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Abstract

We introduce a four-parameter lifetime model with flexible hazard rate called the Burr XII gamma (BXIIG)
distribution. We derive the BXIIG distribution from (i) the T-X family technique and (ii) nexus between the
exponential and gamma variables. The failure rate function for the BXIIG distribution is flexible as it can
accommodate various shapes such as increasing, decreasing, decreasing-increasing, increasing-decreasing-
increasing, bathtub and modified bathtub. Its density function can take shapes such as exponential, J, reverse-J,
left-skewed, right-skewed and symmetrical. To illustrate the importance of the BXIIG distribution, we establish
various mathematical properties such as random number generator, ordinary moments, generating function,
conditional moments, density functions of record values, reliability measures and characterizations. We address
the maximum likelihood estimation for the parameters. We estimate the adequacy of the estimators via a
simulation study. We consider applications to two real data sets to prove empirically the potentiality of the
proposed model.

Key Words: Characterizations; Gamma distribution; Maximum Likelihood Estimation; Reliability.

Mathematical Subject Classification: 60E05, 62E10, 62E20
1. Introduction

In the recent decade, many continuous distributions have been introduced in statistical literature. Some of these
distributions, however, are not flexible enough for data sets from survival analysis, life testing, reliability, finance,
environmental sciences, biometry, hydrology, ecology and geology. Hence, the applications of the generalized
models to these fields are clear requisite. Generalization of a distribution is the only way to increase the applicability
of a parent distribution. The generalized distributions are derived either by inserting one or more shape parameters
or by transform of the parent distribution. So, the generalized distributions will be more suitable than the competing
model and sub-models.

The Burr-XI1I (BXII) distribution among Burr family (Burr, 1943) is widely applied to model insurance data and
failure time data. Many generalizations of the BXII distributions are available in literature such as Burr XII modified
Weibull (Mdlongwa et al., 2017), Burr XII Uniform (Nasir et al., 2018), Burr XII inverse Rayleigh (Goual and
Yousof, 2020), Burr XII-moment exponential (Bhatti et al., 2021) and Burr XlI-power Cauchy distribution (Bhatti et
al., 2021).

We incorporate gamma distribution into a larger family through an application of the Burr XII cdf. In fact, based on
the T-X transform defined by (Alzaatreh et al., 2016), we construct the BXIIG distribution. We aim to propose
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BXIIG distribution to obtain flexible density function with various shapes. The BXIIG distribution is important due
to (i) it can provide flexible hazard rate and (ii) it can provide better fits than other well-known distributions.

This study is based on the following motivations: (i) to derive the BXIIG model; (ii) to generate distributions with
symmetrical, left-skewed, right-skewed, J and reverse-J shaped as well as high kurtosis; (iii) to have monotone and
non-monotone failure rate function; (iv) to study numerically descriptive measures for the BXIIG distribution based
on parameter values; (v) to derive mathematical properties such as ordinary moments, generating function,
conditional moments, density functions of record values, reliability measures and characterizations; (vi) to estimate
the precision of the maximum likelihood estimators by means of Monte Carlo simulations; (vii) to reveal the
potentiality and utility of the BXIIG model; (viii) to work as the preeminent substitute model to other existing
models to explain real data in finance, survival analysis, manufacturing, reliability, life testing and new zones of
research; (ix) to deliver better fits than other models and (x) to infer empirically from the goodness of fit statistics
(GOFs) and graphical tools.

The contents of the article are structured as follows. Section 2 derives the BXIIG model from (i) the T-X family
technique and (ii) linking the exponential and gamma variables. We study basic structural properties, random
number generator and sub-models for the BXIIG model. Section 3 presents certain mathematical properties such as
ordinary moments, generating function, conditional moments, density functions of record values and reliability
measures. Section 4 characterizes the BXIIG distribution. In Section 5, we address the maximum likelihood
estimation of the parameters. In Section 6, we evaluate the accuracy of the maximum likelihood estimators (MLES)
via a simulation study. In Section 7, we consider two applications to elucidate the potentiality and utility of the
BXIIG model. We test the competency of the new distribution using the goodness of fit statistics. In Section 8, we
offer some conclusions.

2. The BXIIG Distribution

We derive the BXIIG distribution from the T-X family technique. We also obtain this model by linking the
exponential and gamma variables. We discuss basic structural properties. We highlight the shapes of the
density and failure rate functions.

