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Abstract

This paper introduces a novel class of probability distributions called normal-tangent-G, whose submodels are parsi-
monious and bring no additional parameters besides the baseline’s. We demonstrate that these submodels are iden-
tifiable as long as the baseline is. We present some properties of the class, including the series representation of its
probability density function (pdf) and two special cases. Monte Carlo simulations are carried out to study the behav-
ior of the maximum likelihood estimates (MLEs) of the parameters for a particular submodel. We also perform an
application of it to a real dataset to exemplify the modelling benefits of the class.

Key Words: Class of probabilistic distributions; Identifiable; Normal-tangent-G class; Maximum likelihood; Special
submodels; Inference.

1. Introduction

Works on new probability distributions are vast in the statistical literature; the authors generally have the intent to
propose extended models that provide more flexibility than the commonly used ones do. For this purpose, many
generalizations of probabilistic distributions are formulated by incorporating one or more additional parameters. To
this extent, Mudholkar and Srivastava (1993) presented one of the most common ways to perform this technique,
wherein they exponentiated the Weibull cumulative distribution function (cdf) to a shape parameter. Besides making
the distribution more flexible, it allowed the hazard rate function (hrf) to have new shapes.

The procedure mentioned above was used by many authors to create generalized distributions. For instance, De Gusmao
et al. (2011) exponentiated the cdf of the complementary Weibull model, discussed by Drapella (1993), to a shape pa-
rameter 7 > 0 and created a three-parameter distribution called generalized inverse Weibull (GiW, for short), whose
cdfis Foiw (x]a, 8,7) = e=79"2™" The inclusion of « brings more flexibility; however, it is not seldom that distri-
butions with many parameters may present major problems, like non-identifiability. Cordeiro and Castro (2011) intro-
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duced a new family of generalized distributions called Kumaraswamy-G, whose cdf is Fg(z) = 1 — [1 — G(z)?]".
where a > 0, b > 0 and G(z) is the cdf of a parent distribution. This generator is versatile and able to produce
powerful submodels, whose extra parameters are related to the skewness and tail weights. Now, let us consider the
Kumaraswamy-Exponential model where 8 = (), a,b) is the corresponding parametric vector; since Fg(x|0) =

1-[1-(1- e‘k)“]b, it is easy to see that if ; = (A1, 1,b) and 5 = ()\2, 1, %b), then Fg(|60;) = Fg(z|62) for
{A1, A2,b} C R .. In other words, there can be an infinite number of parametric vectors associated with the same cdf.
Such property is undesirable and may entail complications regarding estimation of parameters. The GiW undergoes the

B
same problem as well for any pair of parametric vectors (a1, 3,7) and | as, 5,7 [%ﬂ > ,where {a, s, 3,7} C R

The list of classes like the Kumaraswamy-G, that is, classes containing at least one unidentifiable submodel (even
when the baseline G is identifiable) is large. Some recent examples are the exponentiated logarithmic generated fam-
ily (Marinho et al., 2018), the Gompertz-G family (Alizadeh et al., 2017), the Lindley family (Cakmakyapan and Ozel,
2017) and the exponentiated Kumaraswamy-G class (Silva et al., 2019). It does not mean that all of the submodels
from the aforementioned classes are unidentifiable nor that one should keep from using them. Even so, researching
and studying classes of probability distributions that somehow furnish identifiable submodels is worthwhile. For ex-
ample, as long as the baseline G is identifiable, any distribution emerged from the normal-G class (Silveira et al.,
2019) is identifiable; its submodels are generally more flexible than the original baselines, and they have the advantage
of adding no extra parameters to the cdf. Some models, like the normal-Weibull, are able to fit asymmetrical data
with either positive or negative skewness. Moreover, the distributions from the normal-G class can be continuous
or discrete, depending on the baseline. It was designed according to the method of generating classes of probability
distributions presented by Brito et al. (2019).

