U+blugy —f (In u)§ uUD~1e=U+blugy |,
B(a, b) = ] 1 1

From the generalized integro-exponential function we have

E(XT) —

B(a b)i( B ( ) (J+b)1"< + 1) [Er/;/+b)(] +b)— Er/;/+b)+1(] + b)] '

From Equation (2.4) of Milgram (1985), we have

zEk (z) — EF-1(z
Ef(2) = “(1)_55 (),z>0,s¢1,k20.

Therefore, we obtain the desired result.

5. Moments of order statistics

In this section, the pth moment of the ith order statistic for the BPM distribution is given which have some
applications in reliability and lifetime analysis. Let X, , ..., X,, be a simple random sample from BPM distribution
and let X;.,, ..., X,,., denote the order statistics obtained from this sample. The following theorem gives the pth
moment of the ith order statistic X;.,,.
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Theorem 2. Then the pth moment of X;.,, is given by

n-i + 2a+j—1 .
()= Cu* '( V(T T e pra b,

S o e+ b)r ( +1)B(ln—l+1){B(a b)}i+

(k + b),

—(k+b)+1

where dy = a§ and d,,, = (may) ™' Xitq[q(s + 1) —mla, d,y_y, m = 1.
Proof. By the definition, the pth moment of X;.,, is

E(XxP )= fx fin(x)dx,

n—i

where f;.,(x) is the pdf of X,.,, given by
f&)

__ S _ n—i i+1-1
fi:”(x)_B(i,n—i+1)l:0( o (")) ray

where F(x) and f(x) are given by (5) and (6), respectively. By using (9), the BPM cdf function (5) for b > 0 real non-
integer can be rewritten as
ele~(T7 )

F(x) = ﬁz(_l)j (b ]— 1) Ll_ pati-1g¢

w 1\ (P—1
1 ( 1)]< j >(1_e{(x/g)y_(e(x/l?)v_l)})

“B@bh4 @)

(a+))

From Gradshteyn and Ryzhik (2000), we have

[} N oo
(Z arur) - Z drur’
r=0 r=0

where dy = a§ and d,,, = (ma,)~* Xit4[q(s + 1) —mla, d,,_,, m = 1. Therefore

[oe]

1 (/B ~(e/PY -1)) (@+))
i+-1 _ - _ /B) 1
FY = s 1Zd (1-e )
Then '
- x (x/B)Y -b(e@/BY _1)In=i » 4y (M1 o
fi:n(x) _ )/XV 1(6( /3)1;— ?)e{b /ﬁ b( 1)}2 Md] (1 _ e{(x/ﬁ)y—(e(x/ﬁ)y—l)})( +j)+a-1
BYB(i,n—i+1) L {B(a,b)}
By using (9), we get
) 2a +] -1
n-i 1)k+
fin®) = g =i+ D 2. — EB( Z)(} o )d,-xv-l(eof/ﬁﬂ _ 1)eken{Grp (/P -1)}
' iLn—i a,b)}
1=0 j,k=0
Therefore
) 2a +] -1
e o () H( )d;
= k ! p+y-1 (p(x/B)Y
E(X ) ﬁVB(l n—i+ 1)2}20 {B(a GE fo x (e

1) (e )
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Similarly, as a proof of Theorem 1, we obtain E(X? ).

6. Estimation

Here, the maximum likelihood estimates (MLESs) of the parameters of the BPM distribution are presented. Let
X4, ..., X, be n random observations from the BPM distribution with unknown parameter vector & = (B,y,a, b).
Then, the log-likelihood function, denoted by £(¢), for &,is glven by

n

2(&) =nlny +nyInB —nln[B(a,b)] + (¥ — 1)2 In(x;) + ZIn(e(xl/B)y 1)+ —Z
_ bZ(e(xl/ﬁ)y 1+ @- DZln( _ (xl/B)V ( (/B —1>}).