2.1 T-X Family Technique

The cumulative distribution function (cdf) and probability density function (pdf) of the gamma distribution are
given, respectively, by

G(x)yl[K%ij];:)’j, K,0>0,x>0,

where yl(.,.) is the incomplete gamma function ratio and

X
XK—le_E
X)=——" .
g() th F(K)

The cumulative hazard rate of the gamma distribution has the form

X
w [G (x)] =—log {1—1(1 (K, 6]} :
The cdf of the T-X family (Alzaatreh et al., 2016) of distributions has the form

F (%) = (M09 r () e, xell, @)
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wherer(t) is the pdf of the random variable (rv) T, where T €[a, b] for ~o<a<b < coand W[G(x¢g)] isa
function of the baseline cdf of a rv X with the vector parameter &, which satisfies the conditions:

i) W[G(x&)]ela b],
i) w [G(x;g)] is differentiable and monotonically non-decreasing and

iii) lim W[G(x;¢)|>a and limW[G(xE)]—>b.

X—>—0

The pdf of the T-X family can be expressed as

0
f(x)={&W[G(x;g)]}r{w[G(x;é;)}}, xel . @)
We derive the cdf of the BXIIG distribution from the T-X family technique by setting
r(t)= aBtﬁ‘l(lHB)_a_l, t>0,a>0,8>0,

and

W[G(x)]=~log {1—%(&%]} .

The cdf of the BXIIG distribution takes the form

—Q

rfo e o

where a, 8,6,k > 0 are the parameters.

The BXIIG density can be expressed as

gl Pl il o

Hereafter, a rv with pdf (4) is denoted by X~BXIIG(a,B, 0, K). For a =1, the BXIIG distribution reduces to the
Log-Log-Gamma (LLG) distribution and, for =1, the BXIIG distribution becomes the Lomax-Gamma (LG)
distribution.

2.2 Nexus between the Exponential and Gamma Variable

We derive the BXIIG distribution by linking the exponential and gamma rvs, i.e., WlEexp(l) and
W, ~ gamma(a.,1).

B
Lemma. (i): If W, C exp(1) andW, ~ gamma(a,1), then for W, = {—Iog {1—3(1(&%]}} W, , we have that X has

density (4).

Proof
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If W, Cexp(1), ie. f(w)=e",w>0.
) W ot—le—wz
If W, ~ gamma(a,1), i.e. f (WZ):ZF(—OL)' W, >0.
Wzot—le—w2 o™

Then, the joint distribution of the two rvs is f (w;,w, ) =

- .

The joint density of the rvs X andW, has the form

B
X
—{—Iog[l—yl(vc,fﬂ} W, X
1 0 _
Wzoc 1e WZe K 1e 0

F(a) , W >0, w,>0.

X

f(x,w,)=

The marginal density of X takes the form

el

oo [ wirrefoens ] el e o

After simplification, we obtain (for x>0)
X

ool il o foepnled))

which is the BXIIG density.

2.3 Structural Properties

If X~BXIIG(0(,B,9,K), the survival, failure rate, cumulative failure rate, reverse failure rate, elasticity

functions and the Mills ratio of X are given, respectively, by (for x>0)

ol ool
i O
S e
oo e

oo efle3) | |

h(x) =
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and

-

din|1- 1+{—Iog{1‘“(‘“m}ﬁ

dInx

The quantile function of X (for 0 < q <1) follows from

R _1}3 |

and its random number generator with Z ~ Uniform (0,1) is the solution of the nonlinear equation

1
R
yl[K%jzr(K) 1-exp {(1—2) : _1}
2.4 Shapes of the BXIIG Density and Hazard Rate Functions

We plot the density and failure rate functions of the BXIIG distribution for selected parameter values. The BXIIG
density can display numerous shapes such as symmetrical, right-skewed, left-skewed, J, reverse-J and exponential
(Figure 1). The failure rate function can highlight shapes as modified bathtub, inverted bathtub, decreasing,
increasing, increasing-decreasing and decreasing-increasing-decreasing (Figure 2). Therefore, the BXIIG
distribution is quite flexible and can be applied to numerous data sets.

