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Abstract  

 

The truncated distributions have been widely studied, mainly in life-testing and reliability analysis.  In this paper, 

we introduce a new right truncated generator related to power Lomax distribution, referred to right truncated 

power Lomax--G family. The proposed family is a generalization of recently [0, 1] truncated Lomax-G family. 

Statistical properties like; moments, moment generating function, probability weighted moments, quantile 

function, mean deviation, order statistics and Rényi entropy are derived. Five new sub-models from the truncated 

family are presented. Maximum likelihood estimation is investigated and simulation issues are discussed for 

truncated power Lomax Weibull model as particular case from the family. The flexibility of the truncated power 

Lomax Weibull is assessed by applying it to a real data set. The application indicates that the truncated power 

Lomax Weibull distribution model can give better fits than other well-known lifetime distributions.  

 

Key Words: Power Lomax distribution; Order statistics; Truncated, Maximum likelihood method, Weibull 

Distribution. 
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1. Introduction 

Numerous classical distributions have been extensively used over the past decades for modeling data in several areas 

such as engineering, actuarial, environmental and medical sciences, biological studies, demography, economics, finance 

and insurance. However, in many applied areas such as lifetime analysis, finance and insurance, there is a clear need for 

more flexible forms of these distributions to model specific types of real data. For that reason, several methods for 

generating new families of distributions have been studied. Some of the well-known generators are the beta-G by 

Eugene et al. (2002), Kumaraswamy-G by Cordeiro and de Castro (2011), exponentiated generalized-G by Cordeiro et 

al. (2013), Transformed-Transformer (T-X) by Alzaatreh et al. (2013), Weibull-G by Bourguignon et al. (2014), 

exponentiated half-logistic-G by Cordeiro et al. (2014a), Lomax-G by Cordeiro et al. (2014b)  odd generalized 

exponential by Tahir et al. (2015), the beta odd log-logistic generalized by Cordeiro et al. (2016), exponentiated 

Weibull-G by Hassan and Elgarhy (2016a), Kumaraswamy Weibull-G by Hassan and Elgarhy (2016b), additive 

Weibull-G by Hassan and Hemeda (2016), exponentiated extended-G by Elgarhy et al. (2017), Type II half logistic-G 

by Hassan et al. (2017a), generalized additive Weibull-G by Hassan et al. (2017b), The Lomax-R{Y} family by 

Mansoor et al. (2017), odd Frechet-G by Haq and Elgarhy (2018), inverse Weibull-G by Hassan and Nassr (2018), 

power Lindley-G by Hassan and Nassar (2019), and Type II generalized Topp-Leone –G ( Hassan et al., 2019) among 

others. 

An important model is the Lomax (or Pareto II) that has been suggested by Lomax (1954) for modeling lifetime data. It 

has been widely applied in some areas, such as, analysis of income and wealth data, modeling business failure data, 

biological sciences, model firm size and queuing problems (see for example Harris (1968), and  Atkinson and Harrison 

(1978)). Also, it has been used in reliability and life testing problems in engineering (see Hassan and Al-Ghamdi (2009) 
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and Hassan et al. (2016)). Extended forms of Lomax distribution have been provided by several authors. Our interest 

here with one of the newly extended forms of Lomax distribution which is power Lomax (PL) distribution. PL 

distribution has been introduced by Rady et al. (2016) by using power transformation of a Lomax distribution. The PL 

distribution is more flexible and accommodates both inverted bathtub and decreasing hazard rate. The cumulative 

distribution function (cdf) and probability density function (pdf) of PL distribution are given respectively, by 

𝐺(𝑢) = 1 − 𝜆𝛼(𝜆 + 𝑢𝛽)
−𝛼
,                                                                        (1) 

and, 

𝑔(𝑢)  =   𝛼𝛽𝜆𝛼  𝑢𝛽−1(𝜆 + 𝑢𝛽)
−(𝛼+1)

 ,      𝑢 > 0 ,                                                   (2) 

where, 𝛼, 𝛽 > 0 are two shape parameters and 𝜆 > 0 is a scale parameter.  