Therefore, the log-likelihood equations are obtained, by taking the partial derivatives of £(&) with respect to
B,v,a and b, as follows

v “ xl eGP py = ,
Up($) = B 3y+1 e(xi/ﬁ)y_l_[gyﬂzx'

i=1
n

Z peypy _Y@—1 Z x! (eC/PY 1) e{(xi/tew-(e(xi/ﬁ)y_l)}

BY+ — ‘8}/+1 _ {(xl/ﬁ)y ((xi/B)y_l)} )

U, (&) =§—nln,8 +Zln(xi)

=1
n
1 o« In(x;/B) e®i/BY b ,
+_Z oGP =1 +[W§ x{ (/) (1 — e®/PT)

BY i
(a -1) Z x! In(x;/pB) (1 — e(xl/ﬁ)”) {(x‘/B)y ( (xi/ﬁ)y_l)}

B e{(xi/ﬁ)y_(e(xl/ﬁ) _1>}

)

Ua(®) = —nlp(@) +(a+ D]+ P In (1 _ plomy={e? -1>}).
and =

1 N C . 4
Up (&) = —n[y(b) +Y(a + b)] + ﬁ; x — Z(e(xl/m ~1),

i=1
where y(+) is the digamma function.

Solving the non-linear likelihood equations Ug (§) = 0, U, (§) = 0,U,(§) = 0 and U,(§) = 0 simultaneously, we

obtain the MLE ¢ = ([? 7,4, B)T. To construct approximate confidence intervals, we use the multivariate normal
N,(0,771(8)) distribution, where J~1(¢) is the inverse of the expected information matrix evaluated at é. The
information matrix given by
Usp Upy Upa Upp
J@) = — Ugy Zw gya gyb )
va aa ab
Uﬁb U}b Uﬁb Uﬁb

whose elements are given in Appendix B. So, the approximate confidence intervals for B, y, a and b are given,
respectively, by

ptZo ’var([;’), 7+ ZoyJvar(®),  a+Zoyvar(@d) and b+ Zo /var(f)),
2 2 2 2
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where var(-) is the diagonal element of J=1(¢) corresponding to each parameter and Z« is the quantile 100(1-©/2)%
2
of the standard normal distribution.

7. Monte Carlo simulation study

In this section, we conduct a simulation study to check the performance of the MLEs of the parameters of the BPM
distribution. From Equation (8), we generate random samples of sizes n =20, 50,100,200 and 500 from the BPM
distribution using the following sets of parameters:

o Setl:=02 y=05a=25b=5,
o Setll:=25y=1a=2b=1,
o Setlll:f=5 y=02,a=2,b=2.
The simulation is performed via the statistical software R through the command mle. The number of Monte Carlo

replications made was N=1000. The evaluation of the performance is based on the bias and the mean squared errors
(MSE) defined as follows:

N N
- 1 ~ 1 ~
Bias = NZ(Ei —€) and MSE =NZ(Q —€)?,
1= i=

where € = B,y, a and b. The results of our simulation study are summarized in Table 1. We can see that the bias and
MSE of the MLEs decrease when the sample size increases, as expected. This verifies the consistency properties of
the MLEs, i.e., we can conclude that the maximum likelihood method performs well for estimating the parameters of
the BPM distribution.

Table 1. Monte Carlo simulation results for the BPM bias and MSEs.

Set | Set Il Set 111
Sample size | Parameter Bias MSE Bias MSE Bias MSE
n=20 B 0.5622 0.3469 0.9820 0.0268 0.0658 0.0195
y 0.5418 0.3348 0.1808 1.3121 0.9343 1.2206
a -0.8340 | 0.7457 0.1658 0.1787 0.6632 2.9043
b 0.4960 0.2925 0.3241 0.7857 0.8042 1.6549
n=50 B 0.4996 0.2496 0.8433 0.0159 0.0226 0.0065
y 0.3911 0.2842 0.1434 0.6799 0.1474 0.3497
a -0.6893 | 0.5903 0.0498 0.0566 0.3276 2.1792
b 0.3811 0.2254 0.1752 0.1827 0.2269 0.3907
n=100 B 0.4261 0.2201 0.2230 0.0104 0.0158 0.0062
y -0.1893 | 0.0573 0.1353 0.4343 0.0338 0.0654
a 0.0243 0.0010 0.0019 0.0231 0.2480 1.2747
b -0.0764 | 0.0106 0.1373 0.1063 0.0611 0.1206
n=200 B 0.2330 0.0462 0.0073 0.0100 0.0133 0.0057
y -0.1448 | 0.0373 0.0424 0.1470 0.0134 0.0255
a 0.0161 0.0006 -0.0073 0.0118 0.2289 0.6935
b -0.0584 | 0.0073 0.1074 0.0630 0.0106 0.0553
n=500 B 0.1172 0.0228 0.0012 0.0007 -0.0209 0.0015
y 0.0011 | 0.00042 0.0279 0.0576 -0.0066 0.0094
a -0.0030 0.003 -0.0138 0.0058 0.0238 0.3746
b 0.0011 0.0004 0.0756 0.0369 -0.0207 0.0246

