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1. Introduction

As mentioned in our previous works, the problem of characterizing a distribution is an important problem in applied
sciences, where an investigator is vitally interested to know if their model follows the right distribution. To this end
the investigator relies on conditions under which their model would follow specifically chosen distribution. In this
work, we present certain characterizations of the discrete Weibull distributions listed above, which have been taken
from the interesting review paper of Almalki and Nadarajah (2014). These characterizations are based on: (i)
conditional expectation of certain functions of the random variables ; (ii) the hazard function and (iii) the inverse
hazard function. In what follows we use the same notation for the parameters as used by the original authors. For a
detailed treatment of each one of these distributions and their domain of applicability, we refer the interested reader
to the corresponding paper cited in the references. We certainly hope that the contents of this work will be useful to
a good number of researchers whose models follow discrete distributions.

1.1 Preliminaries
The cumulative distribution function (cdf) , the corresponding probability mass function (pmf), the hazard
function (hf) and the reverse hazard function (rhf) of each of the distributions mentioned above, are listed below in

a) — .
@ (f)(a) The cdf, pmf, hf and rhf of DWI distribution are given, respectively, by
F(x)=F(x0,9)=1-q¢*° xeN =Nu{0}, (1.1.1)
fO) =f(x:0,9) = ¢ —q"’, xeN", (1.1.2)
6
he(x) = qch)e -1, x €N, (1.1.3)
and
qxe_q(x+1)9 X
T'F(X) = W, x € Nx, (113)
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where & > 0and g € (0,1), u € R are parameters. The reason for using (1.1.3) and (1.1.3)* is that for
all of the distributions, except one, we will be using the hazard function.
(b) The cdf , pmf, hf and rhf of DWII distribution are given, respectively, by

F(x)=F(x;,c) =1-1~,(1-cif), x€eN, (1.1.4)

f(x)=f(x;B,¢)
=M (1 —cifY) -, (1 —cif1),x €N, (1.1.5)

1 cxB-1
hF(X) = m— 1= m, X € N, (116)
and
B-1[%=1(1_h(i

rp(x) = S Mim Ohe@) oy (1.1.6)°

1-0, (1-hp(®)
where § < 1,0 < ¢ <1 are parameters.

Remark 1.1. The authors consider two case § < 1 and 8 > 1. The case 8 < 1 is considered here since in
this case, x € N which seems compatible with the other six distributions taken up in this work. The formulas given
above are slightly different from those of the authors.

(c) The cdf, pmf, hf and rhf of DWIII distribution are given, respectively, by

Fx)=F(a,0)=1-e 2217’ xeN, (1.1.7)
FOO) = foa,0) = e *E=11’ _e=aX210° v e, (1.1.8)
he(x) = e®G+D% 1 x €N, (1.1.9)
and
—ay¥ /0 -ax¥ili®
re(x) = 2 —, x€N, (1.1.9)
1-¢ “Ej=17
where @ > 0 and 8 € R are parameters.
(d) The cdf , pmf, hf and rhf of DIW distribution are given, respectively, by
F(x)=F(x;60,9) =q*°, x€N, (1.1.10)
— . —-Ja x=1
Fe =100 =" e T (1.1.11)
qx_e_q(x—l)_e
he(x) =*———=——1, x€N, (1.1.12)
and
q-7°
re(x) =1-— ——, X€EN, (1.1.12)*
q
where 8 > 0 and g € (0,1) are parameters.
(e) The cdf , pmf,hf and rhf of DMW distribution are given, respectively, by
F(x) =F(x;0,c,q) =1 —q&+D%™ e N7, (1.1.13)
fOO) = f(0,c,q) = ¢~ — @+’ x e N, (1.1.14)
x0cx
hp(x) = q(;ﬂw -1, x €N, (1.1.15)
and
qxecx_q(x+1)gcx+1 . i
17 (x) = e x € N*, (1.1.15)
where 8 > 0,c > 0 and q € (0,1) are parameters.
e cdf , pmf,hf and rhf o istribution are given, respectively,
(f) The cdf , pmf,hf and rhf of DAW distributi gi pectively, by
0
F() =F(x0,7,4,¢) =1— g™ ¢f™, xe N’ (1.1.16)
0 0 14
) = f@:0,y.a002) = i 03" — a7 a5, (1.1.17)
xY x¥
he(x) = % -1, x €N, (1.1.18)
q1 qz
and

