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Abstract

In this paper, a new long term survival model called Nadarajah-Haghighi model for survival data with long term sur-
vivors was proposed. The model is used in fitting data where the population of interest is a mixture of individuals that
are susceptible to the event of interest and individuals that are not susceptible to the event of interest. The statistical
properties of the proposed model including quantile function, moments, mean and variance were provided. Maximum
likelihood estimation procedure was used to estimate the parameters of the model assuming right censoring. Further-
more, Bayesian method of estimation was also employed in estimating the parameters of the model assuming right
censoring. Simulations study was performed in order to ascertain the performances of the MLE estimators. Random
samples of different sample sizes were generated from the model with some arbitrary values for the parameters for 5%,
1.3% and 1.5% cure fraction values. Bias, standard error and mean square error were used as discrimination criterions.
Additionally, we compared the performance of the proposed model with some competing models. The results of the
applications indicates that the proposed model is more efficient than the models compared with. Finally, we fitted
some models considering type of treatment as a covariate. It was observed that the covariatee have effect on the shape
parameter of the proposed model.

Key Words: Long term cure rate model, Nadarajah-Haghighi cure rate model, Mixture cure rate mode, Right censor-
ing, Bayesian Estimation.
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1. Introduction

The mixture cure rate model also known as the standard cure rate model assumes that the population of study is a
mixture of two individuals: susceptible individuals who experience the event of interest and non-susceptible (also
known as cured or immune) that will never experience the event of interest. Hence, the population of studies consists
of individuals that are at risk and individuals that are not at risk (cured group) with respect to the event of interest. To
model the proportion of non-susceptible, different approaches; parametric, semi-parametric and non-parametric have
been used by different researchers. Interested readers can refer to the work of Boag (1949), Berkson and Gage (1952),
Farewell (1986), Meeker (1987), Gamel et al. (1990), Cantor and Shuster (1992), Ng and McLachlan (1998), Peng
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et al. (1998), Gieser et al. (1998), Sy and Taylor (2000), Shao and Zhou (2004), Kannan et al. (2010), Cancho et al.
(2011), Kutal and Qian (2018) to mention but a few.

According to Kannan et al. (2010), cure rate models have applications in many areas such as health, reliability, crim-
inology and many more areas. For instance, the model have been applied in reliability by Nelsen (2007) while in
criminology, a study on recidivism times of prisoners release from prison in western Australia have been reported by
Maller and Zhou (1996).

In the present article, we introduced a cure fraction model for survival data based on the Nadarajah-Haghighi distribu-
tion in the presence of cure fraction, censoring and covariate. Properties of the model were studied and an application
of the model with leukaemia data of Kersey et al. (1987) was provided. The rest of the paper is organized as follows:
In section 2, we describe the Nadarajah-Haghighi distribution and provide the survival function, probability density
function and cumulative distribution function of the model. Section 3 introduces the Maximum Likelihood Estimation
and Bayesian methods of estimation in estimating the parameters of the model assuming right censoring. In section
4, statistical properties of the model such as quantile function and moments of the model were provided. Simulation
studies and applications of the model were provided in sections 5 and 6 respectively and finally, we conclude in section
7.

2. Model

2.1. The Nadarajah-Haghighi Distribution

The Nadarajah-Haghighi distribution was introduced by Nadarajah and Haghighi (2011), as an extension of the ex-
ponential distribution. The distribution serves as an alternative to the Weibull, generalized exponential and gamma
distributions in modeling real life scenarios. Nadarajah-Haghighi exponential distribution reduces to the exponential
distribution when the shape parameter takes the value one. The various shapes of the pdf and hazard rate function of
the distribution for some selected values can be depicted in figures 1 and 2 respectively. The density of this distribution
can have decreasing and unimodal shapes while the hazard rate has a decreasing shape, increasing shape and constant.
Hence, the shape of the hazard rate function of the NH distribution is similar to that of the Generalized exponen-
tial distribution. A random variable t with parameters β and λ is said to follow the Nadarajah-Haghighi exponential
distribution if its pdf, cdf, survival function and hazard rate function are respectively given by:

f (t/β, λ) = βλ (1 + βt)
λ−1

exp
(

1− (1 + βt)
λ
)

(1)

F (t/β, λ) = 1− exp
(

1− (1 + βt)
λ
)

(2)

S (t/β, λ) = exp
(

1− (1 + βt)
λ
)

(3)

and

h (t/β, λ) = βλ (1 + βt)
λ−1 (4)

where β > 0 is the scale parameter and λ > 0 is the shape parameter.