8. The LBPM Regression Model

In some practical applications, the lifetimes are affected by many explanatory variables and for this reason the
regression models are widely used to estimate univariate survival functions for censored data. Among them, the
location-scale regression model is distinguished since it is frequently used in clinical trials. In this section, we
introduce a new location-scale regression model based on the logarithm of the BPM distribution. If X ~
BPM (B, y, a, b) then the random variable Y = In X has the log-BPM (LBPM) distribution. The density function of
Y, replacing o = 1/y and u = In B8, is given by
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oB(a,b)

where u € R is the location parameter, o > 0 is the scale parameter and a > 0 and b > 0 are the shape parameters.
The corresponding survival function is

f) = —e% <68% _ 1> eb{eydu_(e ¥_1>} (1 - e{e¥_<e¥_l>})aﬂ' (10)

Sy)=1-1 y-u ¢ 2=t \)(a,b). (12)
1—exp{e a —(ee g —1>}
Then, the pdf of the standardized random variable Z = 2=~ is given by
e Z(e€” 1) {ez-(e¢"-1 ] (e7— (e} 1
@) = =505 (1-e ) (12)

The linear location-scale regression model linking the response variable y; and the explanatory variable vector v] =
(Vig, o) Vi) is given by

y;=vl0+ oz, i=1,..,n
where the random error z; has density function (12) and 6 = (61, ...,e,,)T is the unknown vector of regression
coefficients. The parameter w; = v 6 is the location of y;. The location parameter vector u = (,ul, ...,up)T is

represented by a linear model p=V6, where V = (v, ..., vp)Tis a known model matrix. The LBPM regression model
contains LEPM regression for (b = 1) and LPM for (a = b = 1) regression models as special sub-models.

Suppose (y4,v1), ..., (¥1,v1) is sample of n independent observations, where the random response is defined
by: y; = min{ln(x;),In(c;)}. Let F and C be the sets of individuals for which y; is the log-lifetime or log-censoring,
respectively. The log-likelihood function for the vector of parameters T = (a, b, 0,87 )T is given by:

2(®) =Tier In(F ) + Tiec In(S(yy)), where £(y,) is the density function (10) and S(y,) is the survival function
(11) of ;. The log-likelihood function for 7 is:

£(t) = —r[lno + In B(a, b)] +Zln(ti) +Zln(ef1’ —1D+ bz (eti ety 1)

i€EF iEF i€eF

+(a-1) Z In (1 - e{eti_eEtiJrl}) + Z In (1 - Il—exp(eti—eeti+1)(a' b)),

iEF ieC
where r is the number of uncensored observations (failures) and t; = e%. We can obtain the MLE % of 1 by
maximizing the loglikelihood function £(7). To compute this estimate, we use the procedure optim in R software.
8.1. Residual Analysis

Residual analysis has an important role in judging the adequacy of the fitted model. To study departures from error
assumptions and the presence of outliers, we consider here residual analysis based on the martingale and modified
deviance residuals.

8.1.1. Martingale residual

The martingale residual is defined in counting processes, for more details see Fleming and Harrington (1994). The
martingale residuals for LBPM model is
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1+In|1-1

& oti
i—e€t+1

S——
~
>
S
—
=
m
=

1—exp<e

Ta; = A

Inf1-1

* tt
1—exp<eti—ee L+1>
where t; = == with 4 = v]'8.