20 XV (x+1)0 (x+1)Y
—q$

q1 492 2 * *
G XEN, (1.1.18)
—q; q,

where 8 > 0,y > 0,q, € (0,1) and g, € (0,1) are parameters.
(g) The cdf , pmf, hf and rhf of DRMW distribution are given, respectively, by

Te(x) =
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F(x) =F(x;b,c,q) =1— q\/x+1(1+bcx+1)’ x €N*, (1.1.19)

f(x) = f(x; b, c,q) = qV*A+pe™ — x#1(140™™) -y e N7, (1.1.20)
q\/f(1+bcx) .

hF(X) = W— 1, x €N~ (1121)

and
q\/E(1+bcx)_q\/m(1+bcx+1) . i
() = T e, X €N (1.1.21)

where b > 0,c = 1 and g € (0,1) are parameters.

2. Characterizations Based on Conditional Expectation

In this section we present our characterizations of all the distributions listed in the Introduction in terms of
the truncated moments of certain functions of the random variables. The choice of each function depends on the form
of the pmf. We devote a sub-section to each one of the seven distributions. Most of the proofs follow the same
scheme, we will give all of them for the sake of completeness.

2.1 Discrete Weibull (DWI1) Distribution
Nakagawa and Osaki (1975) proposed the first analogue of two-parameter continuous Weibull distribution.
Proposition 2.1.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.2) if and only if

E{[q" +q®%]1x > k} = ¢, ken, (2.1.1)
Proof. If X has pmf (1.1.2), then for k € N, the left-hand side of (2.1.1) will be
(1 _ F(k))_l Y s [qzx9 _ qz(x+1)9] _ q—(k+1)9q—(k+1)9 _ q(k+1)9_
Conversely, if (2.1.1) holds, then
S2 e {[@* + q% | £} = (1= Fk))q ¥+’
={(1 = Flk+ 1) + f(k + 1)) }g®+V°. (2.1.2)
From (2.1.2) , we also have
o 0 x 0
Yik+2 {[qx + gD ]f(x)}
= (1 —F(k +1))q®+2°. (2.1.3)
Now, subtracting (2.1.3) from (2.1.2), yields
[q(k+1)9 + q(k+2)9]f(k +1)
= (1= Pl + D) g - gee')
+f(k + 1)+ D",
From the above equality, we have

 fk+D) qUe+? _q(k+2)f B g+’
he(k +1) = (-FG+D) . q0er2)? = Jw? 1,
which, in view of (1.1.3), implies that X has pmf (1.1.2).

2.2 Discrete Weibull (DWI1) Distribution
As mentioned by Almalki and Nadarajah (2014), Stein and Dattero (1984) introduced a discrete Weibull
distribution called type Il discrete Weibull distribution by taking the lifetimes as the integer part of the continuous
Weibull distribution.
Proposition 2.2.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.5) if and only if
E(ISH (1 — cif =) + %, (1 — cif=2)]1x > &)
=&, (1-cif '), =xe€N, (2.2.1)
Proof. If X haspmf (1.1.5), then for k € N, the left-hand side of (2.2.1) will be
(1 - F(k))_l Yx=k+1 [Hz?c=_11(1 - Ciﬁ_l)z - HL?C=1(1 - Ciﬁ_l)z]
=1, (1—cif1) 7'k, (1 — cif1)" = Mk, (1 — cif1).
Similarly, for k < 0 and k € Z , we obtain the right hand side of (2.2.1).
Conversely, if (2.2.1) holds, then
S (M1 cif) + 1, (1 - cif2)] £ (o))
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={(1-Fk+1D)+flk+ D (1-cif?). (2.2.2)
From (2.2.2) , we also have

ez IS (1 = cif 1) + L, (1 = ciP )] F(0)}

=(1-F(k+ )OI (1 - cif). (2.2.3)
Subtracting (2.2.3) from (2.2.2) and rearranging terms, yields

{H{‘zl(l - Ciﬂ_l) + ch:ll(l - Ciﬂ_l)}f(k +1)

=, (1—cifF ) -1 —cif )} (1 -Flk+ D) +

me, (1 —ciPY)f(k + 1),
or

M1 —ciP )k + 1) ={ (1 —cif1) - (1 — ciF )1 - Flk + 1)).

From the above equality, after some manipulations, we have

f(k+1)
he(k +1) = 1-F(k+1)
(R (1-ctP-1) N3 (acib))
Mt (1-cif-1)
1
T 1-cxB1 L

which in view of (1.1.6), implies that X has mpf (1.1.5).

2.3 Discrete Weibull (DWI11) Distribution
Again as pointed Almalki and Nadarajah (2014), the third discrete version of the Weibull distribution was
introduced by Padgett and Spurrier (1985). It exhibit increasing, decreasing and constant hazard function.

