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Abstract  

 

For a non-negative continuous random variable 𝑋, Chaudhry and Zubair (2002) introduced a probability 

distribution with a completely monotonic probability density function based on the generalized gamma function, 

and called it the Macdonald probability function. In this paper, we establish various basic distributional properties 

of Chaudhry and Zubair’s Macdonald probability distribution. Since the percentage points of a given distribution 

are important for any statistical applications, we have also computed the percentage points for different values of 

the parameter involved. Based on these properties, we establish some new characterization results of Chaudhry 

and Zubair’s Macdonald probability distribution by the left and right truncated moments, order statistics and 

record values. Characterizations of certain other continuous probability distributions with completely monotonic 

probability density functions such as Mckay, Pareto and exponential distributions are also discussed using the 

proposed characterization techniques.    
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1. Introduction  

 

The notion of completely monotonic functions was introduced by Hausdorff (1921). Since then, many authors and 

researchers have discussed the properties and examples of the completely monotonic functions. For example, see 

Feller (1971), Widder (1941, 1971), Miller and Samko (2001), Chaudhry and Zubair (2002), Alzer and Berg (2002, 

2006), Schilling et al. (2012), Guo (2016), and Aguech and Jedidi (2019), among others. As pointed out by Alzer 

and Berg (2002), “Completely monotonic functions have remarkable applications in different branches. For 

instance, they play a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and 

combinatorics”.  For example, see Feller (1971) and Berg and Forst (1975) for applications in probability theory, 

and Ismail et al. (1986) for applications in numerical analysis, among others. Following Miller and Samko (2001), a 

function 𝑓 : (0,  ∞)   →  ℜ is said to be completely monotonic, if it possesses derivatives 𝑓(𝑛)(𝑥) for all 𝑛  =
 0,  1,  2,  3, ⋯ and if  

   (−1)𝑛𝑓(𝑛)(𝑥)   ≥  0                                                                                                         (1.1) 

 

for all 𝑥  >  0. Moreover, the limit 𝑓(𝑛)(0)   =   𝑙𝑖𝑚
𝑥→0+

𝑓(𝑛)(𝑥), finite or infinite, exists. Also, it is known that a 

necessary and sufficient condition that 𝑓(𝑥) be completely monotonic is that 𝑓(𝑥)   =   ∫ 𝑒−𝑥𝑡∞

0
𝑑(𝑔(𝑡)) where 𝑔(𝑡) 

is non-decreasing and the integral converges for 0  <  𝑥  <  ∞; see Widder (1941, 1971). Hence we conclude that a 

non-identically zero completely monotonic function 𝑓(𝑥)cannot vanish for any positive 𝑥. For further properties of 

completely monotonic functions and a list some examples of elementary functions that are completely monotonic, 
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the interested readers are referred to the findings of Miller and Samko (2001), and references therein.  

 

The objective of this paper is to discuss various basic distributional properties of a probability distribution with a 

completely monotonic probability density function introduced by Chaudhry and Zubair (2002), and based on these 

properties, to establish its some new characterization results by truncated moments, order statistics and record 

values. Chaudhry and Zubair (1994) introduced the following generalized gamma function: 

 

    𝛤𝑥(𝛼)   =   ∫ 𝑡𝛼 − 1 𝑒𝑥𝑝 [−𝑡  − 
𝑥

𝑡
]

∞

0
𝑑𝑡, 0  ≤  𝑥  <  ∞,  𝛼  >  0.                                                  (1.2)  

 

In view of Gradshteyn and Rhyzhik (1980), (1.2) is expressed in terms of the Macdonald function (or the modified 

Bessel function of the second kind) by 

 

 

  𝛤𝑥(𝛼)   =  2(𝑥)
𝛼

2𝐾𝛼(2√𝑥).                                                                                           (1.3) 

 

Further, Chaudhry and Zubair (2002) showed that ∫ 𝛤𝑥(𝛼)
∞

0
𝑑𝑥  =  𝛤(𝛼  +  1), where 𝛤(. ) denotes the gamma 

function. Using the definitions (1.2) and (1.3), for a non-negative continuous random variable 𝑋, Chaudhry and 

Zubair (2002) introduced a probability distribution with the following probability density function (pdf) 

 

  𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise,
                                                                 (1.4) 

 

            =   {
2(𝑥)

𝛼
2𝐾𝛼(2√𝑥)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise,

     

 

and called it the Macdonald probability density function. Since it is known from Chaudhry and Zubair (2002) that  
𝜕𝑛{𝛤𝑥(𝛼)}

𝜕𝑥𝑛   =   (−1)𝑛𝛤𝑥(𝛼  −  𝑛), (𝑅𝑒(𝛼)   >  0,  𝑛  =  0,  1,  2,  3, … ), it follows that the pdf (1.4) is completely 

monotonic for all 𝑥  >  0. For some selected values of the parameters, we have sketched the graph of the pdf (1.4) 

which is given in Figure 1. The effects of the parameters can easily be observed from Figure 1 that the distribution 

of the random variable 𝑋 has a pdf which is decreasing and is positively right skewed with longer and heavier right 

tails. 