2.2. The Nagarajah-Haghighi Mixture Cure Rate Model

The mixture cure rate model also referred to as the standard cure rate model was first proposed by Boag (1949). The
model assumes that a certain portion p in the population is cured and the remaining portion 1− p is uncured. Hence,
the model consists of two components: a component representing the proportion of non-susceptible in the population
and a distribution representing the survival experience of the susceptible group. The survival function for the entire
population of study is expressed as:

S (t) = p+ (1− p)Su (t) (5)

where 0 < p < 1 is the mixing parameter and Su (t) is the survival function for the uncured group.
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Figure 1: plot of the pdf of Nadarajah-Haghighi distribution for some selected values

 

Figure 2: plot of the Hazard function of Nadarajah-Haghighi distribution for some selected values
From the survival function in equation (5), the corresponding probability density function (pdf) is given by:

f (t) = (1− p) fu (t) (6)

where fu (t) is the pdf for the uncured individuals.
From equations (2) and (3), the survival function, pdf and distribution function of the Nadarajah-Haghighi mixture
cure rate model are respectively given by:

S (t/β, λ, p) = p+ (1− p) exp
(

1− (1 + βt)
λ
)

(7)

f (t/β, λ, p) = βλ (1− p) (1 + βt)
λ−1

exp
(

1− (1 + βt)
λ
)

(8)

and

F (t/β, λ, p) = (1− p)
[
1− exp

(
1− (1 + βt)

λ
)]

(9)

where β > 0 is the scale parameter, λ > 0 is the shape parameter and p is the proportion of uncured individuals.

3. Estimation Procedure
In this section, classical and non-classical methods of estimation were used in estimating the parameters of the
Nadarajah-Haghighi mixture cure rate (NHMCR) model.

3.1. Maximum Likelihood Estimation Method

Consider a random sample of lifetimes (ti, δi, i = 1, 2, · · · , n) under the assumption of right censoring, the likelihood
function of (ti, δi, i = 1, 2, · · · , n) is given by:

L (Θ/t, δ) =

n∏
i=1

f (ti)
δi [S (ti)]

1−δi (10)
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where Θ = (β, λp), δi is a censoring indicator, δi = 1 if the observed lifetime ti is uncensored and δi = 0 if the
observed lifetime is censored. Substituting equations (7) and (8) in equation (10) and taking natural logarithm gives
the observed full log-likelihood function as:

` (Θ/t, δ) = zlog (β)+zlog (λ)+zlog (1− p)+β (λ− 1)

n∑
i=1

Ai+λz−
n∑
i=1

δiBi+

n∑
i=1

(1− δi) log [p+ (1− p)Ci]

(11)
where z =

∑n
i=1 δi, Ai = δiti, Bi = (1 + βti)

λ and Ci = exp (1−Bi). To obtain the score function, we differenti-
ate the log-likelihood function partially with respect to β, λ and p. This gives:

∂` (Θ/t, δ)

∂β
=
z

β
+ (λ− 1)

n∑
i=1

Ai − λ
n∑
i=1

δiDiti − λ(1− p)
n∑
i=1

(1− δi)CiDiti
p+ (1− p)Ci

(12)

∂` (Θ/t, δ)

∂λ
=
z

λ
+ β

n∑
i=1

Ai + z − 1

λ

n∑
i=1

δiBilog(Bi)−
1− p
λ

n∑
i=1

(1− δi)Bilog(Bi)Ci

p+ (1− p)Ci
(13)

and

∂` (Θ/t, δ)

∂p
=− z

1− p
+

n∑
i=1

(1− δi)(1− Ci)
p+ (1− p)Ci

(14)

where Di = (1 + βti)
λ−1. If the log-likelihood function has a global maximizer, then the MLE is the solution of

the equations in (12), (13) and (14). However, the system of equations in (12) to (14) are non-linear, hence, numerical
methods such as Newton-Raphson method are used in obtaining the MLE. To obtain interval estimates and test for
hypothesis, the observed information matrix J (Φ) is obtain. The elements of the observed information matrix J (Φ)
are given by:

J (Φ) = −

 Vλλ Vλβ Vλp
Vββ Vβp

Vpp


where the diagonal elements of J (Φ)

−1 are the variances of the parameters λ, β and p respectively, while the off
diagonal elements are the covariances. The elements of J (Φ) are:

∂2`

∂λ2
= − z

λ2
− 1

λ2

∑
δiBilog

2 (Bi)−
1− p
λ2

∑ (1− δi)BiCilog2 (Bi)

p+ (1− p)Ci

[
1− Bip

p+ (1− p)Ci

]
∂2`

∂β2
= − z

β2
− λ (λ− 1)

∑
δit

2
iB

λ−2
λ

i − λ (1− p)
∑ (1− δi) t2iCi

p+ (1− p)Ci[
(λ− 1)B

λ−2
λ

i − pD2
i λ

p+ (1− p)Ci

]
∂2`

∂p2
= − z

(1− p)2
−
∑ (1− δi) (1− Ci)2

(p+ (1− p)Ci)2

∂2`

∂β∂λ
=

∑
δiti −

∑
δiDiti −

∑
δiDitilog (Bi)− (1− p)

∑ (1− δi)CiDiti
(p+ (1− p)Ci)

− (1− p)
∑ (1− δi)CiDilog (Bi)