Proposition 2.3.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.8) if and only if
E{fe@m” 4 om0 B x> k) = om0 (23.1)
Proof. We take —1 < 6 < 0 or 8 > 0 to make sure that the infinite series is convergent. If X has pmf
(1.1.8) , then for k € N*, the left-hand side of (2.3.1) will be
(1= FO) ™ Ern o723 — 20320
D SO LT v S0 L) v Ay
Conversely, if (2.3.1) holds, then
5% o {[e7e T 4 e T )

= {(1=Flk+ 1) + f(k + 1)} T2, (2.3.2)
From (2.3.2) , we also have

R | i)

—aykt2 0
={1-F(k +1)}e *2=17", (2.3.3)
Now, subtracting (2.3.3) from (2.3.2), yields

eI f(k+1) = (1 - F(k + 1) {e 5 — om0,

From the above equality, we have
. L

(1-F(k+1) — e—azj.‘:f I
which, in view of (1.1.9), implies that X has pmf (1.1.8).

= palk+2)f _ 1,

Remark 2.3.1. Proposition 2.3.1 can be stated for the case f(x) = f(x;0,a) = 6% — 9@V ¢ >0, x €
N*, which is also called discrete Weibull, due to Nakagawa et al. (1975).

2.4 Discrete Inverse Weibull (DIW) Distribution

Jazi et al. (2010) proposed the discrete inverse Weibull distribution with two parameters by considering
certain property of the continuous inverse Weibull distribution.
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Proposition 2.4.1. Let X:Q — N be arandom variable. The pmfof X is (1.1.11) if and only if
Ef[a¥ +q* 071X <k} =¢*". (2.4.1)
Proof. If X has pmf (1.1.11), then for k € N*, the left-hand side of (2.4.1) will be
(F) 7 2k [0 = 20| = g 72" = g
Conversely, if (2.4.1) holds, then
S {[7 + a0 r@} = Fiog . (2.4.2)
From (2.4.2) , we also have
k1 {[qx_g + q(x—l)_e]f(x)}
= {F (k) - f()}q V", (243)
Subtracting (2.4.3) from (2.4.2) and rearranging terms, yields
{la7° +a® 7} rti
= FU{a"™" +q“ D7 b+ flq .
From the above equality, we have

&)
F(k) F(k) 1 - qk—e 1]

which in view of (1.1.12), implies that X has mpf (1.1.11).

2.5 Discrete Modified Weibull (DMW) Distribution
This distribution was proposed by Nooghabi et al. (2011) which is the discrete analogue of the modified
Weibull distribution of Lai et al. (2003).

Proposition 2.5.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.14) ifand only if
E{[q¥"" + q+0 X > k] = gl (2.5.1)
Proof. If X has pmf (1.1.14) , then for k € N*, the left-hand side of (2.5.1) will be
-1 Qoo 0. .x 0 .x
(1 —F(k)) Zx=k+1 [qu c* _ q2(x+1) c "'1]
— q—(k+1)9c’<+1qz(k+1)9ck+1 — q(k+1)9ck+1_
Conversely, if (2.5.1) holds, then
0 0, .x 0 .x
T {[077 + a5 F0)
= {(1 = F(k + 1) + f(k + 1)}q+D%e", (2.5.2)
From (2.5.2), we also have
Eere {07 + a7 £
= (1= F(k + 1))qk+2%¢"*?, (2.5.3)
Subtracting (2.5.3) from (2.5.2) and rearranging terms, yields
{q(k+2)eck+2}f(k +1)
= {[q@r0e — gL (1 - Pk + 1)),
From the above equality, after some manipulations, we have
f(k+1) q(k+1)9{:k+1
— _ 1,

1-F(k+1)  g(k+2)0ck+2
which in view of (1.1.15), implies that X has mpf (1.1.14).

2.6 Discrete Additive Weibull (DAW) Distribution
Bebbington et al. (2012) proposed the four-parameter discrete additive Weibull distribution.