 
Figure 1: Plots of the pdf (1.4) for 𝜶  =  𝟎. 𝟏,  𝟎. 𝟓,  𝟏,  𝟐. 
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The organization of this paper is as follows. In Section 2, various basic distributional properties of Chaudhry and 

Zubair’s Macdonald pdf (1.4) are given. In Section 3, we give our proposed new characterization results of 

Chaudhry and Zubair’s Macdonald pdf (1.4) by truncated moments, order statistics and record values. Some 

concluding remarks are given in Section 4.  

 

2. Distributional properties of Chaudhry and Zubair’s Macdonald probability distribution 

 

In this section, for the sake of completeness, we independently derive various basic distributional properties, viz., 

expressions for the cumulative distribution function (cdf), the survival and hazard functions, and the expressions for 

the 𝑘𝑡ℎ moment and the 𝑘𝑡ℎ incomplete moment. We also sketch the corresponding graphs of the cdf and the hazard 

function.  

 

2.1. Cumulative distribution function:  

 

The cumulative distribution function (cdf) corresponding to the pdf (1.4) is given by 

                        

     𝐹(𝑥)   =   ∫ [
𝛤𝑢(𝛼)

𝛤(𝛼 + 1)
] 𝑑𝑢

𝑥

0
 =   ∫ [

𝛤𝑢(𝛼)

𝛤(𝛼 + 1)
] 𝑑𝑢  −   ∫ [

𝛤𝑢(𝛼)

𝛤(𝛼 + 1)
] 𝑑𝑢

∞

𝑥

∞

0
 

 

                  =  1  − 
𝛤𝑥(𝛼 + 1)

𝛤(𝛼 + 1)
,                                                                                                     (2.1) 

which easily follows by evaluating the above integral in terms of the generalized gamma function, 𝛤𝑥(𝛼), that is,  

 

∫ [
𝛤𝑢(𝛼)

𝛤(𝛼 + 1)
] 𝑑𝑢

∞

𝑥
  =   ∫ [

2(𝑢)
𝛼
2𝐾𝛼(2√𝑢)

𝛤(𝛼 + 1)
] 𝑑𝑢

∞

𝑥
  =  

2(𝑥)
(𝛼 + 1)

2 𝐾𝛼 + 1(2√𝑥)

𝛤(𝛼 + 1)
  =  

𝛤𝑥(𝛼 + 1)

𝛤(𝛼 + 1)
, where  

 

𝛤𝑥(𝛼  +  1)   =   ∫ 𝑡𝛼 𝑒𝑥𝑝 [−𝑡  − 
𝑥

𝑡
]

∞

0
𝑑𝑡  =  2(𝑥)

(𝛼 + 1)

2 𝐾𝛼 + 1(2√𝑥); see Chaudhry and Zubair (2002), and 

Gradshteyn and Rhyzhik (1980). Please note that since  

 
𝜕𝑛{𝛤𝑥(𝛼)}

𝜕𝑥𝑛   =   (−1)𝑛𝛤𝑥(𝛼  −  𝑛), (𝑅𝑒(𝛼)   >  0,  𝑛  =  0,  1,  2,  3, … ), it is easily verified that  

 
𝑑𝐹(𝑥)

𝑑𝑥
  =  

𝑑

𝑑𝑥
(1  − 

𝛤𝑥(𝛼 + 1)

𝛤(𝛼 + 1)
)   =  

𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
, which is the pdf (1.4) under question. 

 

2.2. Survival and Hazard functions:  

 

Using (1.4) and (2.1), we compute the corresponding survival function (sf) and hazard function (hf) which are 

respectively given by 

 

               𝑆(𝑥)   =  1  −  𝐹𝑋(𝑥)   =  
𝛤𝑥(𝛼 + 1)

𝛤(𝛼 + 1)
,                                                                                   (2.2) 

 

and  

        ℎ(𝑥)   =  
𝑓𝑋(𝑥)

1 − 𝐹𝑋(𝑥)
  =  

𝛤𝑥(𝛼)

𝛤𝑥(𝛼 + 1)
.                                                                                 (2.3) 

 

For some selected values of the parameters, we have sketched the graphs of the cdf (2.1) and the hf (2.3), which are 

respectively given in Figures 2 and 3. The effects of the parameters can easily be observed from Figure 3 that the 

hazard function of distribution of the random variable 𝑋 is a decreasing function and has a bathtub shape with longer 

and heavier right tails. 
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Figure 2: Plots the cdf (2.1) for 𝜶  =  𝟎. 𝟏,  𝟎. 𝟓,  𝟏,  𝟐. 

 

 
Figure 3: Plots of the hf (2.3) for 𝜶  =  𝟎. 𝟏,  𝟎. 𝟓,  𝟏,  𝟐. 

2.3. Moments:  
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In what follows, we give the expressions for the 𝑘𝑡ℎ moment and the 𝑘𝑡ℎ incomplete moment. 

