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Abstract

One of the most important topics in reliability analysis is the comparisons of coherent systems. To this end, various
methods and criteria have been proposed by researchers. This study is concerned with comparing such systems using
the conditional reliability function. A nonparametric estimator for the conditional reliability function is derived and
its properties are investigated. Then, for the comparison of the two independent systems, the ratio of their conditional
reliability function is considered. A nonparametric estimator for this parameter is obtained and its asymptotic distribu-
tion is established. The asymptotic confidence interval and the corresponding hypothesis testing procedure is obtained.
Finally, the applicability of the proposed method is investigated through simulation and an example of real data.
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1. Introduction

In reliability analysis, the concept of aging is described in terms of the survival function of residual lifetime, failure
rate, mean residual lifetime, etc. Bryson and Siddiqui (1969) considered several criteria for the concept of aging.
Deshpande et al. (1986) derived other criteria and related this concept to the stochastic dominance of first and higher
orders. Let T represent the lifetime of an item or a system with the cumulative distribution function (CDF) FT (t).
The reliability function of T at t is defined by RT (t) = 1− FT (t). Then, the random variable Tt, which is defined as
T − t|T > t shows the residual lifetime of a system operating at time t > 0. The reliability function of Tt at x > 0 is
named the conditional reliability function, and defined as

RTt(x) = R(x|t) = RT (x+ t)

RT (t)
for t > 0, (1)

where for t = 0 we define: R(x|0) = RT (x). Siddiqui and Çaǧlar (1994) discussed the properties of the random
variable Tt, including its mean, variance, and percentiles.
The function in (1) plays an important role in reliability analysis. Moreover, in many practical problems, researchers
and practitioners are interested in comparing the reliability of several systems that are subject to failure. Various
probability tools have been introduced to compare the reliability of different systems. These tools allow engineers
and other decision makers to compare different products, maintenance and allocation policies. Navarro and Rychlik
(2007) compared coherent systems using their lifetime expectations. Kochar et al. (1999) and Shaked and Suarez-
Llorens (2003) used stochastic ordering for the comparisons of systems. Samaniego (2007) proposed to use stochastic
precedence to compare the lifetime of two independent coherent systems. Navarro and Rubio (2010) obtained some
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new expressions to compare systems using stochastic precedence. The most important drawback of expected lifetime-
based comparisons is their dependence on the distribution of components. The most important drawback of stochastic
order-based comparisons is the lack of order in some systems. Zardasht and Asadi (2010) introduced a time-dependent
criterion to compare the residual lifetime of two systems. This criterion was obtained based on the probability that the
residual lifetime random variable of the one system is greater than that of the other system.

In this study, we take the conditional reliability function approach. We also consider the ratio of the conditional
reliability function of two systems instead of their difference. In some cases, the ratio is more informative than
the difference. For example, assume that the conditional reliability functions of two systems are 0.01 and 0.001,
respectively. The ratio index suggests that the first system is ten times more reliable than the second one, while the
corresponding difference is less informative.

The rest of the paper is organized as follows. In section 2, we formulate the problem and obtain a nonparametric esti-
mator for the ratio of the conditional reliability function of two independent systems. We also establish the asymptotic
distribution of the proposed estimator. Then, we use the asymptotic distribution to derive the asymptotic confidence
interval and to test the hypothesis for the ratio of the system’s conditional reliability function. In section 3, we investi-
gate the performance of the proposed method through the Monte Carlo simulation. Finally, we analyze a real data set
to illustrate the usefulness of the proposed method.

2. Nonparametric estimator and its properties

To start with, for a given t, we first derive a nonparametric estimator for the reliability function of the residual lifetime
random variable Tt at x, i.e R(x|t), and find its asymptotic distribution. Then, we use the results to estimate the ratio
of the conditional reliability function of two independent systems.

Let T1, T2, . . . , Tn be a random sample from a distribution FT (t). Also, let Z1 and Z2 denote the number of failures
in the random sample during the intervals (0, t] and (t, x + t], respectively. It is now possible to express the random
variables Z1 and Z2 as below:

Z1 =

n∑
j=1

I(0,t](Tj), Z2 =

n∑
j=1

I(t,t+x](Tj),

where

IA(Tj) =

{
1 Tj ∈ A
0 otherwise.