BXIIG Distribution
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FigUre 1: Plots of the BXI11G density

BXIIG Distribution
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Figure 2: Plots of the BXIIG hazard rate

3. Mathematical Properties

Here, we present certain mathematical and statistical properties such as ordinary moments, generating function,
conditional moments, density functions of record values and reliability measure.
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3.1 Useful Expansion
In this sub-section, we express the cdf and pdf of the BXIIG distribution in terms of infinite linear combinations of

the associated exponentiated-gamma (Exp-G) distributions. Using the following power series that converges
everywhere,

(Q+2) = () 2",

n=0

the cdf in Equation (3) can be written as
np
® X
F(x)==X(7")<{-log|1- = : 5
()=-2(5 ){ g[ vl[rc GH} ®)

For any real parameter  and z € (0,1) ,

[~log(1- z)}B =P+ é a, (B)z"*P*, (6)

where a, (B)=P/2, a,(B)=B(3B+5)/24, as ([3):[3([32 +5[3+6)/48, etc. are Stirling polynomials (Flajonet and
0Odlzko,1990; Flajonet and Sedgewick,2009;Cordeiro et al.,2018).

Applying (6) to the expression A(x) in Equation (5), we obtain

Ponfioal w3 Lo gaoafed)]

Applying (7) in Equation (5), the cdf of the BXIIG distribution becomes

F(X):{_é(‘n“)w"%ﬂns‘éé(‘#)a@(ns){yl[mgﬂ”ﬁ””}

o L' np-+£+1
F (X) = Z_ann |:Y1[K:gﬂ +2 2 Wy, |:Y1 [K'gﬂ ) (8)

and then

n=1¢=0

where v, =Vn(a)=—("n"’)andwn,l =W,, (a,ﬂ)z—(’n“)a[(nﬂ).

a
Let Hy o (x) = {yl (Kgﬂ be the cdf of the Exp-G distribution with power parametera > 0. Then,

F (X) =2 VaHug o (X)+ 2 2 Wo, Hogiriawo (X) )
n=1 n=1/=0
Let hy . o(X)= % Ha 0 (X) be the Exp-G density. By differentiating (9), we obtain the linear representation
f (X) =2V, hnB,K,e (X)+ 22 Wy hn13+/,1<,e (X)! (10)
n=1 n=1/=0
_X
npx<te ©

np-1
where h; o (X)= Yl(l{,%j and a similar formula for hy;,, () holds.

6" I'(k)
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We have the power series

X a-1 » X m
h[K'E] = Zosm(a 1) Yl( 9} , (11)
m=
where s, (a—1) = 3 (—1)j+m< Jl)(rln).
j=m
Further,
X 1 2 (_1)I K+i 2 K+i
== _ X" =Y a x*,
Y{K ej r K)Eoi!(mi)e"*' 50
where
1)
a =3 (0,x)= — ( )
0 F(K)l!(KH)
For m >1, we can write
m
Yl(‘(%j =Zocm,i XM (12)
=

where the coefficients c,,; =c,,;(6,x) interms of the & 's (fori=12,...) follow from the recurrence relation

1 .
gzz(mp—w P) @, Crip:

and ¢, =ay . The coefficient c,,; comes from ¢, ,...,Cy,;_; and hence from a,...,;
We can write from Equations (11) and (12)

a-1
Yl(K,zJ =sp(a-1)+ X s, (a- 1) Cpy i X™H
0 m=1 I:O
and then
X a_l o0 o0 .
’Yl(l{,—j =sp(a-1)+ 2 Y dy; x™",
0 m=1i=0

where d; =d;; (a,6,x)=5s,(a-1)cy; (6,x).

Then, the Exp-G density with power parameter a can be expressed as
X

X
ax“le o = iax<le 0
hae (X) =5 (a-1)—F— - +3 de, XM )
I(x) mai-0 K)
Next, we introduce the gamma density in (13). The gamma density is
X
k-1, 0
n(x;e,K):—x °
0TI K)

(13)

and then

X
0% I'(x) n(x;0,x)=x""e 0. (14)
We have from (14)
o O™ [ (m+1)k+i]

Mo (1) =0 (a-1)x(x0.5) + 3 3 ady, r()

n(x;e,(m+1)1<+i).

On The Burr XI1-Gamma Distribution: Development, Properties, Characterizations And Applications 7



Pak.j.stat.oper.res. VVol.17 No. 4 2021 pp 771-789 DOI: http://dx.doi.org/10.18187/pjsor.v17i4.3453

Hence,
hae (X) =ty m(X;6,%)+ i itm,i n(x;e,(m+1)1<+i), (15)
m=1i=0
et 11, (2) =85, (21, o, =t (00.8) =2y (02) 0= 1L
K

Equation (15) reveals that the Exp-G density is a linear combination of gamma densities.
Finally, combining Equations (10) and (15), we can write

f(x)= ilvn [to(nB) n(%0,K)+ iliotm’i (nB.6,x) n(x;e,(m+l)1<+i)}+
n= m=li= (16)

>y an[toy, (nB+0) n(X:0,6)+ 3 3 t; (NB+£,6,) n(x;e,(m+1)|<+i)}.
n=1/=0 m=1i=0

Equation (16) shows that the BXIIG density is a linear combination of gamma densities.