 

2.3.1. The 𝒌𝒕𝒉 Moment:  

 

Now, for some integer 𝑘  >  0, using Prudnikov, et al. (1986), the 𝑘𝑡ℎ moment is given by                  

  𝐸(𝑋𝑘)   =   ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥
∞

0
 =   ∫ 𝑥𝑘 2(𝑥)

𝛼
2 𝐾𝛼(2√𝑥)

𝛤(𝛼 + 1)
𝑑𝑥

∞

0
.                                               (2.4)                                  

 

Letting √𝑥   =  𝑡 in (2.4), we have  

 

   𝐸(𝑋𝑘) =  
4

𝛤(𝛼 + 1)
∫ 𝑢2𝑘 + 𝛼 + 1𝐾𝛼(2𝑡)𝑑𝑡

∞

0
, 

 

from which, using Prudnikov, et al. (1986), the 𝑘𝑡ℎ moment is given by 

 

  𝐸(𝑋𝑘)   =  
𝛤(𝑘 + 1)𝛤(𝛼 + 𝑘 + 1)

𝛤(𝛼 + 1)  
, 𝛼  >  0.                                                                 (2.5)      

                     

2.3.2. First Moment:  

 

When 𝑘  =  1 in Eq. (2.5), the 1stmoment is given by 

 

      𝐸(𝑋)   =  𝛼  +  1, 𝛼  >  0.                                                                                                  (2.6) 

 

2.3.3. The 𝒌𝒕𝒉 Incomplete Moment:  

 

For some integer 𝑘  >  0, the 𝑘𝑡ℎ incomplete moment is given by 

 

   𝐼𝑥   =   ∫ 𝑢𝑘𝑓(𝑢)𝑑𝑢
𝑥

0
  =   ∫ 𝑢𝑘 2(𝑢)

𝛼
2𝐾𝛼(2√𝑢)

𝛤(𝛼 + 1)
𝑑𝑢

𝑥

0
 

 

                         =  
2

𝛤(𝛼 + 1)
∫ 𝑢𝑘 + 

𝛼

2𝐾𝛼(2√𝑢)𝑑𝑢
𝑥

0
.                                                          (2.7) 

 

Letting 2√𝑢   =  𝑡 in (2.7) , we have  

 

   𝐼𝑥   =  
2

𝛤(𝛼 + 1)
∫ (

𝑡

2
)

2𝑘 + 𝛼 + 1

𝐾𝛼(𝑡)𝑑𝑡
2√𝑥

0
, 

 

from which, on using Miller (1988), we have 

 

   𝐼𝑥 =  
1

𝛤(𝛼 + 1)
 [

2𝑥
𝑘 + 1 + 

𝛼
2

𝑘 + 1
𝐾𝛼(2√𝑥) 𝐹1 2 (1;  𝑘  +  2,  𝛼  +  𝑘  +  1;  𝑥) 

 

               + 
2𝑥

𝑘 + 
𝛼
2 + 

3
2

(𝑘 + 1) (𝛼 + 𝑘 + 1)
𝐾𝛼 − 1(2√𝑥) 𝐹1 2(1;  𝑘  +  2,  𝛼  +  𝑘  +  2;  𝑥)] 

 

        =   𝑃𝑘(𝑥), say,                                                                                                                  (2.8) 

 

where 𝛼  >  0, and 𝐹1 2(𝑎;  𝑏,  𝑐;  𝑧) denotes the generalized hypergeometric function.  

 

2.3.4. The First Incomplete Moment:  

 

When 𝑘  =  1 in Eq. (2.8), the 1stincomplete moment is given by 
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   𝑃1(𝑥) =  
1

𝛤(𝛼 + 1)
 [𝑥2 + 

𝛼

2𝐾𝛼(2√𝑥) 𝐹1 2 (1;  3,  𝛼  +  2;  𝑥) 

 

               + 
𝑥

𝛼 + 5
2

(𝛼 + 2)
𝐾𝛼 − 1(2√𝑥) 𝐹1 2(1;  3,  𝛼  +  3;  𝑥)], 𝛼  >  0.                                    (2.9) 

 

2.4. Percentiles 

 

The percentage points of a given distribution are also important for any statistical applications, for example, we may 

be interested in knowing the median (50%), or 75% quartiles, or 95%, or 99% confidence levels, to assess the 

statistical significance of an observation whose distribution is known. For any 0 < 𝑝 < 1,  the 100𝑝𝑡ℎ percentile or 

the quantile of order 𝑝 of a distribution with the pdf 𝑓𝑋(𝑥) is defined as a number 𝑥𝑝 such that the area under 𝑓𝑋(𝑥) 

to the left of 𝑥𝑝 is 𝑝, that is, 𝑥𝑝 is any solution of the equation 𝐹(𝑥𝑝) = ∫ 𝑓𝑋(
𝑥𝑝

0
𝑢)𝑑𝑢 = 𝑝, where 𝐹(𝑥𝑝) denotes the 

cdf corresponding to the given pdf 𝑓𝑋(𝑥). Thus, for Chaudhry and Zubair’s distribution with the pdf (1.4) and cdf 

(2.1), solving the equation 𝐹(𝑥𝑝) = ∫ 𝑓𝑋(
𝑥𝑝

0
𝑢)𝑑𝑢 = 𝑝 numerically, we have computed the percentage points 𝑥𝑝 for 

different sets of values of the parameter 𝜶, which are given in the Table 4.1.  