(p+ (1− p)Ci)

[
1− Bip

p+ (1− p)Ci

]
∂2`

∂p∂λ
=

1

λ

∑ (1− δi)BiCilog (Bi)

(p+ (1− p)Ci)2

and

∂2`

∂p∂β
= λ

∑ (1− δi)CiDiti

(p+ (1− p)Ci)2
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It is important to note that, the asymptotic distribution of
√
n
(

Φ̂− Φ
)

is multivariate normal N3

(
0, J

(
Φ̂
)−1)

,

where J
(

Φ̂
)

is the total observed information matrix evaluated at Φ̂. The asymptotic 100 (1− γ) % confidence inter-

val for the parameters β, λ and p are β̂±Z γ
2

√
var

(
β̂
)

, λ̂±Z γ
2

√
var

(
λ̂
)

and p̂±Z γ
2

√
var (p̂) respectively, where

Z γ
2

is the 100 (1− γ) % quantile of the standard normal distribution.

In the presence of a vector of covariates x = (x1, x2, · · · , xm) affecting the parameters β, λ and p, we assumed the
regression model βi = exp(β0 +β1x1i +β2x2i + · · ·+βmxmi), λi = exp(λ0 +λ1x1i +λ2x2i + · · ·+λmxmi) and
log
(

pi
1−pi

)
= η0+η1x1i+η2x2i+· · ·+ηmxmi . For instance, assuming one covariate xi for i = 1, 2, · · · , n affecting

the parameter β, λ and p, the link function for the parameters becomes βi = exp(β0 + β1xi), λi = exp(λ0 + λ1xi)

and log
(

pi
1−pi

)
= η0 + η1xi, where xi takes the value 0 when individual i is in the treatment group 1 and the value 1

when individual i is in the treatment group 2.

3.2. Bayesian Method of Estimation

Consider the NHMCR model proposed in sections 2.2, let Θ be the vector of unknown parameters. The joint dis-
tribution of the model parameters is obtain by combining the joint prior distribution of the parameters and the like-
lihood function. A gamma prior for the shape and scale parameters of the proposed models are assumed, where
Gamma (r, q) denotes gamma distribution with mean r

q and variance r
q2 , r and q are hyper-parameters. On the other

hand, the proportion of cure parameter is assumed to follow the beta prior. That is, p ∼ Beta(s, v), where s and v are
hyper-parameters. To be specific, p ∼ Beta(1, 1) since 0 < p < 1. We further assume independent prior among the
parameters of the model.

In the presence ofm covariates x = (x1, x2, · · · , xm) affecting the parameters of the proposed models, a link function
for the parameters β, λ and p is assumed. That is,

log (β) = β0 + β1xi + · · ·+ βmxm

log (λ) = λ0 + λ1xi + · · ·+ λmxm

and

log

(
pi

1− pi

)
= η0 + η1xi + · · ·+ ηmxm

for β, λ and p respectively. To be specific, assume the NHMCR model with scale parameter β, shape parameter λ and
a proportion of cure p are affected by the presence of a covariate xi for i = 1, 2, · · · , n, then the link function

log (β) = β0 + β1x1i

log (λ) = λ0 + λ1x1i

and

log

(
pi

1− pi

)
= η0 + η1x1i

are assumed for the scale parameter β, shape parameter λ and proportion of cure p respectively. Inferences considering
covariate effect are obtain by replacing β, λ and pwith these link functions. Furthermore, normal prior distribution will
be assumed for the effect of covariates. That is, N

(
µ, σ2

)
will be assumed, where N

(
µ, σ2

)
is normal distribution

with parameters µ and σ.

4. Statistical Properties of the Model

In this section, some statistical properties such as quantile function, median and moments of the NHMCR model were
discussed.
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4.1. Quantile Function and Simulations

In simulation studies, quantile function is used in obtaining random realizations from a given model. The quantile
function of the NHMCR model is:

Q (u) =
1

β

[[
1− log

(
1− p− u

1− p

)] 1
λ

− 1

]
(15)

where u is a random number generated from uniform distribution with parameters zero and one. That is u ∼ U(0, 1).
The quantile function can be use in obtaining the first, second and third quantiles of the NHMCR model. This is done
by letting u = 1

4 ,
1
2 and 3

4 respectively for the first, second and third quantiles. For instance, to obtain the median, let
u = 1

2 , we obtain the median of the NHMCR model as:

Median =
1

β

[[
1− log

(
0.5− p
1− p

)] 1
λ

− 1

]
(16)

To simulate a random sample of size n from the NHMCR model with right censored data, the following algorithm is
followed:

1. Generate a random sample ui, i = 1, 2, · · · , n from U(0, 1).

2. For a cure fraction p, return ti = 1
β

[[
1− log

(
1−p−u
1−p

)] 1
λ − 1

]
for ui < 1− p otherwise ti is infinity.