The method has a high power of generalization. It introduces a general expression given by:

N Uj(x) n Vi(z)
F@) =@y [ anm -v@ [ ), m
j=1 Lj(x) j=1 M (x)

where Hisacdf, n € N, (,v : R — Roand L;,U;,M;,V; : R — R U {£o0}; certain conditions on these
functions must be satisfied to assure that F' is a cdf. Settingn = 1, ((z) = 1, v(z) = 0, L1(z) = —o0, Ui(x) =
tan (7 [G(z) — 3]) and H(t) = ®(t), where ® is the standard normal cdf, this paper brings the normal-tangent-G
class of probability distributions (NT-G, for short), whose cdf is:

tan(w[G(m)—%])
Fola) = [ as(0), @

such that G(z) is the baseline cdf. This novel class shares some important features with the normal-G (particularly
with regard to identifiability) but also presents new potentialities. We investigate some interesting models from the
NT-G class and make comparisons with other well-known extended probability distributions.

2. The normal-tangent-G class and some mathematical properties

Given that Uy (z) = tan (7 [G(z) — ]) and U () = % are the upper limits of the integral in (1) for
the NT-G and the normal-G classes respectively, it is easy to verify that lim Uj(z) = —oco = lim U (x),
r——00 T——00

lirf Ui(z) = +o0 = lirf U7 (x) and that Uy () is a non-decreasing function. In agreement with the method (Brito
r——+o00 T—>+00

et al., 2019), these conditions are enough to certify that (2) is a cdf, since the normal-G cdf and (2) would be identical
functions except for U; and U}

Considering that ¢(t) = \/%e_trz/?, and ®(z) = [*_ ¢(t)dt, one can write the NT-G cdf as follows:

Foto) = [ (= ot ] o

Notice that there are no additional parameters besides those of G(xz|0). In case of continuous G(z), one can take the
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derivative of (3) with respect to x to obtain the following pdf:

o-efm(eloo- e (cfo- oo

where g(x) is the pdf of the random variable whose cdf is G(x). The hrf of the NT-G class is given by:

- fg?af (WG[(ézw‘) %]i]])] sec? <7r [G(:p) - ;D rg(z). 5)

The lack of identifiability is a problem that may cause some complications on parametric estimation since the unique-
ness of the estimates is uncertain in this case. Hence, inferences on the parameters of an identifiable distribution are
more reliable. As Theorem 2.1 states, members of the NT-G class are always identifiable as long as the baseline G is.

Tg(aj)

Theorem 2.1. If the cdf Fg belongs to the NT-G class and the cdf G is identifiable, then Fg is identifiable.

Proof. Given that 0 < G(x|6;) < 1 for ¢ = 1,2, where 0, is a parametric vector, let us assume that Fg(x|0;) =
F¢(x]05). Considering that the composed function ® o tan : (—g, g) — R, is injective, we can infer from (3) that
™ [G(gc|01) — %] =T [G($|62) — %] = G<$|01) = G(sc|02) = 01 = 02. O

2.1. Quantile Function
The quantile function @ (p) of the NT-G class is obtained without difficulty by inverting (3). That is:

Qr(p) = Q¢ (71r arctan [qu(p)] + 1) (6)

2
where ()¢ is the quantile function of the parent distribution GG. We use Q) along with a uniform random number
generator to perform the simulation of random variables following (3). Namely, if Z ~ 1/(0,1), then Qp(Z) ~
NT-G. An advantage of the NT-G class over the normal-G is that (6) is continuous on the real interval (0, 1), whereas
the normal-G quantile function has a point of discontinuity at p = 0.5. Thus, it would not be an obstacle for the NT-G
class to define some meaningful quantities that depend on the median, like the Galton’s skewness.

2.2. Shapes

The characterization of the distribution shape and the number of modes can be determined by examining the critical
points of the NT-G pdf (4); its first derivarite is:

2 1) = an (st - 1) (< o1 ] ) -7, g

T(z) = ¢*(z) tan <7r [G(x) - ;]) <2 — sec? <7r [G(x) - ;D) T+ g (x)

and ¢'(x) is the derivative of g(z). Since the terms multiplying T'(x) in (7) are positive, we have % folx) =0«
T'(x) = 0. In other words, the critical points are the roots of 7'(z). If the sign of the second derivative of (4) evaluated
at a particular critical point is non-positive, then the point is a mode. The explicit expression for 50—; fa(z) is presented
in appendix A.