Table 4.1:  Percentage Points 

 Percentiles 

Parameter𝜶 0.75 

(75 %) 

0.80 

(80 %) 

0.85 

(85 %) 

0.90 

(90 %) 

0.95 

(95 %) 

0.99 

(99 %) 

0.1 1.2756 1.6059 2.0770 2.8257 4.3290 8.8707 

0.2 1.4095 1.7649 2.2694 3.0668 4.6574 9.4180 

0.3 1.5440 1.9238 2.4611 3.3065 4.9827 9.9571 

0.4 1.6780 2.0827 2.6524 3.5450 5.3055 10.4898 

0.5 1.8126 2.2415 2.8433 3.7825 5.6261 11.0169 

0.6 1.9473 2.4003 3.0340 4.0192 5.9447 11.5388 

0.7 2.0822 2.5590 3.2242 4.2551 6.2618 12.0560 

0.8 2.2173 2.7178 3.4143 4.4904 6.5774 12.5700 

0.9 2.3525 2.8766 3.6041 4.7252 6.8916 13.0781 

1.0 2.4878 3.0355 3.7938 4.9595 7.2049 13.5883 

 

 

3. Characterization Results 

 

The problems of characterizations of probability distributions have been investigated by many authors and 

researchers. As pointed out by Nagaraja (2006), “A characterization is a certain distributional or statistical property 

of a statistic or statistics that uniquely determines the associated stochastic model”. Similarly, according to Koudou 

and Ley (2014), “In probability and statistics, a characterization theorem occurs when a given distribution is the only 

one which satisfies a certain property”. Furthermore, Koudou and Ley (2014) points out that “characterization 

theorems also deepen our understanding of the distributions under investigation and sometimes open unexpected 

paths to innovations which might have been uncovered otherwise”.   

 

 In order to apply a particular probability distribution to some real world data, many authors and researchers 

recommend characterizing it first subject to certain conditions. See, for example, Galambos and Kotz (1978), Kotz 

and Shanbhag (1980), Nagaraja (2006), Koudou and Ley (2014), Ahsanullah and Shakil (2012, 2015), Ahsanullah et 

al. (2014, 2015, 2016), Ahsanullah (2017), and references therein. It appears from literature that no attention has 

been paid to the characterizations of the probability distribution with completely monotonic density function (1.4) of 

the probability distribution introduced by Chaudhry and Zubair (2002). Motivated by the importance of the 

characterizations of probability distributions, in this paper, we establish some new characterizations by truncated 

moments, order statistics and record values of the Chaudhry and Zubair’s Macdonald probability distribution.  
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3.1. Characterization by Truncated Moment: 

 

In this subsection, we provide two new characterization results of the Chaudhry and Zubair’s Macdonald probability 

distribution by truncated moment. The first characterization result (Theorem 3.1) is based on a relation between left 

truncated moment and failure rate function. The second characterization result (Theorem 3.2) is based on a relation 

between right truncated moment and reversed failure rate function. For this, we will need the following assumption 

and lemmas. 

Assumption 3.1.  

 

Suppose the random variable 𝑋 is absolutely continuous with the cumulative distribution function 𝐹(𝑥) and the 

probability density function 𝑓(𝑥). We assume that 𝜔  =   𝑖𝑛𝑓{𝑥|𝐹(𝑥)   >  0}, and 𝛿  =   𝑠𝑢𝑝{𝑥 | 𝐹(𝑥)   <  1}. We 

also assume that 𝑓(𝑥) is a differentiable for all 𝑥, and𝐸(𝑋) exists. 

Lemma 3.1.  

 

If the random variable 𝑋 satisfies the Assumption 3.1 with 𝜔 = 0 and 𝛿 = ∞, and if 𝐸(𝑋|𝑋  ≤  𝑥)   =  𝑔(𝑥)𝜏(𝑥), 

where 𝜏(𝑥)   =  
𝑓(𝑥)

𝐹(𝑥)
 and 𝑔(𝑥) is a continuous differentiable function of 𝑥 with the condition that ∫

𝑢 − 𝑔/(𝑢)

𝑔(𝑢)
𝑑𝑢

𝑥

0
 is 

finite for 𝑥  >  0, then 𝑓(𝑥)   =  𝑐𝑒
∫

𝑢 − 𝑔/(𝑢)

𝑔(𝑢)
𝑑𝑢

𝑥
0 , where 𝑐 is a constant determined by the condition ∫

∞

0
𝑓(𝑥)𝑑𝑥  =

 1. 

Proof.  

 

For proof, see Shakil, et al. (2018).  

 

Lemma 3.2.  

 

If the random variable 𝑋 satisfies the Assumption 3.1 with 𝜔 = 0 and 𝛿 = ∞, and if 𝐸(𝑋|𝑋  ≥  𝑥)   =   𝑔
~

(𝑥)𝑟(𝑥), 

where 𝑟(𝑥)   =  
𝑓(𝑥)

1 − 𝐹(𝑥)
 and 𝑔

~
(𝑥) is a continuous differentiable function of 𝑥 with the condition that 

∫
𝑢 + [𝑔

~
(𝑢)]

/

𝑔
~

(𝑢)
𝑑𝑢

∞

𝑥
 is finite for 𝑥  >  0, then 𝑓(𝑥)   =  𝑐𝑒

− ∫
𝑢 + [𝑔

~
(𝑢)]

/

𝑔
~

(𝑢)
𝑑𝑢

𝑥
0

, where 𝑐 is a constant determined by the 

condition ∫
∞

0
𝑓(𝑥)𝑑𝑥  =  1.  