Therefore, Z1 and Z2 have a multinomial distribution with the following probability function

fZ1,Z2(z1, z2) =
n!

z1!z2!(n− z1 − z2)!
pz11 p

z2
2 (1− p1 − p2)(n−z1−z2) z1 + z2 ≤ n, p1 + p2 ≤ 1,

where p1 = p(T ≤ t) and p2 = p(t < T ≤ x+ t). As a result, for a particular t, the reliability function of Tt at x can
be written as

R(x|t) = 1− p2
1− p1

. (2)

It is now possible to obtain the maximum likelihood estimator (MLE) of pi via p̂i = Zi
n (i = 1, 2). By the invariance

principle of MLEs, Zehna et al. (1966) and Berk and Zehna (1967), for a fixed x and t, the MLE of parameter R(x|t)
is

R̂(x|t) = 1− Z2

n− Z1
. (3)

This estimator is a nonparametric estimator for R(x|t), because it does not depend on the distribution of F . We
proceed with the derivation of several theoretical properties of R̂(x|t); these are outlined in Theorem 2.1, Theorem
2.2, Theorem 2.3, and Corollary 2.1.

Theorem 2.1. R̂(x|t) is an unbiased estimator for R(x|t).
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Proof.

E(R̂(x|t)) =1− E(
Z2

n− Z1
) = 1−

n∑
z1=0

n−z1∑
z2=0

z2
n− z1

fZ1,Z2
(z1, z2)

=1−
n∑

z1=0

n!

z1!(n− z1)
pz11

n−z1∑
z2=1

1

(z2 − 1)!(n− z1 − z2)!
pz22 (1− p1 − p2)(n−z1−z2)

=1− p2
n∑

z1=0

n!

z1!(n− z1)!
pz11 (1− p1)n−z1−1 = 1− p2

1− p1

(4)

Theorem 2.2. Under the above assumptions,

R̂(x|t)−R(x|t) L−→ N(0, σ2) as n→∞,

where

σ2 =
p2(1− p1 − p2)
n(1− p1)3

.

Proof. Let p = (p1, p2)
′

and p̂ = (p̂1, p̂2)
′
, by large sample properties of Maximum Likelihood Estimators (MLEs)

(see Zacks, 2012), we obtain
(p̂− p)

L−→ N(0, V (p)),

where V (p) = I−1(p) is the inverse of Fisher information matrix for (Z1, Z2) which is equal to

I(p) =

[ n
p1

+ n
1−p1−p2

n
1−p1−p2

n
1−p1−p2

n
p2

+ n
1−p1−p2

]
Now, we apply Cramer’s Theorem (see page 45 Ferguson, 1996), for the function

R(x|t) = 1− p2
1− p1

.

We define g : R2 → R as g(x1, x2) = 1− x2

1−x1
. Then, the gradient function with respect to g in point (p1, p2) is

∇g(p1, p2) = (
−p2

(1− p1)2
,
−1

1− p1
).

Finally, we complete the proof by utilizing the Delta Method. Specifically, it holds that

var(R̂(x|t)) = ∇g(p1, p2)I(p)−1(∇g(p1, p2))
′

which leads to
var(R̂(x|t)) =∇g(p1, p2)I(p)−1(∇g(p1, p2))

′

=
p2(1− p2)
n(1− p1)2

− p1p
2
2

n(1− p1)3

=
p2(1− p1 − p2)
n(1− p1)3

.

(5)

Now, we consider two independent systems with reliability functions R1(t) and R2(t), respectively. We want to
compare them through the ratio of their conditional reliability functions, i.e. via the following parameter

γ =
R1(x|t)
R2(x|t)

. (6)
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Suppose that T11, T12, . . . , T1n1 and T21, T22, . . . , T2n2 are random samples with sizes n1 and n2 from two indepen-
dent populations, respectively. Let

Zi1 =

ni∑
j=1

I(0,t](Tij), Zi2 =

ni∑
j=1

I(t,t+x](Tij), i = 1, 2.

Since R̂i(x|t) = 1 − Zi2
ni−Zi1 is MLE for Ri(x|t) i = 1, 2, γ̂ = R̂1(x|t)

R̂2(x|t)
is an estimator for the parameter γ. In the

sequence, without loss of generality, we suppose that n1 = n2. In the case that n1 6= n2, we can let n = min(n1, n2).
The asymptotic distribution of the proposed estimator γ̂ is given in the following theorem.

Theorem 2.3. Under the above assumptions and if pi1 = p(Ti1 ≤ t) and pi2 = p(t < Ti1 ≤ x+ t) for i = 1, 2.