where

2.3. Special submodels from the normal-tangent-G class

Here we discuss two distributions from the NT-G class.
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2.3.1. Normal-tangent-Weibull distribution

The Weibull distribution is well-known by practitioners of diverse science fields. It is widely used in reliability analysis
but also in hydrology and oceanography modelling data. For example, in recent paper Huang and Dong (2019)
constructed probability distributions of wave periods in mixed sea states using a mixture Weibull distribution. Given
that Gy (z) = 1 — e—(@/N* (for x > 0 and k, A > 0) is the Weibull cdf, one can obtain the cdf Fxrw (z]k, ) =
P {tan <7r [% — e/ ’\)k} )} of the NT-Weibull distribution replacing G in equation (3) by G . Likewise, using (4),
one gets to the corresponding pdf, which is given below:

Intw (z|k,A) = ¢ {tan <7r [; - e(‘”“)k}ﬂ sec? <7r B - e("’”/A)k}> § (%)k_l e~ @/

The Weibull hrf may be constant, increasing or decreasing, depending on the value of the shape parameter k. On the
other hand, the NT-Weibull hrf presents new non-monotonic shapes, as we can see in Figure 2. Notice yet that there
are some values of the parameters, for which the pdf is bimodal (Figure 1).

XXX XX
[ I T
W oA
oo o

P>
Do A=
~NO A~ O1

pdf
02 03 04 05 06

0.0 0.1

Figure 1: Normal-tangent-Weibull pdf.
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Figure 2: Normal-tangent-Weibull hrf.

Figure 3 shows the graph of the implicit function obtained by the equation T'(x) = 0 (see section 2.2) for the NT-
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Weibull distribution, considering A = 5.5; we can see the range of values of k£ such that the pdf is bimodal. For
example, the gray line representing k¥ = 4 intersects the graph at the critical points, namely, 1 = 4.424524, x5 =
4.860704 and x3 = 5.718673, where x; and x5 are the modes and x5 is a local minimum. The green density also
illustrates it in Figure 1.

Figure 3: Critical points of the normal-tangent-Weibull pdf for A = 5.5.

2.3.2. Normal-tangent-log-logistic distribution

The log-logistic distribution is commonly used in survival analysis, but also in different areas like flood frequency
analysis (Ahmad et al., 1988), economics and actuarial sciences (Kleiber and Kotz, 2003), where it is known as Fisk
distribution. Some important extensions of the log-logistic distribution were used to model cancer data. Among them,
one may cite the beta-log-logistic (Lemonte, 2014), used to model the remission times of bladder cancer patients and
the McDonald-log-logistic, which was applied by Tahir et al. (2014) to study the survival times of patients with breast
cancer. The log-logistic cdf is Gz (z]a, 8) = 1— (1 + (z/a)?) ! replacing G in equation (3) by Gz, we get to the
NT-log-logistic cdf Fxrrr(z|a, 3) = ® [tan <7r [% -1+ (z/a)ﬁ)fl} )} , for z > 0 where «, 8 > 0. According
to (4), its corresponding pdf is:

urstelans) =6 [tan (x| = (14 (@/a)?) | ) |see (= |5 - @+ @) ) Wﬁ

We bring a simulation study and an application of fx7 1 to a dataset related to a breast cancer biomarker in sections
3 and 4. Plots of the NT-log-logistic pdf and hrf are exhibited in Figures 4 and 5 respectively, considering different
values of v and 5. It is worth remarking that the distribution can have different shapes of hrf, such as inverse “J”,
unimodal or increasing.

2.4. Series representation

The standard normal cdf may be linearly represented by:

1 I & 1\" 22t
P(2)= =+ — - = 8
(2) 2+,ﬁ27rnz_:o< 2) nl(2n + 1) ®
Using the result of equation (8) in equation (3), we have:
B 1 1 0o (_1/2)71 1 2n+1
Feo(z) = 3 + NGE ngo AZn 1) [tan <7r {G(x) 2])} . )
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Figure 4: Normal-tangent-log-logistic pdf.
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Figure 5: Normal-tangent-log-logistic hrf.
The Maclaurin series of the tangent function is given by:

_ i (_1)m_122m(22m - 1)B2m sz—l

ol , (10)

for |2| < /2, where B,,, are the Bernoulli numbers, such that By = 1 and B,, = — >_m " (™) L= — form > 0.