Proof.  

 

For proof, see Shakil, et al. (2018).  

 

Theorem 3.1.  

If the random variable 𝑋 satisfies the Assumption 3.1 with 𝜔 = 0 and 𝛿 = ∞, then  

 

  𝐸(𝑋|𝑋  ≤  𝑥)   =  𝑔(𝑥) 
𝑓(𝑥)

𝐹(𝑥)
, where  

 𝑔(𝑥)   =  
𝑃1(𝑥)

2(𝑥)
𝛼
2𝐾𝛼(2√𝑥)

  =  
𝑃1(𝑥)

𝛤𝑥(𝛼)
,                                                                            (3.1) 

 

and 𝑃1(𝑥) is given by (2.9), if and only if 𝑋 has the pdf  

 

    𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise.
  

 

Proof.  

 

Suppose that 𝐸(𝑋|𝑋  ≤  𝑥)   =  𝑔(𝑥) 
𝑓(𝑥)

𝐹(𝑥)
. Then, since 𝐸(𝑋|𝑋  ≤  𝑥)   =  

∫
𝑥

0 𝑢𝑓(𝑢)𝑑𝑢

𝐹 (𝑥)
, we have     

  𝑔(𝑥)   =  
∫

𝑥
0 𝑢𝑓(𝑢)𝑑𝑢

𝑓 (𝑥)
.  
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Now, if the random variable 𝑋 satisfies the Assumption 3.1 and has the distribution with the pdf (1.4), then we have 

   ( )
( )

( )

( ) ( )

( ) ( )

2

00

2

2 2

2 2

xx
u u K u duu f u du

g x
f x x K x









 
  = =


 =  

𝑃1(𝑥)

𝛤𝑥(𝛼)
, 

 

where 𝑃1(𝑥) is given by (2.9). Consequently, the proof of “if” part of the Theorem 3.1 follows from Lemma 3.1.  

 

Conversely, suppose that 

 

    𝑔(𝑥)   =  
𝑃1(𝑥)

2(𝑥)
𝛼
2𝐾𝛼(2√𝑥)

 =  
𝑃1(𝑥)

𝛤𝑥(𝛼)
, 

 

where 𝑃1(𝑥) is given by (2.9). Now, from Lemma 3.1, we have 

 

  ( )
( )

0

( )

x

u f u du

f x
g x


= ,  

 

or 

 

  ( )0
( ) ( )

x
u f u du f x g x= . 

 

Differentiating the above equation with respect to respect to 𝑥, we obtain 

 

  𝑥𝑓(𝑥)   =   𝑓/(𝑥)𝑔(𝑥)   +  𝑓(𝑥)𝑔/(𝑥), 

 

from which, using the definition of the pdf (1.4) and noting that  

 

  
𝜕𝑛{𝛤𝑥(𝛼)}

𝜕𝑥𝑛   =   (−1)𝑛𝛤𝑥(𝛼  −  𝑛),   

 

we easily obtain 

    𝑔/(𝑥)   =  𝑥  +  𝑔(𝑥)
𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
, 

 

or, 
𝑥 − 𝑔/(𝑥)

𝑔(𝑥)
  =   −

𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
. 

 

Since, by Lemma 3.1, we have 

 

      
𝑥 − 𝑔/(𝑥)

𝑔(𝑥)
  =  

𝑓/(𝑥)

𝑓(𝑥)
 , see Shakil, et al. (2018), 

 

 it follows that 

 

 
𝑓/(𝑥)

𝑓(𝑥)
  =   −

𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
.                                                                                                 (3.2) 

 

Since 
𝜕{𝛤𝑥(𝛼)}

𝜕𝑥
  =   (−1)𝛤𝑥(𝛼  −  1), therefore, on integrating (3.2) with respect to 𝑥 and simplifying, we easily have 

 

  𝑙𝑛 𝑓 (𝑥)   =   𝑙𝑛(𝑐𝛤𝑥(𝛼)),  

 

or 
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  𝑓(𝑥)   =  𝑐𝛤𝑥(𝛼), 

where 𝑐 is the normalizing constant to be determined. Thus, on integrating the above equation with respect to 𝑥 from 

𝑥  =  0 to 𝑥  =  ∞, using the condition ∫
∞

0
𝑓(𝑥)𝑑𝑥 = 1 and noting that ∫ 𝛤𝑥(𝛼)

∞

0
𝑑𝑥  =  𝛤(𝛼  +  1), see 

Chaudhry and Zubair (2002), we obtain 𝑐  =  
1

𝛤(𝛼 + 1)
, and thus 𝑓𝑋(𝑥)   =  

𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0), 

which is the required pdf of the random variable 𝑋. This completes the proof of Theorem 3.1.  

 

Theorem 3.2.  