γ̂ − γ L−→ N(0, δ2) as n→∞, (7)

where

δ2 =
σ2
1

R2
2(x|t)

+
σ2
2R

2
1(x|t)

R4
2(x|t)

(8)

and

σ2
i =

pi2(1− pi1 − pi2)
n(1− pi1)3

(9)

Proof. By using Theorem 2.2, we have

R̂1(x|t)−R1(x|t)
L−→ N(0, σ2

1), as n→∞

and
R̂2(x|t)−R2(x|t)

L−→ N(0, σ2
2), as n→∞

Since the samples are independent, we have[
R̂1(x|t)−R1(x|t)
R̂2(x|t)−R2(x|t)

]
L−→ N

(
0,

[
σ2
1 0
0 σ2

2

])
.

Now, define g : R2 → R as g(x1, x2) = x1

x2
. Then the gradient function with respect to g in point (R1(x|t), R2(x|t))

is

∇g(R1(x|t), R2(x|t)) =
(

1

R2(x|t)
,−R1(x|t)

R2
2(x|t)

)
From Cramer’s Theorem Ferguson (1996), we have the following formula

var(γ̂) =

(
1

R2(x|t)
,−R1(x|t)

R2
2(x|t)

)[
σ2
1 0
0 σ2

2

]−1(
1

R2(x|t)
,−R1(x|t)

R2
2(x|t)

)′

This completes the proof.

Note that δ in (7) depends on the unknown parameters, so the asymptotic distribution in Theorem 2.3 cannot be used
to construct an asymptotic confidence interval and hypothesis testing.

Corollary 2.1. Under the assumptions stated in Theorem 2.3

Q =
γ̂ − γ
δ̂

L−→ N (0, 1) as n→∞ (10)

where

δ̂2 =
σ̂2
1

R̂2
2(x|t)

+
σ̂2
2R̂

2
1(x|t)

R̂4
2(x|t)

,
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R̂i(x|t) = 1− Zi2

n− Zi1
, p̂i1 =

Zi1

n
, p̂i2 =

Zi2

n
,

and σ̂2
i which is the same of σ2

i in (9), in which pi1 and pi2 are replaced by p̂i1 and p̂i2, respectively (i = 1, 2).

Proof. By the consistency of MLE, we have

γ̂
p−→ γ as n→∞.

The proof is completed by combining Slutsky’s Theorem with Theorem 2.3.

Now, Q can be used as a pivotal quantity to construct asymptotic confidence interval for γ,

(γ̂ − zα
2
δ̂, γ̂ + zα

2
δ̂). (11)

As previously mentioned, researchers are interested in comparing two independent systems as the ratio of the condi-
tional reliability functions in many studies. This comparison can be made by hypothesis testing about the parameter
γ. For instance, the assumption γ = 1 is equivalent to the assumption that two systems have equal residual lifetime.
In general, to test H0 : γ = γ0, the test statistic is

Z =
γ̂ − γ0
δ̂

. (12)

By a similar methodology applied in Corollary 2.1, under the null hypothesis, Z has an asymptotic standard normal
distribution.

3. Empirical study

In this section, the applicability of the proposed estimator was investigated using simulation methods. Also, the
obtained results were used on a real data set.

3.1. Simulation study

The data sets were generated from different distributions and values of (n1, n2) and γ. The Exponential, Gamma and
Weibull distributions with the following parameters

(n1, n2) = {(70, 100), (100, 200), (200, 300), (500, 700)}

and
(R1(x|t), R2(x|t)) = {(0.2, 0.4), (0.2, 0.8), (0.4, 0.6), (0.6, 0.8), (0.8, 0.8)}

were considered. The Monte Carlo method was used to investigate the accuracy of equations (11) and (12). For
each parameter setting, the percentage of runs in which Equation (11) contains true γ was estimated based on 1000
simulation runs using R software. These values were reported as the empirical coverage probability in Table 1. Also,
the Kolmogorov Smirnov normality test was applied to verify the normality of test statistic (12). The p-values are
reported in Table 2.
In Figure 1, some typical simulation studies are reported by plotting the normal Q-Q plots of the test statistic (12) for
different values of (n1, n2) and (R1(x|t), R2(x|t)).
Table 1 shows that the empirical coverage probability of the proposed estimator gets very close to the nominal level
(0.95) as the sample size grows. Therefore, we can accept Equation (11) as the asymptotic confidence interval for
γ. In addition, Figure 1 and Table 2 confirm that the asymptotic approximation seems to be quite satisfactory in all
of the cases considered (P-Value is more than 0.05). Therefore, our approach is a good alternative for constructing
a confidence interval (CI) and performing a test of the hypothesis for the ratio of residual lifetime reliability of two
independent populations.
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Table 1: The empirical coverage probability of proposed estimator.