3.2 Moments

The moments are significant tools for statistical analysis in pragmatic sciences. The r'" ordinary moment of X, say
wy = E(X ' ) , can be expressed from (16) as

x<1 e% o o X(m+l)K+i—l e 0
o Elvn nBsy (NB—1) o T (x) +mZ=1i§OnB de’i (nB,6,x) |+
Uy = J X" dx.
0 © © k-1 e‘g w © (M-l ;
n{jlgi)wnj (nB+¢)sy (NB+¢—1) 0" T (x) +mZ=:li§) (nB+ é)T(K)dm i (NB+1¢,8,x)

Setting % =W, we can write

S 6'T o o OMHIP (M) iy
El\’n "B (8 -1) lfFK;r)+r1§1i§>nB [1("(K)) ]dm,i(nB'G'K) +
by = _
® o r o o (mic+i+r) .
R e - LI

The moment generating function (mfg) of X is determined as (fort e )

My(t) = E(e"™)

o x<1lg 8 = =» X(m+l)K+i—l e 0
o Elvn nBsy (NB—1) o T(x) +mZ:1i§o np o T o) dpni (B, 6,x) [+
= f e dx.
0 o o el e% o w (M1 e%
EIEOWM (nB+¢)sy (NB+¢-1) 0" T (x) +mZ:li§0 (nB+ g)T(K)dm’i (nB+¢,8,x)

Setting w = [Tt] X, we obtain
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C[(m+1)k+i]

ivn w_{_ io“ io“ nBemK+i : dmi (nB,e,K) "
My (0 n=1 (1-6t)* m=1i=0 (1-pr) (MDA r(x)
t)= .
" i fw (NB+0)s (nB+¢-1) L3 i (nB+e)emK+‘ r[(m+1)K+i] 4o (B 4,0,%)
i (1-6t)" m=1i=0 (1pp)(M D (k) ™ o

The rt" central moment( u,) , coefficients of skewness (y;) and kurtosis (y,) of X are

r 0
e = 2 (1) (F)usmers = na/Rhe - andBy =/ ()’
The numerical values for the mean (), median(fi), standard deviation (o), skewness (y;) and kurtosis (y,) of

the BXIIG distribution for selected values of o, 3,0,k are listed in Table 1.

Table 1: Quantitiesyy, [i, ¢, y, and y, for the BXI1G Distribution

o.B,0,x 1Y il G i V2
0.5,1,0.5,0.5 2.0183 0.5326 3.2607 | 2.2702 | 7.8281
0.5,15,0505 | 1.6355 0.4988 2.8029 | 2.8646 | 11.7754
05150525 | 82751 2.5001 142795 | 2.8949 | 11.9938
0.5,1.5,0.5,5 16.5036 | 4.9938 28.463 | 2.8946 | 11.9955
0.5,15,0505 | 1.6355 0.4988 2.8029 | 2.8646 | 11.7754
0.5,1.05,0.50.5 | 2.0673 0.5439 3.3928 | 2.3566 | 8.3275
0.5,1.05,0.5,15 | 6.1842 1.6304 10.1452 | 2.3580 | 8.3371
0.5,1.05,1.5,1.5 | 8.9000 4.1042 115929 | 2.1204 | 7.2550
05151515 | 7.6086 3.9038 9.7980 | 25922 | 10.2654
1151515 3.8423 2.3550 51025 | 45809 | 32.3353
15,15 15 15 | 2.4751 1.7894 26927 | 56776 | 63.3172
15,05,15 15 | 41737 0.9011 85247 | 3.4652 | 16.3139
41224207 | 23071 2.2844 05537 | 0.3407 | 3.5272
45224207 | 2.2601 2.2418 05324 | 0.2847 | 3.3831
52754207 | 2.3570 2.3572 0.4496 | 0.0528 | 3.1698

5,2.75,5,0.7 2.8762 2.8798 0.4991 0.0091 3.1700
5,34.2,0.7 2.4103 2.4148 0.4261 -0.0135 3.1514
5,5,3,0.9 2.3728 2.3881 0.3192 -0.2564 3.2693
6,4.5,1.51.5 1.6337 1.6414 0.3484 -0.0803 3.0426
5,755 24.113 24.2574 1.8258 -0.4789 3.5713

3.3 Conditional Moments
Life expectancy, mean waiting time and inequality measures can be obtained from incomplete moments.