 

If the random variable 𝑋 satisfies the Assumption 3.1 with 𝜔 = 0 and 𝛿 = ∞, then   

 

  𝐸(𝑋|𝑋  ≥  𝑥)   =   𝑔
~

(𝑥)
𝑓(𝑥)

1 − 𝐹(𝑥)
,  

 

where 

 𝑔
~

(𝑥)   =  
(𝐸(𝑋) − 𝑔(𝑥)𝑓(𝑥))(𝛤(𝛼 + 1))

𝛤𝑥(𝛼)
, 

 

where 𝑔(𝑥) is given by Eq. (3.1) and 𝐸(𝑋) is given by Eq. (2.6), if and only if 𝑋 has the pdf  

 

  𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise.
 

                                                          

Proof.  

Suppose that 𝐸(𝑋|𝑋  ≥  𝑥)   =   𝑔
~

(𝑥)
𝑓(𝑥)

1 − 𝐹(𝑥)
. Then, since 𝐸(𝑋|𝑋  ≥  𝑥)   =  

∫
∞

𝑥 𝑢𝑓(𝑢)𝑑𝑢

1 − 𝐹 (𝑥)
, we have   

 

   𝑔
~

(𝑥)   =  
∫

∞
𝑥 𝑢𝑓(𝑢)𝑑𝑢

𝑓 (𝑥)
.  

 

Now, if the random variable 𝑋 satisfies the Assumption 3.1 and has the distribution with the pdf (1), then we have  

 

 ( )
( )

( )

( ) ( )

( )

~
0 0

x

x
u f u du u f u du u f u du

g x
f x f x

 

−
= =
  

 

 

                      =  
(𝐸(𝑋) − 𝑔(𝑥)𝑓(𝑥))(𝛤(𝛼 + 1))

𝛤𝑥(𝛼)
. 

 

Consequently, the proof of “if” part of the Theorem 3.2 follows from Lemma 3.2.  

 

Conversely, suppose that 

 

   𝑔
~

(𝑥)   =  
(𝐸(𝑋) − 𝑔(𝑥)𝑓(𝑥))(𝛤(𝛼 + 1))

𝛤𝑥(𝛼)
.  

 

Now, from Lemma 3.2, we have 

  𝑔
~

(𝑥)   =  
∫

∞
𝑥 𝑢𝑓(𝑢)𝑑𝑢

𝑓 (𝑥)
,  

or  

  ( ) ( )
~

( ).
x
u f u du f x g x


= .  

 

Differentiating the above equation with respect to respect to 𝑥, we obtain 
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  −𝑥𝑓(𝑥)   =   𝑓/(𝑥). 𝑔
~

(𝑥)   +  𝑓(𝑥). (𝑔
~

(𝑥))
/

, 

 

from which, using the definition of the pdf (1.4) and noting that  

 

  
𝜕𝑛{𝛤𝑥(𝛼)}

𝜕𝑥𝑛   =   (−1)𝑛𝛤𝑥(𝛼  −  𝑛),   

 

we easily obtain 

 

    (𝑔
~

(𝑥))
/

  =   − 𝑥  +  𝑔
~

(𝑥) (
𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
), 

      

from which we obtain 

 

  
𝑥+(𝑔

~
(𝑥))

/

𝑔
~

(𝑥)
  =  

𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
. 

 

Since, by Lemma 3.2, we have 

   
𝑓/(𝑥)

𝑓(𝑥)
  =   −

𝑥 + [𝑔
~

(𝑥)]
/

𝑔
~

(𝑥)
,  

 

see Shakil, et al. (2018), it follows that 

    

  
𝑓/(𝑥)

𝑓(𝑥)
  =   −

𝛤𝑥(𝛼 − 1)

𝛤𝑥(𝛼)
.                                                                                                 (3.3) 

 

Since 
𝜕{𝛤𝑥(𝛼)}

𝜕𝑥
  =   (−1)𝛤𝑥(𝛼  −  1), therefore, on integrating (3.3) with respect to 𝑥 and simplifying, we easily have 

 

  𝑙𝑛 𝑓 (𝑥)   =   𝑙𝑛(𝑐𝛤𝑥(𝛼)),  

or 

  𝑓(𝑥)   =  𝑐𝛤𝑥(𝛼), 

where 𝑐 is the normalizing constant to be determined. Thus, on integrating the above equation with respect to 𝑥 from 

𝑥  =  0 to 𝑥  =  ∞, using the condition ∫
∞

0
𝑓(𝑥)𝑑𝑥 = 1 and noting that ∫ 𝛤𝑥(𝛼)

∞

0
𝑑𝑥  =  𝛤(𝛼  +  1), see 

Chaudhry and Zubair (2002), we obtain 𝑐  =  
1

𝛤(𝛼 + 1)
, and thus 𝑓𝑋(𝑥)   =  

𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0), 

which is the required pdf of the random variable 𝑋. This completes the proof of Theorem 3.2.  