Proposition 2.6.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.16) if and only if
E{[af’ad” +a " a6 > k) = g gl @.6.1)
Proof. If X has pmf (1 1.16) , then for k € N*, the left-hand side of (2.6.1) will be
(1= F(R) ™ 52y [a a3 — g2 g2+
X=
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—(k+1)9q—(k+1)qu(k+1)9qz(k+1)V q(k+1)9q(k+1)y
1 2 "
Conversely, if (2.6.1) holds then
[ 14
Drmk+1 {[‘h "+ QYH) () ]f(x)}
= {(1 = F(k + 1)) + f(k + D}q+D q+". (2.6.2)
From (2.6.2) , we also have
oo 6 14
T {0 @ + @ a S| F )
= (1 - F(k + 1))q%*?’ q(k+2)y. (2.6.3)
Subtracting (2.6.3) from (2.6.2), yields
{q£k+2)9 (k+2)7}f(k +1)

0 14 [ 14
_ {q§k+1) Cng+1) _ q§k+2) q§k+2) }(1 — F(k + 1))
From the above equality, after some manipulations, we have

[ 14
Flk+1) _ q§k+1) q§k+1)
1-F(k+1) q(k+2)9q(k+2)l/
1 2

which in view of (1.1.18), implies that X has mpf (1.1.16).

-1,

2.7 Discrete Reduced Modified Weibull (DRMW) Distribution
Almalki and Nadarajah (2014) introduced a three-parameter discrete analogue of Almalki’s reduced modified
Weibull distribution, (2018).

Proposition 2.7.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.20) if and only if
E{[qﬁ(ubcx) + q«/X_+1(1+ch+1)]|X > k}
_ g FI(1+bek+t), (2.7.1)
Proof. If X has pmf (1.1.20) , then for k € N*, the left-hand side of (2.7.1) will be
(1 _ F(k))_l Zjocozk_'_1 [qu/E(1+bcx) _ q2\/M(1+bcx+1)]
= g VEFL(1+0cRHY) 2VEFT(140ckHY) _ (VEFT(14bk )
Conversely, if (2.7.1) holds, then
e ([0 + g £}
= {(1 = F(k + 1)) + f(k + 1)}g/FFT(spc™™), (2.7.2)
From (2.7.2) , we also have
Eiiera ([0 + g £}
= (1 = F(k + 1)) qVF+2(1+0e"%), (2.7.3)
Subtracting (2.7.3) from (2.7.2) , yields
{q\/m(1+bck+2)}f(k + 1)
- {q\/m@+bck+1) _ qm(mcm)} (1-F(k+1)).
From the above equality, after some manipulations, we have
F+1) qm(ubck“) .
1-F(k+1) qVH2(1+bck¥2) ’
which in view of (1.1.21), implies that X has mpf (1.1.20).

3 Characterizations of distributions based on hazard function

This section consists of 6 sub-sections devoted to 6 of the 7 distributions listed in the Introduction. The
characterizations presented here are in terms of the hazard function. Most of the proofs follow the same scheme and
some can be omitted. We, however, give all the proofs and the reader may choose to skip the proofs. Due to the fact
that these 6 distributions form a subset of those mentioned in Section 2, we will not repeat the statements given at the
beginning of the corresponding sections for them in this section.
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3.1 Discrete Weibull (DW1) Distribution

Proposition 3.1.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.2) if and only if its hazard

function satisfies the difference equation
q(k+1)9 k8
hp(k +1)— hF(k) =

1 k € N*, (3.1.1)

qk+2f et

with the initial condition hy(0) = %‘1

Proof. If X has pmf (1.1.2), thenclearly (3.1.1) holds. Now, if (3.1.1) holds, then for every x € N,
we have

x—1 x—1 q(k+1)9 qke
k=0 {hF(k + 1) - hF(k)} = Lk=0 q(kT)g - q(kT)g y

or
6

he() = hp(0) = =2+ L

q(x+1)9’

or, in view of the initial condition h(0) = %,
6

a* *
hF(x)=q(xT)9_1' x € N*.

3.2 Discrete Weibull (DWI1) Distribution

Proposition 3.2.1. Let X:Q — N be arandom variable. The pmfof X is (1.1.5) ifand only if its hazard

function satisfies the difference equation
1 1

he(le +1) = he(k) = g~ 7omny KEN, (3.2.1)
with the initial condition h(1) = fc
Proof. If X has pmf (1.1.5), then clearly (3.2.1) holds. Now, if (3.2.1) holds, then for every x e N,
we have
- - 1 1
E2 e+ 1) = he (0} = B2} [ — i)
or

1 1

he(X) =hp(1) = ==+ —=
or, in view of the initial condition hz (1) = i
1

hF(x) = 1—cxB-1
3.3 Discrete Weibull (DWII1) Distribution

—1, x€eN.

Proposition 3.3.1. Let X:Q — N* be arandom variable. The pmfof X is (1.1.8) if and only if its hazard

function satisfies the difference equation
he(k + 1) — hp(k) = e@k+2)° _ gale)® - j e N, (3.3.1)

with the initial condition hz(0) = e* — 1.