3. Generate a sample of the censoring times ci, i = 1, 2, · · · , n from the NH distribution.

4. Calculate zi = min (ti, ci) , δi = I (ti ≤ ci) , i = 1, 2, · · · , n

5. The observed data set D = {(zi, δi), i = 1, 2, · · · , n} are realizations from the NHMCR model with right
censoring.

4.2. Moments of the Model

Let T be a random variable that follows the NHMCR with pdf given by (8). The rth moment about the origin of the
NHMCR model is obtain as follows:

E (T r) =

∫ ∞
0

trβλ (1− p) (1 + βt)
λ−1

exp
(

1− (1 + βt)
λ
)
dt

substituting m = (1 + βt)
λ the integral can be written as:

E (T r) =
(1− p) e
βr

∫ ∞
1

(
m

1
λ − 1

)r
e−mdm

=
(1− p) e
βr

r∑
j=0

(−1)
r+j rCjΓ

(
j

λ
+ 1, 1

)

where Γ (p, b) =
∫∞
b
tp−1e−tdt is the complementary incomplete gamma function. Hence, the first four moments of

the model are:

E (T ) =
(1− p)
β

[
−1 + eΓ

(
1

λ
+ 1, 1

)]
(17)

E
(
T 2
)

=
(1− p)
β2

[
1− 2eΓ

(
1

λ
+ 1, 1

)
+ eΓ

(
2

λ
+ 1, 1

)]
(18)

E
(
T 3
)

=
(1− p)
β3

[
−1 + 3eΓ

(
1

λ
+ 1, 1

)
− 3eΓ

(
2

λ
+ 1, 1

)
+ eΓ

(
3

λ
+ 1, 1

)]
(19)

and
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E
(
T 4
)

=
(1− p)
β4

[
1− 4eΓ

(
1

λ
+ 1, 1

)
+ 6eΓ

(
2

λ
+ 1, 1

)
− 4eΓ

(
3

λ
+ 1, 1

)
+ eΓ

(
4

λ
+ 1, 1

)]
(20)

Hence, the variance of the NHMCR model is obtain by σ2 = E
(
T 2
)
− (E (T ))

2 which is given by:

σ2 =
(1− p)
β2

[
eΓ

(
2

λ
+ 1, 1

)
− (1− p) e2Γ

(
1

λ
+ 1, 1

)
− 2eΓ

(
1

λ
+ 1, 1

)
+ p

]

Table 1: Summary statistics with 5% cure fraction
n parameters estimates bias Standard Error MSE

β = 1.5 and λ=2.0
100 β 1.5328 0.0328 1.0430 1.8950

λ 2.7259 0.7259 1.4826 4.3504
p 0.0465 -0.0035 0.02243 0.0054

200 β 1.4986 -0.0141 0.7671 0.9171
λ 2.4076 0.4076 0.9906 1.6069
p 0.0497 -0.0003 0.0155 0.0005

300 β 1.4870 -0.0130 0.6130 0.1134
λ 2.2800 0.2800 0.7706 1.1499
p 0.0500 -0.0002 0.0127 0.0003

400 β 1.4792 -0.0121 0.5444 0.0249
λ 2.2230 0.2230 0.6649 1.0416
p 0.0500 0.0000 0.0110 0.0003

500 β 1.4877 -0.0120 0.4709 0.3299
λ 2.1613 0.1613 0.5627 0.5713
p 0.0500 0.0000 0.0099 0.0002

β = 2.5 and λ = 2.0
100 β 2.4433 -0.0568 1.7541 6.6157

λ 2.7825 0.7825 1.5725 5.1135
p 0.0495 -0.0005 0.0219 0.0011

200 β 2.4724 -0.0476 1.2108 2.4757
λ 2.4003 0.4003 0.9624 2.2915
p 0.0498 -0.0002 0.0153 0.0005

300 β 2.4551 -0.0449 0.9881 1.7599
λ 2.2790 0.2790 0.7803 1.6454
p 0.0499 -0.0001 0.0125 0.0003

400 β 2.4522 -0.0378 0.8342 0.9515
λ 2.2197 0.21971 0.6082 0.5942
p 0.0500 -0.0000 0.0108 0.0002

500 β 2.4641 -0.0359 0.7539 0.1950
λ 2.1624 0.1624 0.5736 0.1581
p 0.0500 0.0000 0.0097 0.0002

5. Simulation Study
In this section, simulation studies was conducted in order to ascertain the performance of the maximum likelihood
estimator of Θ (where Θ = (β, λ, p)′) discussed in section 3. The algorithm discussed in section 4.1 was used in
generating right censored survival times.