 

3.2. Characterizations by Order Statistics:  

 

If  𝑋1, 𝑋2,   . . .   , 𝑋𝑛   be the 𝑛 independent copies of the random variable 𝑋 with absolutely continuous distribution 

function 𝐹(𝑥) and pdf 𝑓(𝑥), and if 𝑋1,𝑛   ≤   𝑋2,𝑛   ≤ . . . ≤   𝑋𝑛,𝑛  be the corresponding order statistics, then it is 

known from Ahsanullah et al. (2013), chapter 5, or Arnold et al. (2005), chapter 2, that 𝑋𝑗,𝑛|𝑋𝑘,𝑛 = 𝑥,  for 1  ≤

 𝑘  <  𝑗  ≤  𝑛,  is distributed as the (𝑗 − 𝑘)𝑡ℎ order statistics from (𝑛 − 𝑘) independent observations from the 

random variable 𝑉 having the pdf  𝑓𝑉(𝑣|𝑥) where  𝑓𝑉(𝑣|𝑥)   =  
𝑓(𝑣)

1 − 𝐹(𝑥)
, 0  ≤  𝑣  <  𝑥, and 𝑋𝑖.,𝑛|𝑋𝑘,𝑛 = 𝑥,  1 ≤ 𝑖 <

𝑘 ≤ 𝑛,  is distributed as 𝑖𝑡ℎ order statistics from 𝑘 independent observations from the random variable 𝑊 having the 

pdf 𝑓𝑊(𝑤|𝑥) where 𝑓𝑊(𝑤|𝑥)   =  
𝑓(𝑤)

𝐹(𝑥)
, 𝑤 < 𝑥. Let 𝑆𝑘−1 =

1

𝑘 − 1
(𝑋1,𝑛 + 𝑋2,𝑛+ . . . +𝑋𝑘−1,𝑛), and 𝑇𝑘,𝑛 =

1

𝑛 − 𝑘
(𝑋𝑘+1,𝑛 + 𝑋𝑘+2,𝑛+ . . . +𝑋𝑛.𝑛).   

 

Theorem 3.3:  

 

Suppose the random variable 𝑋 satisfies the Assumption 3.1 with 𝜔 = 0 and 𝛿 = ∞, then  
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  𝐸(𝑆𝑘 − 1|𝑋𝑘,𝑛   =  𝑥)   =  𝑔(𝑥)𝜏(𝑥),  

 

where 

 

    𝜏(𝑥)   =  
𝑓(𝑥)

𝐹(𝑥)
   

 

and   

 

    𝑔(𝑥)   =  
𝑃1(𝑥)

2(𝑥)
𝛼
2𝐾𝛼(2√𝑥)

  =  
𝑃1(𝑥)

𝛤𝑥(𝛼)
,                                                                          

 

where 𝑃1(𝑥) is given by (2.9), if and only if 𝑋 has the pdf  

 

    𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise.
 

 

Proof:  

 

It is known that 𝐸(𝑆𝑘 − 1|𝑋𝑘,𝑛   =  𝑥)   =  𝐸(𝑋|𝑋 ≤ 𝑥); see Ahsanullah et al. (2013), and David and Nagaraja 

(2003). Hence, by Theorem 3.1, the result follows. 

 

Theorem 3.4:  

 

Suppose the random variable 𝑋 satisfies the Assumption 3.1 with  𝜔 = 0 and 𝛿 = ∞, then   

 

  𝐸(𝑇𝑘,𝑛|𝑋𝑘,𝑛 = 𝑥)   =   𝑔
~

(𝑥)
𝑓(𝑥)

1 − 𝐹(𝑥)
,  

 

where 

      

 𝑔
~

(𝑥)   =  
(𝐸(𝑋) − 𝑔(𝑥)𝑓(𝑥))(𝛤(𝛼 + 1))

𝛤𝑥(𝛼)
, 

 

where 𝑔(𝑥) is given by Eq. (3.1) and 𝐸(𝑋) is given by Eq. (2.6), if and only if 𝑋 has the pdf  

 

  𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise.
 

 

Proof:  

 

Since 𝐸(𝑇𝑘,𝑛|𝑋𝑘,𝑛 = 𝑥) = 𝐸(𝑋|𝑋 ≥ 𝑥), see Ahsanullah et al. (2013), and David and Nagaraja (2003), the result 

follows from Theorem 3.2. 

 

3.3. Characterization by Upper Record Values:  

 

For details on record values, see Ahsanullah (1995). Let𝑋1, 𝑋2,   . .. be a sequence of independent and identically 

distributed absolutely continuous random variables with distribution function 𝐹(𝑥) and pdf 𝑓(𝑥). If 𝑌𝑛   =
 𝑚𝑎𝑥( 𝑋1,  𝑋2,   . . .   ,  𝑋𝑛) for 𝑛  ≥  1 and 𝑌𝑗   >   𝑌𝑗 − 1,  𝑗  >  1, then 𝑋𝑗 is called an upper record value of 

{𝑋𝑛 ,  𝑛  ≥  1}. The indices at which the upper records occur are given by the record times {𝑈(𝑛)   >   𝑚𝑖𝑛(𝑗|𝑗  >

 𝑈(𝑛  +  1) , 𝑋𝑗   >   𝑋𝑈(𝑛 − 1),  𝑛  >  1)} and 𝑈(1)   =  1. Let the 𝑛𝑡ℎ upper record value be denoted by 𝑋(𝑛)   =

 𝑋𝑈(𝑛).  