Proof. If X has pmf (1.1.8), then clearly (3.3.1) holds. Now, if (3.3.1) holds, then for every x € N,
we have

123 The( + 1) — hp ()} = B304 {eel#D” — gatis)?}
or
hp(x) — hp(0) = —e% + e@+’,
or, in view of the initial condition hz(0) = e® — 1,
hp(x) = e+ _ 1y e N,

3.4 Discrete Modified Weibull (DMW) Distribution

Proposition 3.4.1. Let X:Q — N* be a random variable. The pmfof X is (1.1.14) if and only if its
hazard function satisfies the difference equation

(k+1)96k+1 k9 ck
he(k +1) — hp(k) =2 1

k€N, (3.4.1)

q(k+2)0ck+2 - q(R+DOck+1?
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with the initial condition hy(0) = %— 1.
Proof. If X has pmf (1.1.14) , then clearly (3.4.1) holds. Now, if (3.4.1) holds, then for every x € N
, We have

0 k+1 6 .k
K23 ek + 1) — he()) = b | G — s
k=0 F F k=0 q(k+2)96k+2 q(k+1)96k+1 4
or
6.k
hp(x) — hp(0) = —~+—L—_ xeN
F F - q°¢ q(x+1)9ck+1 4 ’
or
qxeck
—_ *
hF(X)—W—l, x € N*,

3.5 Discrete Additive Weibull (DAW) Distribution

Proposition 3.5.1. Let X:Q — N* be a random variable. The pmfof X is (1.1.17) if and only if its
hazard function satisfies the difference equation

q(k+1)9q(k+1)V ququ

_ 4 2 _ 1 492 *

el + 1) = ki) = St — s e, (35.1)
1 2 1 2

with the initial condition h(0) = —— — 1.
4142

Proof. If X has pmf (1.1.17) , then clearly (3.5.1) holds. Now, if (3.5.1) holds, then for every x € N

, we have
L L q(k+1)9q(k+1)V ququ
x— _ — Vyx— 1 2 _ 142
k=0 {hF(k + 1) hF(k)} k=0 (k+2)0 (k+2)Y k+1)? k+D)Y |’
qq q, qq q;
or
6 ¥
_ —_t ,_ aid
hg(x) — hp(0) = 4142 + q§x+1)9q§x+1)1"
or

o’ qx”

— 1 2 . *

hr(x) = P 7 1, x € N*,
qq qa,

3.6 Discrete Reduced Modified Weibull (DRMW) Distribution

Proposition 3.6.1. Let X:Q — N* be a random variable. The pmf of X is (1.1.20) if and only if its

hazard function satisfies the difference equation
qm(ubck“) q\/E(1+bck)

hp(k +1) — hp(k) = V2 (1bckF2) - V(1 +bckFT)

with the initial condition hy(0) = (,1% -1

Proof. If X has pmf (1.1.20), then clearly (3.6.1) holds. Now, if (3.6.1) holds, then for every x € N,
we have

k € N*, (3.6.1)

) ) qm(ubck“) qﬁ(ubck)
w20 {he(k + 1) — he ()} = X4 {q\/k_i-Z(1+bck+2) - qmmmkﬂ)}'
or
1 qﬁ(1+bc")
hp(x) — hp(0) = — qi+be + VEHL(T+bcTT)
or

q\/}(1+bc")

hp(x) = W— 1, x € N*.
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4 Characterizations of distributions based on reverse hazard function

This section is devoted to 1 of the 7 distributions listed in the Introduction. The characterization presented
here is in terms of the reverse hazard function. The proofs follow the same scheme, we give the proof for the sake of
completeness.

4.1 Discrete Inverse Weibull (DIW) Distribution

Proposition 4.1.1. Let X:Q —» N be arandom variable. The pmfof X is (1.1.11) if and only if its reverse
hazard function satisfies the difference equation

q(k—1)—9 qk_9
re(k + 1) — rp(k) = k€N, (4.1.1)

qk‘e - q(k+1)‘9 ’
with initial condition (1) =1 — ;
Proof. If X has pmf (1.1.11), then clearly (4.1.1) holds. Now, if (4.1.1) holds, then for x € N , we

have
x—1 x—1 q(k—1)—9 qk_e
k=1 {rr(k + 1) —1e(k)} = Xkt 0 0
or
1 gl-n7P
(0 = 1(0) = § =,
or,inviewof rz(1) =1 — 3 , we have
q-»7°
re(x) =1— e
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