(n1, n2)
Distribution (R1(x|t), R2(x|t)) (70, 100) (100, 200) (200, 300) (500, 700)
Exponential (0.2,0.4) 0.924 0.933 0.946 0.947

(0.2,0.8) 0.933 0.937 0.946 0.956
(0.4,0.6) 0.94 0.936 0.958 0.954
(0.6,0.8) 0.949 0.955 0.956 0.95
(0.8,0.8) 0.952 0.961 0.943 0.954

Gamma (0.2,0.4) 0.94 0.945 0.941 0.935
(0.2,0.8) 0.929 0.942 0.948 0.948
(0.4,0.6) 0.953 0.948 0.961 0.947
(0.6,0.8) 0.959 0.952 0.954 0.957
(0.8,0.8) 0.948 0.946 0.951 0.956

Weibull (0.2,0.4) 0.946 0.948 0.936 0.955
(0.2,0.8) 0.93 0.942 0.949 0.952
(0.4,0.6) 0.943 0.941 0.939 0.949
(0.6,0.8) 0.959 0.955 0.94 0.957
(0.8,0.8) 0.954 0.956 0.957 0.961

Table 2: Kolmogorov-Smirnov’s normality test p-value for the test statistics.

(n1, n2)
Distribution (R1(x|t), R2(x|t)) (70, 100) (100, 200) (200, 300) (500, 700)
Exponential (0.2,0.4) 0.0512 0.2426 0.5816 0.4456

(0.2,0.8) 0.0531 0.0991 0.3404 0.3620
(0.4,0.6) 0.3399 0.8767 0.6615 0.9784
(0.6,0.8) 0.8688 0.9062 0.9697 0.9746
(0.8,0.8) 0.6111 0.8537 0.8411 0.9117

Gamma (0.2,0.4) 0.0019 0.1660 0.4952 0.6131
(0.2,0.8) 0.1193 0.2555 0.8801 0.9193
(0.4,0.6) 0.5481 0.6938 0.7594 0.9901
(0.6,0.8) 0.6299 0.7471 0.9665 0.9649
(0.8,0.8) 0.4452 0.6807 0.9297 0.9548

Weibull (0.2,0.4) 0.0429 0.0462 0.1622 0.3264
(0.2,0.8) 0.1233 0.4615 0.4324 0.7112
(0.4,0.6) 0.2482 0.6029 0.8915 0.9461
(0.6,0.8) 0.9015 0.9812 0.9888 0.9909
(0.8,0.8) 0.8992 0.8801 0.9548 0.9774
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(a) (b) (c)

(d) (e) (f)
Figure 1: The Q-Q plots against the standard normal distribution. a. (n1, n2) = (70, 100) and (R1(x|t), R2(x|t)) =
(0.6, 0.8); b.(n1, n2) = (100, 200) and (R1(x|t), R2(x|t)) = (0.4, 0.6); c.(n1, n2) = (100, 200) and
(R1(x|t), R2(x|t)) = (0.8, 0.8); d.(n1, n2) = (200, 300) and (R1(x|t), R2(x|t)) = (0.2, 0.8); e.(n1, n2) =
(200, 300) and (R1(x|t), R2(x|t)) = (0.4, 0.6); f.(n1, n2) = (500, 700) and (R1(x|t), R2(x|t)) = (0.2, 0.4).

3.2. Real data

As an application, a real data set was considered, which consisted of 228 patients with advanced lung cancer from the
North Central Cancer Treatment Group. (This data set is available in the “survival” package in R software, where
it is named “lung”.) We considered the survival times of females and males, denoted by groups 1 and 2, respectively.
In Table 3, for different values of x and t, the estimate and 95% CI for the parameter γ are shown. Also, the difference
of R1(x|t) and R2(x|t) is reported. It can be observed that the parameter γ̂ reveals the difference between the two
groups better than the parameter R̂1(x|t)− R̂2(x|t).

Table 3: Estimated some parameters of the Lung cancer data.

(t, x) γ̂ CI R̂1(x|t)− R̂2(x|t)
(0, 180) 1.3082 (1.0079,1.6085) 0.1733
(150, 30) 1.1202 (0.9721,1.2682) 0.0996
(10, 50) 1.1324 (1.0394,1.2255) 0.1147
(200, 470) 1.9886 (-0.2192,4.1963) 0.0852
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