 

Theorem 3.5:  
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Suppose the random variable 𝑋 satisfies the Assumption 3.1 with  𝜔 = 0 and 𝛿 = ∞, then   

 

   𝐸(𝑋(𝑛 + 1)|𝑋(𝑛) = 𝑥) = 𝑔
~

(𝑥)
𝑓(𝑥)

1 − 𝐹(𝑥)
,  

 

where  

  

     𝑔
~

(𝑥)   =  
(𝐸(𝑋) − 𝑔(𝑥)𝑓(𝑥))(𝛤(𝛼 + 1))

𝛤𝑥(𝛼)
, 

 

where 𝑔(𝑥) is given by Eq. (3.1) and 𝐸(𝑋) is given by Eq. (2.6), if and only if 𝑋 has the pdf  

 

  𝑓𝑋(𝑥)   =   {
𝛤𝑥(𝛼)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0),

0,     otherwise.
 

 

Proof:  

 

It is known from Ahsanullah et al. (2013), and Nevzorov (2001) that  𝐸(𝑋(𝑛 + 1)|𝑋(𝑛) = 𝑥) = 𝐸(𝑋|𝑋 ≥ 𝑥). Then, 

the result follows from Theorem 3.2.  

 

Remark 1: McKay Distribution:  

 

It should be noted if 𝑌  =  
𝑋2

4
, where 𝑋 has the Chaudhry and Zubair’s Macdonald distribution with the pdf (1.4), 

then 𝑌has the McKay distribution with the pdf given by 

 

 

  𝑓𝑌(𝑥)   =   {
2

(
𝛼 + 2

2 )
(𝑥)

(
𝛼 − 2

4 )
𝐾𝛼(2

3
2 √𝑥

4
)

𝛤(𝛼 + 1)
,  (0  ≤  𝑥  <  ∞,  𝛼  >  0)

0,     otherwise,

, 

 

see McKay (1932) and Johnson, et al. (1994). Since, from (1.3), 𝛤𝑥(𝛼)   =  2(𝑥)
𝛼

2𝐾𝛼(2√𝑥) and, as pointed out 

above, since 
𝜕𝑛{𝛤𝑥(𝛼)}

𝜕𝑥𝑛   =   (−1)𝑛𝛤𝑥(𝛼  −  𝑛), obviously, for the above McKay distribution’s pdf, we have 

(−1)𝑛𝑓(𝑛)(𝑥)   ≥  0, and hence  it is completely monotonic for all 𝑥  >  0. In view of the fact that, by the above-

said transformation, the McKay distribution can be obtained from the Chaudhry and Zubair’s Macdonald 

distribution with the pdf (1.4), we can easily extend all the distributional properties and characterizations of the 

Chaudhry and Zubair’s Macdonald distribution to the McKay distribution.         

 

Remark 2: Pareto Distribution:  

 

A continuous random variable 𝑋 is said to have the Pareto distribution, if its pdf 𝑓𝑋(𝑥) is given by 𝑓(𝑥)   =  
𝛼

𝑥𝛼 + 1, 

where 𝑥  ≥  1,  𝛼 > 1. For details on Pareto distribution, see Johnson et al. (1994). It is easily seen that, for the 

Pareto distribution’s pdf, we have (−1)𝑛𝑓(𝑛)(𝑥)   ≥  0, and hence  it is completely monotonic for all 𝑥  ≥  1. For 

the characterizations of the Pareto distribution by truncated moment, the interested readers are referred to 

Ahsanullah, et al. (2016), and by upper records, please refer to Ahsanullah and Shakil (2012).    

 

Remark 3: Exponential Distribution:  

 

A random variable 𝑋 is said to have the exponential distribution if its pdf is given by 𝑓(𝑥)   =  𝜆 𝑒𝑥𝑝( − 𝜆𝑥), where 

𝑥 > 0, 𝜆 > 0 and 𝛼 > 0, It is easy to see that , for the exponential distribution’s pdf, we have (−1)𝑛𝑓(𝑛)(𝑥)   ≥  0, 

and hence  it is completely monotonic for all 𝑥  >  0. For the characterizations of the exponential distribution by 

truncated moment, please refer to Ahsanullah and Shakil (2015), where the characterizations of the Boltzmann 

distribution by truncated moment have been discussed since the Boltzmann distribution and the exponential 

distribution coincide by simple transformation of the parameters.      
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4. Concluding Remarks 

In this paper, we have considered, for a non-negative continuous random variable 𝑋, a probability distribution with a 

completely monotonic probability density function introduced by Chaudhry and Zubair (2002), called the Macdonald 

probability density function.. We have established some new characterization results of Chaudhry and Zubair’s 

Macdonald probability distribution by truncated moments, order statistics and record values. Since the percentage 

points of a given distribution are important for any statistical applications, we have also computed the percentage 

points for different sets of values of the parameters. Characterizations of certain other continuous probability 

distributions with completely monotonic probability density functions such as Mckay, Pareto and exponential 

distributions are also discussed. We hope the findings of the paper will be quite useful for the practitioners in various 

fields of sciences. 
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