8.1.2. Modified Deviance Residual

The main drawback of the martingale residual is that when the fitted model is correct, it is not symmetrically
distributed about zero. To overcome this problem, modified deviance residual was proposed by Therneau et al.
(1990). Th modified deviance residual for LBPM model is

_(sign(r)(=2[ry, + (1 -, )" if i€F,

D; —
sign(rMi)(—21",.,,i)1/2 if i€,
where ry; is the martingale residual.

9. Data Analysis

In order to show the flexibility of the BPM distribution we use two reliability real data sets with different shapes.
For these data sets, we compare the fit of the BPM distribution with the PM, EPM (Irshad et al., 2021),, beta
generalized Weibull (BGW) (Singla et al., 2012), beta Weibull (BW) (Famoye et al., 2005), Kumaraswamy Weibull
(KW) (Corderio et al., 2010), McDonald Weibull (Mc-W) (Corderio et al. 2014), transmuted Weibull (TW) (Aryall
and Tsokos, 2011), beta generalized Gompertz (BGG) (Benkhelifa, 2017), alpha power Weibull (APW) (Nassar et
al., 2017), new generalized odd log-logistic flexible Weibull (GOLLFW) (Prataviera et al., 2018), exponentiated
additive Weibull distribution (EAW) (Ahmad and Ghazal, 2020). The pdf's of these distributions are given in
Appendix A.

In order to verify which distribution fits better to the data sets, we compute the values of the log-likelihood functions
(-22), Akaike information criterion (AIC), consistent Akaike information criteria (CAIC), Bayesian information
criterion (BIC) and the Kolmogorov-Smirnov (K-S) statistic with corresponding p-value. The better model
corresponds to smaller values of these measures and high p-value.

9.1. First data set: devices failure time data

The first data set is given by Aarset (1987) and represents the time to first failure of 50 devices (in weeks). This data
setis: 0.1,0.2,1,1,1,1,1,2,3,6,7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67,
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. The TTT-plot of this data set, in Figure 3(a),
shows a convex shape followed by a concave shape. This corresponds to a bathtub shaped hazard rate function. So,
the BPM distribution is appropriate for modeling the first data.

Table 2 presents the values of the MLEs of the parameters for all fitted distributions. We see from Table 3 that the
BPM distribution has the smallest values of -22, AIC, BIC, CAIC and K-S and largest p-value. Hence, the BPM
distribution gives an excellent fit than the others models for the first data set. In addition, we plot the histogram of
this data set and the fitted pdfs in Figure 4(a). This Figure shows that the BPM pdf provides a closer fit to the
histogram than other distribution. The plots of the estimated cdfs and empirical cumulative function are displayed in
Figure 4(b). These plots reveal that the BPM cdf is the closest curve to the empirical cumulative function. So, we
conclude that the BPM model is the best.

The variance-covariance matrix for the estimated parameters of the BPM distribution is given by
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2.31703
0.02339
0.00624
0.02355

J7(&) =

0.02339
0.00567

0.00624
—0.00024

—0.00024 0.00025
—0.00034 0.00017
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0.02355

~0.00034 |

0.00017
0.00053

So, the approximate 95% confidence intervals for the parameters B, vy, a and b, are [51.5405, 57.5074], [2.4914,

2.7866], [0.0539, 0.1161], [0.0409, 0.1307] respectively.

Table 2: MLEs of the model parameters and the corresponding standard errors given in parentheses.

Model B y A a b
BPM 54.5240(1.522) 2.6390(0.0753) - 0.0850(0.01587) | 0.0858(0.0229)
PM 33.5676(5.3343) 0.4254(0.0557) - - -

EPM 82.809(2.6231) 2.4668(0.0776) - 0.1377(0.0203) -

BGW 1.9343(0.0197) 0.0337(0.1774) | 0.0023(0.1868) | 3.5284(0.0006) | 0.1456(0.0728)
BW 5.1699(0.0064) - 0.0217(0.0239) | 0.0899(0.1123) | 0.0726(0.1214)
KW 1.8942(0.5097) - 0.0028(0.0071) | 0.1395(0.0724) | 0.1369(0.0698)