. r 1 r
) is E(X )_TZ)[EX”(X )}
The r" lower incomplete moment E, ., (Xr) is determined by changing variables

e v(zx+r) — y[z,(m+1)1<+i+r}
Zv {nﬁso(nﬁ 1)6 v F(K) +Z_:1I2()n[39 F(K) dm,i(”BﬁK)]*‘

The rt" conditional moment E(Xr

Ey; X") = "
( ) (z, K+r)

i i [(n13+€)so(n[3+€ 1)6" Y
n=1/=0

0 o . , 1 i .
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3.4 Record Values distributions

In this sub-section, we consider record values that have wide applications in life testing, industry, hydrology and
economics. We investigate the record values densities for the BXIIG distribution.

Definition of Record Value 3.4.1: Based on a sequence X;,...,i=1,2..., of i.i.d. rvs with cdf F and record times

U(1)=1 and U(n+1)=min{j >U(n);X; > Xu(n)}, neN,
the rvs X (neN) are called (upper) record values.

The pdf of the i upper record value R, = Xu(i), with R, = X, for the X~BXIIG model, is (for x>0)

fr (x) = %{—Iog [S (x)]}ifl :

Then,

i-1

il o]
0" r<K)r<i>[1-yl(K,gﬂ[1+{_ .og{l_h(&gﬂm“

-------

—o-1

5 ()ﬁﬁ“_m“_m NP PN |
vt )] P ool

3.5 Stress-strength Reliability

Let X, be the strength and X, be the stress assuming that X, follows the BXIIG distribution (oy,B,,6) and X,
follows the BXIIG distribution (a,,B,%,0).Then, the reliability parameter (Kotz et al., 2003) of the component is
computed as

R=Pr(X, <X,)=

o8

fy, (X)Fy, (x)dx,

and then

On The Burr XI1-Gamma Distribution: Development, Properties, Characterizations And Applications
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i bl Pl
bl ] bl

Hence, waBXHe% X . . o1 ) g a2l
Rzl—gm{l—h(mgﬂ {—Iog{l—yl(m,gﬂ} {1+{—Iog{l—yl(K,EH}J dx
and R:ﬁ,

which is independent of the parameters,x and6 .

4. Characterizations

In this section, we characterize the BXIIG distribution through: (i) conditional expectation and (ii) truncated
moments. We present our characterizations in two subsections.

4.1 Characterization based on Conditional Expectation

Proposition 4.1.1: Let X:QQ — (O,oo) be a continuous rv with cdf F (x) .Then, fora >1, X has cdf (3) if and only if

(bl et

Proof If X has cdf (3), then

(RS | e
e el

Upon integration by parts and simplification, we obtain for (t > 0) @an.

Conversely, if (17) holds, then

(1-F(r)" T{—Iog {1— F(lK) y(K,%H}B f(x)dx = ﬁ oc{—log {1— r(lK) Y(K, %)}}B 1],
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T

Differentiating both sides of the above equation with respect to t, we can write
t
B - -1 p-1
t (1-F (1)) apt<te o t ( tj
—{—log|1- = f(t)= 1- = —log|1- ,— -
{ 9{ YI(K BH} () o1 o~ F(K) Y1| K 0 g Y1| K 0
f(t) O
oq—log|1-vy, K,a +1].

—~

[EEN

o —

After simplification and integration, we obtain

e

4.2 Characterizations based on Truncated Moment of a Function of the Random Variable

In this subsection, we first present a characterization of the BXIIG distribution in terms of a simple relationship
between truncated moment of a function of X and another function. This characterization result employs a version of
the theorem due to Glénzel (1986); see Theorem G of Appendix A. Note that the result holds also when the interval
H is not closed. Moreover, as mentioned above, it could be also applied when the cdf F does not have a closed form.
As shown in Glanzel (1990), this characterization is stable in the sense of weak convergence.