We generated random samples of size n = 100, 200, 300, 400 and 500 from the NHMCR model with some arbi-
trary parameters β = 1.5, λ = 2.0 and β = 2.5, λ = 2.0 with different values for cure fraction. On the other hand,
the censoring variable follows the NH distribution. Inference results from the simulation study were based on 1000
replications. These results were obtained under the MLE estimators. Performance measures such as bias, standard
error and mean square error were employed so as to ascertain the performances of the estimates.
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Table 2: Summary statistics with 10% cure fraction
n parameters estimates bias SE MSE

β=1.5, λ=2.0
100 β 1.4743 -0.0357 1.0196 2.1285

λ 2.7259 1.5986 2.4423 6.6399
p 0.0969 -0.0014 0.0299 0.0018

200 β 1.489 -0.031 0.6904 0.9865
λ 2.4194 0.7194 1.1944 3.902
p 0.0994 -0.0006 0.0212 0.0009

300 β 1.473 -0.027 0.5541 0.6425
λ 2.4026 0.4026 0.884 0.7631
p 0.0994 -0.0006 0.0174 0.0006

400 β 1.4776 -0.0224 0.476 0.4583
λ 2.2356 0.2356 0.6266 0.5307
p 0.0996 -0.0004 0.0151 0.0005

500 β 1.4796 -0.0204 0.4242 0.369
λ 2.1742 0.1742 0.5405 0.4537
p 0.0997 -0.0003 0.0135 0.0004

β=2.5, λ=2.0
100 β 2.4396 -0.0694 1.5922 5.1052

λ 2.8135 1.6105 1.0748 6.8271
p 0.0996 -0.0004 0.0295 0.0018

200 β 2.4522 -0.0678 1.0997 2.4709
λ 2.6405 0.6405 1.0643 4.2042
p 0.0996 -0.0004 0.021 0.0009

300 β 2.4387 -0.0613 0.8933 1.5967
λ 2.3451 0.3451 0.8651 2.1335
p 0.0995 -0.0005 0.0172 0.0006

400 β 2.4517 -0.0483 0.7659 1.2055
λ 2.226 0.226 0.6218 1.1435
p 0.0996 -0.0004 0.0149 0.0004

500 β 2.4565 -0.0435 0.6801 0.954
λ 2.1713 0.1713 0.5139 0.7139
p 0.0998 -0.0002 0.0134 0.0004

Tables 1 to 3 gives the simulation results based on 1000 replications for each parameter setting. The Table gives the
mean estimate of the parameters together with the bias, standard error and mean square error (MSE). It is observed
that, the estimates are satisfactory closed to the true parameter values in all the different simulation settings. It is also
observed that the estimates of bias, standard error and mean square error (MSE) decreases as sample size increases
for all the different settings of all examined parameter values. Hence, the results reveal that the proposed model has a
good performance.

6. Real data Analysis
In this section, a data set consisting of 90 observations that was provided by Kersey et al. (1987) and was analyzed
by Shao and Zhou (2004), Coelho-Barros et al. (2017) and Kutal and Qian (2018) were use to fit the mixture cure
rate model studied in previous sections and compared its performance with that of some competing mixture models.
The data recorded the times to recurrence of leukaemia for patients after one of allogeneic transplant or autologous
transplant. Forty-six (46) patients were treated by allogeneic transplant while the remaining forty-four (44) were
treated by autologous transplant. However, there are thirty-three (33) and thirty-five patients treated by allogeneic
transplant and autologous transplant respectively that suffered a recurrence of leukaemia at different ranges of time.
It is also observed that thirteen(13) and nine(9) patients from these respective groups have no record of recurrence,
that is they are censored. Maximum Likelihood method of estimation and Bayesian method of estimation discussed in
section 3 were used to analyzed this data.
The data is fitted in three categories: Models without cure fraction assuming right censoring, models assuming cure
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fraction under right censoring and models assuming cure fraction and covariates under right censoring. In the first
category, Nadarajah-Haghighi(NH), Weibull (W), Generalized Gompertz (GG) and Rayleigh (R) distributions under
right censoring were fitted.

Table 3: Summary statistics with 1.3% cure fraction
n parameters estimates bias SE MSE

β=1.5, λ=2.0
100 β 1.4602 -0.098 1.0164 2.0734

λ 2.9438 1.8431 1.9309 7.6266
p 0.129 -0.001 0.0335 0.0023

200 β 1.4632 -0.068 0.7006 1.0187
λ 2.8276 0.8276 1.1365 5.2447
p 0.1293 -0.0007 0.0238 0.0011

300 β 1.4755 -0.0245 0.5621 0.677
λ 2.434 0.434 0.8753 4.9105
p 0.1295 -0.0005 0.0195 0.0008

400 β 1.4782 -0.0218 0.485 0.4794
λ 2.2247 0.2247 0.6583 1.1045
p 0.1298 -0.0002 0.0169 0.0006

500 β 1.4823 -0.0177 0.4326 0.3902
λ 2.1857 0.1857 0.5508 0.8913
p 0.1299 -0.0001 0.0151 0.0005

β=2.5, λ=2.0
100 β 2.433 -0.067 1.606 5.1599

λ 2.7338 1.0938 1.9384 6.1309
p 0.1294 -0.0008 0.0332 0.0023

200 β 2.4679 -0.0521 1.1284 2.6396
λ 2.6654 0.6654 1.1176 4.7618
p 0.1293 -0.0007 0.0236 0.0011