Mc-W 1.7122(0.3520) 1.8145(0.1028) | 0.0169(0.0016) | 0.2786(0.1772) | 0.0525(0.1186)
TW 0.8958(0.1286) - 0.0386(0.0230) | -0.3279(0.2592) -

BGG 0.0037(0.0071) 2.5748(2.9461) | 0.0688(0.0211) | 0.1172(0.1231) | 0.0983(0.1161)

APW 0.8355(0.1372) - 0.0586(0.1372) | 4.5265(4.0567) -

GOLLFW 29.757(7.32x 1075) | 0.1058(2.76 x 1072) - 0.0383(3.25x 1073) | 0.1870(8.02x 1073)

EAW 1.5554(0.4801) 1.2450(0.1315) | 0.1051(0.0312) | 0.0019(0.0041) | 7.8701(0.01369)

Table 3: The statistics: -22, AIC, BIC, CAIC, K-S and p-value.

Model 27 AIC BIC CAIC K-S p-value
BPM 429.3273 437.3273 444.9754 438.2162 0.1200 0.4675
PM 476.6327 480.6327 484.4567 480.888 0.19217 0.0498
EPM 452.7223 458.7223 464.4584 459.2441 0.2053 0.0295
BGW 461.6844 471.6844 481.2445 473.048 0.1628 0.1414
BW 457.7916 465.7916 473.4397 466.6805 0.1397 0.2826
KW 461.7876 469.7876 477.4357 470.6765 0.1526 0.1941
Mc-W 460.388 470.388 479.9481 471.7516 0.1739 0.0971
TW 480.7334 486.7334 492.4695 487.2551 0.1841 0.0673
BGG 439.0648 449.0648 458.6249 450.4284 0.1276 0.3893
APW 479.2431 485.2431 490.9792 485.7648 0.1749 0.0936
GOLLFW 440.1259 448.1259 455.7740 449.0148 0.1493 0.2149
EAW 461.1976 471.1976 480.7577 472.5613 0.1456 0.2392
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Figure 4: (a) Plots of the histogram and the fitted densities (b) Plots of the empirical cdf
and estimated cdfs of Aarest data.
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9.2. Second data set: Number of successive failures data

The data have been presented by Proschan (1963). The data set is: 194, 413, 90, 74, 55, 23, 97, 50, 359, 50, 130,
487,57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14,
29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49,
12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1,
79, 3,27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29,
26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97,
62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11,
191, 14, 71. This data set has an upside-down bathtub shaped failure rate function as shown by the scaled TTT-plot,
which has a concave shape followed by a convex shape; see Figure 3(b). The BPM distribution is appropriate for
modeling these data.

Table 4 gives the MLEs of the parameters of all models used here for the second data set. The values of -2, AIC,
BIC, CAIC, K-S and its p-value are listed in Table 5. From this Table, we can see that the BPM distribution as the
best fit for the second data set. Figures 5(a), 5(b) illustrate the pdfs and empirical cdfs, respectively, of the
comparative models to show the over fitting of the BPM distribution.

The estimated variance-covariance matrix of the BPM distribution for the this data set is

0.79321 0.00764 —1.98644 0.08687
J1(€) = 0.00764  0.00045 —0.03481 -—0.00061

—1.98644 -0.03481 6.48624 —0.15314 |

0.08687 —0.00061 -0.15314 0.01519

Then, the approximate 95% confidence intervals for the parameters B, y, aand b, are, respectively, [0, 0.6518],
[0.1558, 0.2395], [0.22331, 0.2068], [0, 0.4112].

Table 4: MLEs of the model parameters and the corresponding standard errors given in parentheses.