.
Proposition 4.2.1 Let X:Q2 — (0,0) be a continuous rv and let q(x) = [1+{—Iog {1—3{1[&%)}} J ,X>0.The
rv X has pdf (4) if and only if the functionn defined in Theorem G has the form

- e ] oo

Proof If X has pdf (4), then for (x>0),

e A

tospeont-gfeffn(<3Jf |
and

-]

Conversely, if n is given as above, then
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and

$(x) = In[1+{—log{l—yl(1<,gﬂ}ﬁJa x>0,
o

In view of Theorem G, X has density (4).

and

Corollary 4.2.1: Let X:Q — (0,00) be a continuous rv. The pdf of X is (4) if and only if there exist functions n(x)
and q(x) defined in Theorem G satisfying the differential equation

X

w2 glre(:) {Hl (K;ﬂl {_ %9 {1_ n [K’ m}’“

= ,x>0.

n(x)-a(x) [1+{—|09[1_Y1(K’)9(H}BJ

Remark 4.2.1: The general solution of the differential equation in Corollary 4.2.1is

X

IO W RO | 35??5{“1(&3%'°9P:;(K'SH}MQ s
oot S L

where D is a constant. Note that a set of functions satisfying the above differential equation is given in proposition
4.2.1 with D=0. However, it should also be noted that there are other pairs(n, q) satisfying conditions of Theorem G.

5. Maximum Likelihood Estimation

Here, we adopt maximum likelihood estimation technique for estimating the BXIIG parameters. Let &= (OL,B,@,K)T

be the unknown parameter vector. The log-likelihood function é(cf)for the BXIIG distribution is

(= nln(oc)+nIn(|3)—nIn[l‘(K)]—nKIn(G)Jr(K—l)Enllnxi —i(%j— éln{l—y{x,%j}

i=1 i=1

ool ool

(18)
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We can obtain the MLEs of the parameters o, 8, 6 and « of the BXIIG distribution by solving the nonlinear equations
o =0, o =0, o =0and o =0 either directly or using quasi-Newton procedures in computer softwares such
oo B 00 oK

as R, SAS, Ox, MATHEMATICA, MATLAB and MAPLE. They are given by

g—izg—éln 1+{—|og{1—yl(1<%ﬂ}ﬁ —0,
%:E_iIn{_bg{l_yl(‘{’%ﬂ}—(a+1)i 'n{—log{l—vl(m);ﬂ} _o,

op B ia

% =-n\v(k)—nln(9)+ilnxi +§:

R S ey

D
7\
[y
+
|
o
(@)
1
[y
|
—<
=
7 N\
g
@ |x
N
1
=
e

where y (k) = 11:((];)) , &yl(x,)gj/ﬁx = yi(x,%l and ayl(lc,)gj/ae 2%(&%)9'

6. Simulation Study

In this section, we perform a simulation study to verify the accuracy of the MLEs of the parameters of the BXIIG
distribution. The random number generation is executed by inverting its cdf. The MLEs, say (di,f&i,éi,fci), for
i=1,2,...,N, have been obtained using the CG routine in R software.

The simulation study is based on graphical results. We generate N=1,000 samples of sizes n=20, 25,...,850 from the
BXIIG distribution and consider the true values for o,,0 and « as 6,3,1 and 2, respectively.. We also determine

the means, biases and mean square errors (MSEs) of the MLEs. The biases and MSEs are calculated by (for
h=0a,B,0,x)
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Bias, =+ 31 —h) and MSE, = & 0 (f ).

T
100 600 800 0 200 400 600 800 200 400

Figure: 3. Empirical means (left), biases (center) and MSEs (right) of the BXI11G model

The results are displayed by Figure 3, which reveal that the empirical means tend to the true parameter values and
that the biases and MSEs decrease when the sample size increases. However, the MSE of the estimate o, can be
larger than those of the other parameters.

7. Data Analysis

We consider applications to two real data sets to verify the flexibility, utility and potentiality of the BXIIG model.
We compare the BXIIG distribution with some members of the Kumaraswamy gamma (KwG) model (Cordeiro and
de Castro, 2011), beta gamma (BG) model (Kong et al., 2007), generalized odd log logistic gamma (GOLLG) model
(Haghbin et al., 2017) and Topp Leone gamma (TLG) model (Rezai et al., 2017) for two data sets. For selection of

the best distribution, we compute the maximized log-likelihood values 7, Akaike Information Criteria (AIC),
Kolmogorov-Smirnov (KS), Cramer von Mises (W") and Anderson-Darling (A") goodness of-fit statistics for all
models. The statistics A"and W"are discussed by Chen and Balakrishnan (1995). In general, the best model has the

smallest values of the AIC, KS, A"and W™ statistics and the largest value of v,

All computations of the MLEs are performed via the maxLik routine and all statistics are calculated by the goodness
of fit test routine in the R software.