Using the result of equation (10), the expression inside the wider brackets in equation (9) can be written as a series;
that is:

o (x[otr=3]) = S5 s (610 -1)" a
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such that a,,_1 = m2™~1(=1)m~122m(22m — 1) By,,/((2m)!). Making m = k + 1 and then inserting (11) in (9), we
get to:

2n—+1

o) 2k+1
j{:ak ( 1) ] . (12)

=0

o0

11 (—1/2)"
Fa(z) = =
a() 2+~@;g%m2n+1

Al

A well-known result on power series raised to integer powers states that:

o] N o0
(Z akyk> => oyt (13)
k=0 k=0

where ¢o = al, e, = 2= ¥ (sN — k + s)asc,_s fork > 1and N € N. Setting N = 2n + 1,y = [G(z) — %]2

ka
and using (13), the expregsion Al in equation (12) can be written as follows:

RESEN S 172 K 2
Al = {G(m) - 2} > ak ([G(m) - 2} )
k=0
1 2n+1 oo 1 2k
k=0
) 1 2(k+n)+1
= {G(x) 2] : (14)
k=0
such that ¢y = a2 and ¢, = k%o Zle(Qs[n + 1] — k)asci_s for k > 1. Now using the binomial theorem, we can

rewrite (14) as:

oo 2(k+n)+1 2(k+n)+1—j
B (k+mn)+1 1 ,
-2 Z Ck( ; ) (—2) Gy (15)

Replacing Al in the equation (12) by the expression in (15), we get to:

o 2(k+n)+1 n
1 Z ( 1/2)2k+3n+1-j (2(k+n) + 1) Gla) (16)
2 S = m2n+n¢§’ J
6n,k,j

Finally, using Fubini’s theorem on differentiation we can write the derivative of (16) with respect to x:

oo 2(k+n)+1

=y Z O k95 (% (17)

n,k=0 =

where 6, 1. ; € R and g;(z) = jG(z)?~'g(z) is the pdf of a random variable from the exponentiated family (Mud-
holkar and Srivastava, 1993). Thus, we can say that (17) is the NT-G pdf (4) expressed as a linear combination of pdfs
of exponentiated distributions. This result allows that many important quantities that depend on the pdf may also be
represented by a series expansion, like the raw moments, the moment generating function, the characteristic function,
the Rényi entropy and the order statistics.

2.5. Inference
The maximum likelihood method was used to determine the estimates of the parameters of the NT-log-logistic dis-

tribution in the next two sections. Its interesting properties such as asymptotic normality, efficiency and consistency
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motivate us using it. Here we present the estimates considering the general pdf (4): let X be a random variable fol-
lowing a NT-G distribution, such that G(x|0) = Gg(z) is the baseline, g(x|0) = gg(x) is its corresponding pdf and
0 = (01,...,0,)7 is the m x 1 vector of parameters; given that X = (z1,...,2,) is a complete random sample of
size n from X, the log-likelihood function is:

(6]X) = Zlogqb [tan (7r [Gg(xk) - ;m + 2ilogsec (77 [Gg(a:k) - ;D +nlogr+ iloggg(xk)

k=1 k=1

and the score vector is U (6|X) = Vgl(0|X) = (u;)1<i<m, Where:

_than( {Ge xk)—;]>sec2< [Gg(:ck) 1D 85; Go(x)
+27TZtan< [Ga (z) — 1D

One can obtain the MLEs by solving the system of equations u; = 0, for ¢ = 1, ..., m. For interval estimation of 8,
one requires the information matrix J(0|X) (see appendix B).

n

(k) -

1

Under standard conditions of regularity, \/ﬁ(é — 0) follows approximately a multivariate normal distribution
Ny (0., Zo 1), where 0, is an m x 1 vector of zeros and Zy is the expectation of .J (6|X), that is, the expected Fisher
information matrix.