Model B y A a b
BPM 0.9062(0.8906) | 0.1976(0.0213) - 5.2150(2.5468) 0.1697(0.1232)
PM 63.6606(6.1905) | 0.3648(0.0204) - - -

EPM 3.8633(4.7341) | 0.1616(0.0381) - 5.1627(2.7911) -

BGW 0.4288(0.2270) | 0.6925(1.4808) | 0.1005(0.3520) | 6.3630(13.5748) | 5.2195(16.5406)
BW 0.4010(0.1856) - 0.1279(0.2949) 4.6125(3.8441) | 5.2263(17.7615)
KW 0.7284(0.0911) - 0.2923(0.8001) 2.9535(1.8606) 0.1656(0.2089)

Mc-W 0.6004(0.1272) | 19.9958(3.0166) | 0.1445(0.1258) 2.6628(1.3279) 0.7559(0.1167)
T™W 0.9668(0.0565) - 0.0099(0.0037) 0.4663(0.2808) -

BGG 0.0336(1.82x 1072) | 10.266(7.35x 10~%) | 2.9x10%(1x 1073) 0.144(3.69x 1072) 0.248(1.06x 1077)

APW 0.4765(4.76x 1072 0.3054(4.02x 1072) | 197.44(2.12x 107°)

GOLLFW | 1.6681(0.0718) | 2.9655(0.7605) - 0.0019(0.0004) | 2.4440(0.7314)
EAW 0.3394(0.1710) | 0.0030(0.0253) | 1.0060(0.2716) | 0.5481(0.5842847) | 6.4281(6.4167)
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Table 5: The statistics: -2, AIC, BIC, CAIC, K-S and p-value.

Model 27 AIC BIC CAIC K-S p-value
BPM 2064.106 2072.106 2085.052 2072.325 0.0361 0.9669
PM 2080.665 2084.665 2091.138 2084.73 0.0706 0.3065
EPM 2066.035 2072.035 2081.745 2072.166 0.0447 0.8475
BGW 2066.094 2076.094 2092.276 2076.423 0.0442 0.8556
BW 2066.151 2074.151 2087.097 2074.37 0.0443 0.8529
KW 2064.732 2072.732 2085.677 2072.950 0.0395 0.9307
Mc-W 2066.23 2076.23 2092.412 2076.560 0.0455 0.8298
TW 2070.853 2076.853 2086.563 2076.984 0.0465 0.8095
BGG 2064.774 2074.774 2089.956 2074.103 0.0381 0.9587
APW 2071.108 2077.108 2086.817 2077.238 0.0504 0.7259
GOLLFW 2106.803 2114.803 2127.749 2115.022 0.0969 0.05816
EAW 2065.315 2075.315 2091.497 2075.644 0.04231 0.8894
e _ (b)
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Figure 5: (a) Plots of the histogram and the fitted densities (b) Plots of the empirical cdf
and estimated cdfs of successive failures data.

9.3. Third data set: HIV survival data

This data set is reported in Hosmer and Lemeshow (1999) and also it is available in Bolstad2 package of R software.
The sample size is n=100 on HIV+ subjects belonging to an health maintenance organization, where the goal is to
evaluate the survival time of these subjects. Alizadeh et al. (2017) adopted the log-odd power Cauchy-Weibull
(LOPCW) regression model to analyse this data set. We use the same data set to prove the flexibility of LBPM
regression model, where the aim of this study is to relate the survival time (y) with the history of drug use (v). The
variables are: y; observed survival time (in months), cens;: censoring indicator (0= alive at study end or lost to
follow up, 1= death due to AIDS or AIDS related factors) and v;, (1= yes, 0= no) represents the history of the drug
use. The regression model fitted to the data set is given by

y; =0y + 0,v; + 0z,

where y; has the LBPM density (10) for i=1,...,100. We compare the LBPM regression model with the LPM,
LEPM, LOPCW and log-Weibull (LW) regression models. Table 6 gives the MLEs, their approximate standard
errors and p-values obtained from the fitted these models, -22, AIC, BIC and CAIC statistics. These results indicate
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that the LBPM regression model has the lowest values of the -22, AIC, BIC and CAIC. Therefore, it is clear that the
LBPM model provides an adequate fit to HIV survival data. We can observe that the explanatory variable v;; is

significant at the level of 1%.