Data Set I: Survival Times

Firstly, we consider the guinea pig data set consisting of survival times (in days) of guinea pigs injected with
different amount of tubercle bacilli (Bjerkedal, 1960). Recently, this data set has been analyzed by Gupta et al.
(1997) and Korkmaz (2017). The data are 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56,
57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98,
99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

A descriptive summary for the survival times provide the following values: 72 (sample size), 12 (minimum), 376
(maximum), 70 (median), 99.81944 (mean), 81.11795 (standard deviation), 81.26468 (coefficient of variation),
1.796245 (coefficient of skewness) and 5.614438 (coefficient of kurtosis). The TTT (total time on test) plot for
survival times is concave [Figure 4(left)] which indicates increasing shaped hazard rate. The boxplot for survival
times is positively skewed [Figure 4(right)]. So, the BXIIG distribution is suitable to model these survival times.
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Figure 4: TTT plot (left) and Boxplot (right) for survival times

For this data set, we compare the BXI11G model with the models described before under the above criteria.

Table 2 lists the MLEs, their standard errors (SEs), the maximized log likelihood 0= €(§) from (18) and the

goodness-of-fits statistics from the fitted models. The figures in this table show that the BXIIG model could be
chosen as the best distribution among the fitted models since it has the lowest values of the statistics AIC, KS,

A”and W" and the highest 7 value.

Table 2. MLEs, SEs of the estimates (in parentheses), zand the goodness-of-fits statistics for the data set I ([.]
denotes p-values of the KS statistics)

Model | 4 B P P 7 AIC KS A W

BXIIG | 0.5096 | 10.0811 | 754.1970 | 0.2017 | 389.1349 | 786.2699 | 0.0824 | 0.4674 | 0.0759
(0.1712) | (2.2902) | (4.2166) | (0.1298) [0.7122]

GOLLG | 25046 | 8.2390 | 3748.6477 | 0.6735 | 391.8592 | 791.7185 | 0.0975 | 1.1244 | 0.1670
(0.2524) | (0.0614) | (5.0959) | (0.0153) [0.5002]

TLG | 9.3052 |2.7930 | 2861.7113 | 0.1652 | 389.9928 | 787.9857 | 0.0962 | 0.7149 | 0.1266
(1.2344) | (0.2262) | (42.0107) | (0.0001) [0.5175]

KwG | 26.8317 | 0.3484 | 28.4782 | 0.2143 | 390.4703 | 788.9405 | 0.1010 | 0.9755 | 0.1833
(0.1162) | (0.0436) | (0.0246) | (0.0243) [0.4547]

BG 175.7332 | 0.3351 | 28.3102 | 0.0295 | 390.3043 | 788.6085 | 0.0993 | 0.9369 | 0.1758
(4.2133) | (0.0413) | (0.0100) | (0.0050) [0.4761]

The plots of the fitted density, estimated cdf and P-P plot of the BXIIG distribution are displayed in Figure 5. These
plots show that the BXIIG model provides a good fit to these data. Hence, the fitted new distribution successfully
captures the kurtosis of the data.

Figure 5. The fitted density (left), estimated cdf (center) and P-P plot (right) of the BX11G model for the data
set |
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Data set I1: Remission Times

Secondly, the real data set represents the remission times (in months) of a random sample of 128 bladder cancer
patients (Lee and Wang, 2003): 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02,
13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54,
3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19,
2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,
12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
This data set has been analyzed by Lemonte and Cordeiro (2013).

A descriptive summary for the remission times provide the following values: 128 (sample size), 0.08 (minimum),
79.05 (maximum), 6.395 (median), 9.365625 (mean), 10.50833 (standard deviation), 112.201 (coefficient of
variation), 3.286569 (coefficient of skewness) and 18.48308 (coefficient of kurtosis). The TTT plot for the remission
times is first concave and then convex [Figure 6(left)], which indicates unimodal shaped hazard rate. The boxplot
for survival times is positively skewed [Figure 6(right)]. So, the BXIIG distribution is suitable to model remission
times.
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Figure 6: TTT plot (left) and Boxplot (right) for remission times

Table 3 lists the MLEs, their SEs, 2 and the goodness-of-fits statistics from the fitted models. The figures in this
table reveal that the BXIIG distribution could be chosen as the best model among the fitted models since it has the

lowest values of the statistics AIC, KS, A"and W™ and the highest / value.