3. Simulation study

The software R version 3.4.4 (R Core Team, 2018) was used to perform the Monte Carlo simulation study. At each
of the 10,000 replications, we generated samples of sizes n = 50, 100, 200, 500 from the NT-log-logistic distribution
using the quantile function and a uniform random number generator as mentioned in section 2.1. We considered five
different values for the parametric vector («, 3), as shown in second and third columns of Table 1, and calculated the
bias and the mean squared error (MSE) of the estimates under the maximum likelihood method as follows:

10000 10000

1 1 _
Bi a = T aj — ) Bi = |
T 10000 £ (@ =) - Biass = 15000 < (5 -5)
1 10000 10000

SEa = 10000 - . (& — )", MSE, = 10000 Z ('Bﬂ )

where &; and Ej are the estimates for «v and (3 at the j-th replication. We used the simulated annealing technique to
find the global maximum of the log-likelihood function. This metaheuristic technique is available in R by the optim
function, for which one has to define previously a vector of initial values, namely (g, 8p). To do so, we firstly set
(w0, Bo) = (1,1) and run one single replication considering sample size n = 50; thereafter, the estimates produced in
this step are assigned to (o, o) and used in all of the scenarios.

As we can see in the fourth column of Table 1, the bias for @ is small even in the worst scenario (namely n = 50 and
a = 4.5) where the bias is lesser than 3% of the actual value of the scale parameter; similar behavior occurs for the
bias of 3, that is, it is small in all rows of the table. It denotes that the estimates are quite close to the real values of the
parameters.

The MSE measures the quality of the estimates and being close to zero is a desirable behavior. Furthermore, one
expects the MSE to decrease in as much as the sample size increases; we can see along the rows of sixth and seventh
columns of Table 1 that it happens for all of the parametric vectors in study. These results indicate that the MLEs for
the NT-log-logistic distribution behave appropriately.
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Table 1: Bias and MSE of the estimates under the maximum likelihood method for the NT-log-logistic model.

Actual value Bias MSE
n e 8 a B a B
1 4 0.00046376 0.09291362 0.00068782 0.07479668
2.5 15 0.00010388 0.35991811 0.0003052 1.06129824
50 4.5 0.5 0.10614282 0.01221092 0.9864407 0.00118524
17 3.5 0.00845304 0.08401412 0.25989369 0.05777012
23 19 —0.00233362 0.45171175 0.01610659 1.69783706
1 4 0.00033875 0.04688769 0.00035208 0.0343303
2.5 15 0.00014813 0.1792126 0.00015622 0.48430213
100 4.5 0.5 0.05093953 0.00612755 0.47911004 0.00054026
17 3.5 —0.00346277 0.0377612 0.13307386 0.02597981
23 19 0.00076956 0.22728986 0.00823883 0.77715469
1 4 0.00027705 0.0242487 0.00017798 0.01642673
2.5 15 —0.00014381 0.09630061 0.000079 0.23217006
200 4.5 0.5 0.02681204 0.0027474 0.23683917 0.00025478
17 3.5 0.00504611 0.01949051 0.06725901 0.01249458
23 19 —0.00027 0.1164786 0.00416874 0.37098647
1 4 0.00007529 0.00964605 0.00007166 0.00637179
2.5 15 0.00003911 0.03382906 0.00003185 0.08939624
500 4.5 0.5 0.00916854 0.00114182 0.09375699 0.00009938
17 3.5 0.00116053 0.00808462 0.02705113 0.00487081
23 19 0.0004931 0.04661039 0.00167963 0.14383294