Figure 6(a) displays the modified deviance residuals (see Section 8) against the index of the observations. Figure
6(b) gives the normal probability plot with generated envelope. We conclude that none of observed values appear as

DOI: http://dx.doi.org/10.18187/pjsor.v18i1.3529

possible outliers. Therefore, the fitted model is is very suitable for this data set.

Table 6: MLEs of the model parameters standard errors in (.) and p-values in [.] and the values of -22

AIC, BIC and CAIC.

Figure 6: (a) Index plot of the modified deviance residuals and (b) Normal probability plot for the modified deviance

residuals with envelope from the fitted LBPM regression model.

The Beta Power Muth Distribution: Regression Modeling, Properties and Data Analysis

Model a b a 0o 0, -2 AIC BIC CAIC
LBPM 53.559 0.500 9.624 -4.7662 -0.826 241.853 251.853 264.878 | 252.491
(77.715) [ (0.079) (3.613) (3.674) (0.270)
[0.098] | [0.0014]
LEPM 46.161 12.737 -6.316 -0.851 281.759 289.759 300.180 | 290.180
96.609 7.370 7.273 0.270
[0.1936] [ [0.0011]
LPM 2.703 2.666 -1.000 298.915 304.915 312.730 | 305.165
(0.221) (0.175) (0.235)
[<0.001] | [<0.001]
LOPCW 3.287 3.784 3.843 -1.001 286.660 294.661 305.080 | 295.081
(2.921) (3.348) (1.206) (0.252)
[<0.001] | [<0.001]
LW 1.071 3.003 -1.052 292.875 298.875 306.690 | 299.125
(0.088) (0.166) (0.239)
[<0.001] | [<0.001]
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10. Conclusions

We have introduced a new four-parameter model called the beta power Muth distribution. This distribution has as
sub-models the power Muth and exponentiated power Muth distributions. We have derived explicit expressions for
the moments, quantile function and moments of the order statistics associated with the proposed model. We have
used the maximum likelihood method to estimate the model parameters. We have presented two examples involving
reliability data sets. One of the data sets has a bathtub shaped failure rate and the other has an upside-down bathtub
shaped failure rate function. For these data sets, our model provides the best fit than other competitive models.
Further, we have defined the LBPM regression model and shown that this model gives an adequate fit to HIV
survival data.

Appendix A.
In this appendix, we give the pdf of each distribution used in the application section.

e EPM distribution

f(x)

where x, S, v, a > 0.

)

14
_ ayx?~1(e®/BY — 1)eb((x/ﬁ)y_(e(xm) _1» <1 _ e((x/lf)"—(e(’“/B)y‘l»)a_1
BY

e BGW distribution
‘[gylxﬁ—le—lxﬁ B\ CaBY b-1
f(x)=W(1—e ) (1—(1—e )) ,
where x, B, v, A, a, b>0.

e BW distribution

B_ a—
B

wherex, , 4, a, b> 0.

e Mc-W distribution
b—-1

fo) < 1) (1= 1))
where x,5, v, 4, a, b>0.

e  TW distribution
Fx) = ABxP-1e2F (1 +a- Zae"lxﬁ),
where x, 8,4, a > 0.

e BGG distribution
Byee~5e )

fo =2 (1- )" (12 (1 e HeY)
where x, 8, 7, 4, a, b>0. ’

e APW distribution
foo = —aln_al 2pxP=to- gime

where x, a >0, a #£1, 4, > 0.
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e  GOLLFW distribution
760 = By (a+ ) exp [(ax =) = 0y (9] (1~ explran D11
— (1= expl-kap O] {[1 ~ expl—r ]
+[1— {1 - explrey BT

where x, 8, 7, a, b>0and k,, (x) = exp (ax _ S)

e EAW distribution

f(x) = b(aBxF~1 + dyx*1)[1 — exp(—axf — yx’l)]b_lexp(—axﬁ —yx?t),
wherex, S, y, 4, a, b>0.

Appendix B.

Lett;, = %. The elements of the observed information matrix are:

U _ny v+ 1D = x}’etg’ _ & - xzyetr i by(y +1) - R by(y +1) - o ot!
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1 n xg/ ln(tl) (1 _ etg/) e(tg/—etz +1)
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where () is the trigamma function.
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