300 β 2.4509 -0.0491 0.9024 1.7106
λ 2.3762 0.3762 0.7926 3.0792
p 0.1296 -0.0004 0.0193 0.0007

400 β 2.4511 -0.0489 0.7744 1.2442
λ 2.2221 0.2221 0.6208 1.0741
p 0.1299 -0.0001 0.0168 0.0006

500 β 2.4663 -0.0337 0.6954 1.0081
λ 2.168 0.168 0.5275 0.8044
p 0.1298 -0.0002 0.015 0.0004

Then, the NHMCR model was fitted and compared with the fits of Weibull (WMCR), Generalized Gompertz (GGMCR)
and Rayleigh (RMCR) mixture cure rate models. Likelihood ratio test was then performed to ascertain the importance
of the addition of the cure fraction parameter.

Table 4: Maximum Likelihood Estimates (MLE) and Standard Error for models without cure fraction
Model parameters estimate SE 95% CI AIC BIC CAIC

Nadarajah-Haghighi β 0.2997 0.0437 (0.2141, 0.3853) 160.6106 160.5191 156.7485
λ 6.8500 2.3940 (2.1578, 4.9919)

Weibull β 0.7957 0.0981 (0.6034, 0.9880) 178.8961 178.8046 175.034
λ 0.6441 0.0626 (0.4519, 0.8364)

Generalized β 0.6581 0.0431 (0.1133, 0.2075) 669.2243 669.087 663.5034
Gompertz λ 0.1604 0.0240 (0.5737, 0.7425)

θ 1.1484 0.0330 (1.0838, 1.2130)
Rayleigh β 2.3330 0.2809 (1.7825, 2.8835) 412.4524 412.4066 410.4978

In the last part of the analysis, the NHMCR model was fitted in the presence of a covariate on the parameters of the
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model.

6.1. Maximum Likelihood Result

In this section, the results of the fitted models under MLE procedure is discussed. Different performance measures
such as Akaike information criteria (AIC), Bayesian information criteria (BIC) and Consistent Akaike information
criteria (CAIC) were used in finding the best fitted model. The model with the least statistic values of these criteria is
considered to be the best model.
Tables 4 and 5 gives the MLE results of the models without cure fraction and the models with cure fraction respectively.
These tables also contain the AIC, BIC and CAIC values of the fitted models. These results reveal that, all the estimates
of the models with cure fraction fits the data more efficient than the models without cure fraction.

Table 5: Maximum Likelihood Estimates (MLE) and Standard Error for models with cure fraction
Model parameters estimate SE 95% CI AIC BIC CAIC

NHMCR β 2.5125 0.9977 (0.5571, 4.4679) 146.4447 146.3074 140.7237
λ 0.8454 0.2001 (0.4533, 2.9046)
p 0.2268 0.0452 (0.1382, 0.3153)

WMCR β 1.7214 0.2324 (1.2660, 2.1768) 171.6146 171.4773 165.8937
λ 1.1169 0.0968 (0.9272, 1.3066)
p 0.3756 0.0452 (0.2870, 0.4641)

GGMCR β 22.6825 1.0486 (141.8530, 142.0261) 198.6840 198.5010 191.1546
λ 141.9396 0.0442 (20.6273, 24.7376)
θ 19.8721 0.7428 (18.4163, 21.3279)
p 0.2296 0.0442 (0.1430, 0.3161)

RMCR β 0.5032 0.0304 (0.4436, 0.5628) 205.5954 205.5039 201.7333
p 0.2332 0.0446 (0.1458, 0.3206)

 

Figure 3: plot of Kaplan-Meier together with NH, GG, W and R models from MLE results

 

Figure 4: plot of Kaplan-Meier with NHMCR, GGMCR, WMCR and RMCR models from MLE results

Hence, the mixture cure rate models are better than the models without cure fraction parameter. This can clearly be
seen in figures 3 and 4. Likelihood ratio test was conducted to ascertain the significance of the addition of the cure
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fraction parameter in the NH, W, GG and R distributions. The test was conducted at 5% level of significance, we
formulate the hypothesis H0 : p = 0 against H1 : p 6= 0. The LRT statistic and p-value for each test is given in table
6, from this table, we observed that the cure fraction parameter is significant in modeling this data.

Table 6: Likelihood Ratio Test
Model compared τ p value

NHMCR vs NHD 16.165900 0.000058
WMCR vs WD 9.281480 0.002315

GGMCR vs GGD 472.540300 0.000000
RMCR vs RD 208.857000 0.000000

On the other hand, comparing between the fitted mixture cure rate models (NHMCR, WMCR, GGMCR and RMCR),
we conclude that the proposed NHMCR model is more efficient than WMCR, GGMCR and RMCR models since it has
the least values for AIC, BIC and CAIC.