Table 3. MLEs, SEs of the estimates (in parentheses), 2 and the goodness-of-fits statistics for the data set 11
([.] denotes p-values of the KS statistics)

Model | 4 F; 6 P 7 AIC KS A W

BXIIG | 1.1869 | 3.4449 | 357153 | 0.3279 | 409.5026 | 827.3305 | 0.0327 | 0.1006 | 0.0152
(0.5290) | (1.1625) | (12.1125) | (0.1066) [0.9991]

GOLLG | 3.9165 | 0.9724 | 191.3240 | 0.2230 | 409.5177 | 827.3605 | 0.0341 | 0.1169 | 0.0177
(2.2084) | (0.9719) | (6.7628) | (0.2101) [0.9984]

TLG | 1.2393 |8.8195 | 142329.2 | 0.0768 | 409.6781 | 827.6814 | 0.0355 | 0.1255 | 0.0186
(0.4225) | (1.3029) | (4.1943) | (0.0020) [0.9969]

KwG | 4.8198 | 0.6061 | 6.3907 | 0.2897 | 411.5361 | 831.0722 | 0.0580 | 0.4341 | 0.0736
(2.6031) | (0.0765) | (0.0774) | (0.1495) [0.7820]

BG 85.7694 | 12.8314 | 412.9971 | 0.0374 | 411.2123 | 830.4245 | 0.0492 | 0.3466 | 0.0522
(0.6168) | (0.8810) | (14.5122) | (0.0035) [0.9160]

The plots of the fitted density, estimated cdf and P-P plot of the BXIIG model are displayed in Figure 7. These plots
indicate that the BXIIG model provides a good fit to these data. Hence, the fitted new distribution successfully
captures the kurtosis of the data.
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Figure 7. The fitted density (left), estimated cdf (center) and P-P plot (right) of the BX11G model for the data
set 11

8. Concluding Remarks

We propose the BXII-Gamma (BXIIG) distribution from (i) the T-X family technique and (ii) link between the
exponential and gamma random variables. The BXIIG density highlights various shapes as J, reverse-J, left-skewed,
right-skewed and symmetrical shapes. Its hazard rate function has various shapes such as increasing, decreasing,
decreasing-increasing, increasing-decreasing-increasing, bathtub and modified bathtub. We study some of its
mathematical properties such as random number generator, ordinary moments, generating function, conditional
moments, density functions of record values, reliability measure and characterizations. We address the maximum
likelihood estimation for the BXIIG parameters. We evaluate the precision of the maximum likelihood estimators
via a simulation study. We consider two applications to survival times of guinea pigs and remission times of bladder
patients to illustrate the potentiality of the new model. We compute the goodness of fit measures for testing the
acceptability of the BXIIG distribution. The potentiality of the BXIIG model illustrates that it is flexible,
competitive and parsimonious to other existing distributions to fit lifetime data. Therefore it should be included in
the distribution theory to facilitate the researchers. Further, as perspective of future projects, we may consider
several intensive subjects (i) statistical inferences using different sampling schemes such as simple random sampling
(SRS) and rank set sampling (RSS); (ii) reliability analysis using SRS and RSS; (iii) Bayesian estimation of the
BXIIG parameters via SRS and RSS under different loss functions; (iv) Bayesian estimation of the BXIIG
parameters via complete and censored samples under different loss functions and (v) the study of the complexity of
the BXIIG via Bayesian methods.
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Appendix A

Theorem G. Let (Q,F,P) be a given probability space and let H=[a;,a,] be an interval with & <a, (
& =-,8, =). Let X :Q —>[a,a,] be a continuous random variable with distribution function F and Let g (x)
be a real function defined on H=[a;,a,]such that E[g(x)|x >x]=h(x)for xeH is defined with some real

function h(x)should be in simple form. Assume thatg(x)(c,C([al,az]),h(x)gC2 ([ay,a,]) and F is twofold
continuously differentiable and strictly monotone function on the set[a;,a,].We conclude, assuming that the
equation g(x)=h(x) has no real solution in the inside of[a,,a,].Then F is obtained from the functions g(x) and

h'(t)

h(t)-g(t)

&
is a constant, chosen to make | dF =1
&

h’
exp(—s(t))dt, where s(t) is the solution of equation s'(t)zi and k

h(t)-g(t)

h(x)as F(x):zk
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