4. Application

Certainly one of the most significant elements that increase the probability of good results in the treatment against
breast cancer is the early detection and an essential ally for the precise diagnosis is the use of biomarkers, namely
indicators of the presence or severity of the disease. Santillan-Benitez et al. (2013) evaluated the body mass index
and the levels of leptin, leptin/adiponectin ratio and carbohydrate antigen (CA) 15-3 as reliable biomarkers for breast
cancer. In this section, we present a real data modelling for the concentration (ng/mL) of the leptin hormone in
blood samples collected from 116 women at the University Hospital Centre of Coimbra between 2009 and 2013.
The dataset was originally studied by Patricio et al. (2018). We fitted the NT-log-logistic model (2.3.2) to the lep-
tin hormone dataset and compared it to the fits of the log-logistic (LL), normal-log-logistic (NLL), exponentiated
log-logistic (ExpLL), beta-log-logistic (BLL), Kumaraswamy-log-logistic (KwLL), Gompertz-log-logistic (GoLL)
and McDonald-log-logistic (McDLL); the six latter along the lines of Silveira et al. (2019), Mudholkar and Srivas-
tava (1993), Lemonte (2014), Cordeiro and Castro (2011), Alizadeh et al. (2017) and Tahir et al. (2014), respectively.
We calculated the MLEs and the corresponding standard errors (SE) using the function goodness. fit, which is
part of the R package AdequacyModel. This function also determines the Akaike information criterion (AIC), the
Bayesian information criterion (BIC) and the modified statistics of Anderson-Darling (A*) and Cramér-Von Mises
(W#*) (Chen and Balakrishnan, 1995).

Since the information criteria are related to the amount of information lost by a given model, one would expect that
the smaller the values of AIC and BIC, the better the model. In this sense, we can say that NTLL is the best choice
among the other distributions in study (see fourth and fifth columns of Table 2). The NTLL also presents the smallest
values of A* and W*. As both statistics indicate the difference between the empirical distribution function and the
real underlying cdf, we may say that NTLL fits the leptin hormone dataset better than the other options listed in the
first column of Table 2.

Figure 6 displays the histogram of the data and the overlapping pdfs of the three fitted models with the smallest values
of A*. At first sight, the three curves seem to be plausible approximations, as they are quite close to the histogram.
Notice, though, that the blue curve (NTLL) accommodates to the data slightly better than NLL and GoLL, especially
for z > 35 ng/mL. We have, therefore, good reasons to point the NTLL as the best alternative, since it outperforms
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Table 2: Fitted distributions to the leptin hormone dataset.

Distribution

Parameters

MLE (SE)

AIC

BIC

A*

W

NTLL

20.9386 (1.104906)
1.35599 (0.055317)

951.1221

956.6293

0.1896698

0.0208069

NLL

20.9160 (1.288521)
0.65997 (0.036861)

952.7282

958.2353

0.2638145

0.03833129

LL

20.7503 (1.438392)
2.37425 (0.179646)
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the competing models.
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Figure 6: Histogram of leptin concentration dataset and fitted densities.
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5. Conclusions

A new class of probability distributions called normal-tangent-G is presented, and some of its mathematical properties
are discussed, like the quantile function and the series representation of the pdf. The submodels generated by the
class are parsimonious; they bring no additional parameters besides those of the baseline GG and enjoy the property of
identifiability whenever G is identifiable. The class can have unimodal or bimodal distributions with different shapes
of pdf and hrf.

Monte Carlo simulation studies are presented to evince the good performance of the MLEs of a NT-G special case,
namely, the NT-log-logistic distribution and an application of this particular submodel to a real dataset is carried out to
exemplify its modelling benefits. The fitted model is compared to other seven competitive distributions (the baseline
itself and six extensions of it) considering AIC, BIC, the Anderson-Darling and the Cramér-von Mises statistics as
criteria for goodness-of-fit. All the results attest that the distribution emerged from the NT-G class outperforms the
alternative models in study and allows us to point it as a useful and flexible tool for modelling real data.
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Appendices

A. Second derivative of the normal-tangent-G pdf

G- loo-1)
+[ 3x2g(z) sec (ﬂ Ol ])mg(x (m +2) sec
xm([ 1)1 s (x [
i (o2 o (-5
s et ) - - )}

where g” () is the second derivative of g(z).

B. Normal-tangent-G information matrix

J(0]1X) = VoV £(0]X) = —(us)1<i<m,1<j<m» Where:

P g:l [2 sec? (77 |:Gg(l‘k) — ;]) tan? <7r |:G9(-%‘k) - ﬂ)

wsect (| Golon) — 5 )| ggrGotan) gg-Golon)
+7than< [Gs xk)—;Dse&( [Gg(xk) 1]) 89‘9;9 Go(xr)

+2W2Zsec < [Ge () — 1D (;; Golx k)azjc;g(xk)
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