6.2. Bayesian Result

In this section, Bayesian method of estimation was used in fitting the model proposed in the previous section and
compared its performance with that of the aforementioned models in section 6.1.

Table 7: Posterior summaries of models not including cure fraction
Model parameter posterior mean SD 95% credible interval DIC EBIC

Nadarajah β 2.4120 0.7693 (0.0932, 4.2180) 206.3 208.6
Haghighi λ 0.5858 0.0932 (0.4361, 0.8004)
Weibull β 0.9439 0.1052 (0.7489, 1.1610) 210.9 212.8

λ 0.8210 0.0653 (0.6979, 0.9535)
Generalized β 0.0629 0.0551 (0.0019, 0.2022) 215.0 218.8
Gompertz λ 0.6073 0.1170 (0.3774, 0.8389)

θ 0.7239 0.1036 (0.5344, 0.9410)
Rayleigh β 0.2821 0.0297 (0.2266, 0.3426) 391.8 392.8

In analyzing the data, the prior distribution for the shape and scale parameters were assumed to be Gamma(1, 1) while
the prior distribution for the cure fraction parameter was assumed to be Beta(1, 1). Additionally, in the presence of
covariates, a normal prior was assumed (N(0, 100)) for the covariate effects.

Table 8: Posterior summaries assuming the mixture models
Model parameter posterior mean SD 95% credible interval DIC EBIC

Nadarajah- β 2.2110 0.7851 (1.0250, 4.0550) 145.9 149.2
Haghighi λ 0.9542 0.2194 (0.6136, 1.4580)

p 0.2309 0.0454 (0.1485, 0.3249)
Generalized β 0.0748 0.0678 (0.0022, 0.2528) 146.3 151.0
Gompertz λ 2.0790 0.3629 (1.4000, 2.8130)

θ 1.2190 0.2142 (0.8412, 1.6870)
p 0.2360 0.0441 (0.1538, 0.3271)

Weibull β 1.9110 0.2476 (1.4490, 2.4270) 146.6 149.5
λ 1.0460 0.0949 (0.8649, 1.2350)
p 0.2339 0.0448 (0.1516, 0.3265)

Rayleigh β 1.7070 0.2056 (1.6990, 2.1320) 223.9 225.8
p 0.2390 0.0441 (0.2373, 0.3305)

Inference results of interest were obtained from simulated samples for the joint posterior distribution using Markov
Chain Monte Carlo simulations (MCMC) technique. In all the fitted models, we generated 1010000 samples for each
parameter of interest. To minimize the effect of initial values, the first 10000 samples were discarded as burn-in-
samples. Furthermore, the posterior summaries of interest were based on 20000 samples taken from the 1000000
samples taken at every 50th sample so as to have approximately uncorrelated values.
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To compare between the fitted models under the Bayesian frame work, deviance information criteria (DIC) and ex-
pected Bayesian information criteria ((EBIC) were used.

 

Figure 5: plot of Kaplan-Meier with NH, GG, W and R models from Bayesian results

 

Figure 6: plot of Kaplan-Meier with NHMCR, GGMCR, WMCR and RMCR models from Bayesian results

Table 7 gives the fits of NH, GG, W and R distributions without cure fraction. The results gives the posterior mean,
standard deviation (SD), 95% credible interval and the statistics: DIC and EBIC. Figure 5 gives the Kaplan-Meier
curve together with that of NH, W, GG and R distributions. Similar to the fits in figure 3, these fits does not properly
mimic that of the empirical survival function. Additionally, the presence of plateau close to 0.3 suggest cure fraction
models as an alternatives to these fitted models. Table 8 gives the posterior summaries of the NHMCR, GGMCR,
WMCR and RMCR models. It can easily be seen that the cure rate models fits the data better than the models without
cure fraction. It is also observed that our proposed NHMCR model is a very strong competitor since it has the least
values of DIC and EBIC. This can also be observed from the Kaplan-Meier fits together with that of the fitted mixture
models as shown in figure 6.

6.3. Covariate Models

In this section, we fit the NHMCR model considering the type of treatment as a covariate. For the regression model
given in section 3, six different models were considered: model I - regression model for β, model II - regression model
for λ, model III - regression model for p, model IV - regression model for β and λ, model V - regression model for λ
and p and model VI - regression model for β, λ and p.

The results of the regression models considering the NHMCR model under the MLE are given in table 9 while the
estimates under the Bayesian technique are given in table 11. The information criteria for these fitted models are given
in table 10. Careful examination of the information criteria values shows that, the model considering covariate on the
shape parameter is more efficient since it has the least estimates of AIC, BIC, DIC and EBIC values.
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Table 9: Maximum Likelihood Estimates (MLE) and Standard Error for regression models
Models Parameters estimate SE 95% CI

Model I β0 0.1743 0.4914 (-0.7889, 1.1376)
β1 0.7083 0.2474 (0.2234, 1.1932)
λ 1.1126 0.3296 (0.4666, 1.7586)
p 0.2284 0.0454 (0.1394, 0.3174)

Model II β 1.9033 0.8957 (0.1478, 3.6588)
λ0 -0.1831 0.3067 (-0.7842, 0.4180)
λ1 0.4466 0.1669 (0.1194, 0.7737)
p 0.2296 0.0464 (0.1386, 0.3205)

Model III β 2.3431 1.0947 (0.1976, 4.4886)
λ 0.8918 0.2478 (0.4062, 1.3774)
η0 -0.9400 0.3321 (-1.5908, -0.2892)
η1 -0.6102 0.5234 (-1.6361, 0.4157)

Model IV β0 1.0334 0.7331 (-0.4035, 2.4703)
β1 -0.5978 0.9204 (-2.4017, 1.2061)
λ0 -0.4718 0.4771 (-1.4070, 0.4633)
λ1 0.8813 0.6073 (-0.3090, 2.0715)
p 0.2276 0.0511 (0.1275, 0.3277)

Model V β 2.1835 0.8156 (0.5850, 3.7821)
λ0 -0.2828 0.257 (-0.7864, 0.2209)
λ1 0.4327 0.1758 (0.0881, 0.7773)
η0 -1.0088 0.3572 (-1.7088, -0.3087)
η1 -0.4719 0.5273 (-1.5053, 0.5615)

Model VI β0 1.2340 0.7779 (-0.2906, 2.7586)
β1 -1.0183 0.9791 (-2.9372, 0.9006)
λ0 -0.4622 0.4357 (-1.3162, 0.3918)
λ1 1.0072 0.6016 (-0.1719, 2.1864)
η0 -1.1675 0.3845 (-1.9212, -0.4138)
η1 -0.3040 0.5461 (-1.3743, 0.7662)

Table 10: Information criterion
models AIC BIC CAIC DIC EBIC

I 142.1614 141.9784 134.6320 145.9000 151.5170
II 140.6567 140.4737 133.1273 141.9000 147.4170

III 147.2024 147.0194 139.6730 161.2000 185.5674
IV 142.3348 142.1061 133.0491 142.4000 150.3000
V 141.8601 141.6313 132.5743 157.3000 165.4712

VI 144.3350 144.0605 133.3471 157.8000 168.2255

7. Conclusion

The presence of cure fraction and covariates usually occur in lifetime data analysis especially medical applications.
To analyze this type of data, the cure fraction model is used. This paper proposed a mixture cure fraction model with
NH susceptible distribution for right censored data. Results of simulation study shows that, the proposed model has a
good performance. Moreover, a real data was used in comparing the performance of the proposed model with WMCR,
GGMCR and RMCR models. It was found that the proposed model fits the data more efficient than the aforementioned
models. Finally, we analyzed the data assuming type of treatment as a covariate. Six different models were fitted and
it was found that model II was better fitted to the data under the MLE and Bayesian method of estimations.
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Table 11: Posterior summaries assuming the mixture model and including covariate
model parameter posterior mean SD 95% credible interval

Model I β0 0.0413 0.0980 (-0.1493, 0.2340)
β1 0.1257 0.0913 (-0.0534, 0.3052)
λ 1.3860 0.1390 (1.1230, 1.6700)
p 0.2350 0.0445 (0.1529, 0.3273)

Model II β 1.8350 0.3537 (1.2420, 2.6240)
λ0 -0.0142 0.0912 (-0.1890, 0.1668)
λ1 0.1265 0.0866 (-0.0446, 0.2944)
p 0.2341 0.0445 (0.1532, 0.3277)

Model III β 2.1240 0.7326 (0.9999, 3.8440)
λ 0.9917 0.2145 (0.6639, 1.5020)
η0 -0.1890 0.0906 (-0.3642, -0.01324)
η1 -0.1084 0.0958 (-0.2960, 0.0812)

Model IV β0 0.1184 0.0887 (-0.0587, 0.2919)
β1 0.1175 0.0930 (-0.0646,0.3000)
λ0 0.1314 0.0770 (-0.0244,0.2790)
λ1 0.1572 0.0878 (-0.0167, 0.3296)
p 0.2295 0.0451 (0.1467, 0.3234)

Model V β 1.8520 0.3514 (1.2650, 2.6270)
λ0 -0.0080 0.0903 (-0.1839, 0.1702)
λ1 0.1261 0.0856 (-0.0442, 0.2931)
η0 -0.1882 0.0908 (-0.3653, -0.0089)
η1 -0.1087 0.0953 (-0.2947, 0.0801)

Model VI β0 0.1230 0.0883 (-0.0498, 0.2961)
β1 0.1151 0.0927 (-0.0649, 0.2971)
λ0 0.1458 0.0748 (-0.0036, 0.2896)
λ1 0.1551 0.0866 (-0.0137, 0.3251)
η0 -0.1888 0.0911 (-0.3698, -0.0097)
η1 -0.1089 0.0963 (-0.2968, 0.0804)
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