A truncated distribution is defined as a conditional distribution that results from restricting the domain of the statistical 

distribution. Hence, truncated distributions are used in cases where occurrences are limited to values which lie above or 

below a given threshold or within a specified range. If occurrences are limited to values which lie below a given 

threshold, the lower (left) truncated distribution is obtained. Similarly, if occurrences are limited to values which lie 

above a given threshold, the upper (right) truncated distribution arises.  In the literature, several truncated distributions 

have been provided by several authors.  Recently, Abid and Abdulrazak (2017) introduced [0, 1] truncated Fréchet-G of 

distributions by using the [0, 1] truncated Fréchet distribution as a generator. Hassan et al. (2020 a) proposed [0,1] 

truncated Lomax-G family.  

The main aim of this paper is to introduce and study a new truncated family of probability distributions depending on 

the [0, 1] truncated PL distribution as a generator instead of unbounded random variables. We call the new family as the 

truncated PL generated (TPL- G). The proposed family is a generalization to truncated Lomax-G family proposed by 

Hassen et al. (2020 b). We hope that the truncated family yields a better fit in more practical situations. 

 

 

2. [0, 1] Truncated Power Lomax Distribution 

Based on Equation 1, let 𝜆 = 1, truncated power Lomax (TPL) distribution are defined (see Hassan et al., 2020 a)  

defined) as follows 

𝑟(𝑡)  =  
𝑔(𝑡)

𝐺(1)−𝐺(0)
=
𝛼𝛽𝑡𝛽−1(1+𝑡𝛽)

−(𝛼+1)

1−2−𝛼
  ,                                                 (3) 

and 

𝑅(𝑡) =
∫ 𝑔(𝑡)𝑑𝑡
𝑡
0

𝐺(1)−𝐺(0)
=

𝐺(𝑡)−𝐺(0)

𝐺(1)−𝐺(0)
=
1−(1+𝑡𝛽)−𝛼

1−2−𝛼
,                                               (4) 

respectively, where 𝛼, 𝛽 > 0 and 0 < 𝑡 < 1 . The survival, hazard rate function (hrf), reversed hazard rate function and 

cumulative hazard rate function are given, respectively, by 

𝑅̅(𝑡) = 1 − 𝑅(𝑡) =
(1+𝑡𝛽)

−𝛼
−2−𝛼

1−2−𝛼
     , ℎ(𝑡) =

𝑟(𝑡)

𝑅̅(𝑡)
=
𝛼𝛽𝑡𝛽−1(1+𝑡𝛽)

−(𝛼+1)

(1+𝑡𝛽)
−𝛼
−2−𝛼

     , 

𝜏(𝑡) =
𝑟(𝑡)

 𝑅(𝑡)
=
𝛼𝛽𝑡𝛽−1(1+𝑡𝛽)

−(𝛼+1)

1−(1+𝑡𝛽)−𝛼
     , and 𝐻(𝑡) = − 𝑙𝑛(𝑅̅(𝑡)) = − 𝑙𝑛 (

(1+𝑡𝛽)
−𝛼
−2−𝛼

1−2−𝛼
). 

Figure 1 gives a variety of possible shapes of the pdf and the hrf of [0,1] TPL distribution for some selected values of 

parameters. It can be detected from Figure 1 that the pdf shape can be right skewed, reversed J-shape, and unimodel. 

Also, the shape of the hrf of the [0,1] TPL distribution could be increasing or decreasing, and U-shaped. 
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(a) (b) 

Figure 1. (a) pdf and (b) hrf of the [0, 1] TPL  distribution for different values of parameters 

 

 

3. Truncated Power Lomax –G Family  

In this section, a new truncated family of distributions is introduced based on [0, 1] truncated power Lomax 

distribution. The density and distribution function of [0, 1] TPL –G family is defined. Further, the pdf and cdf of TPL- 

G family are defined by taking the pdf (3) as a generator in the T-X family proposed by Alzaatreh et al. (2013).  

A random variable X is said to be distributed as TPL-G, denoted by 𝑋~TPL − G , if it has cdf and pdf as follows  

𝐹(𝑥) = ∫
𝛼𝛽𝑡𝛽−1(1+𝑡𝛽)

−(𝛼+1)

1−2−𝛼
𝑑𝑡

𝐺(𝑥;𝜉)

0
=   𝐴(1 − (1 + 𝐺(𝑥; 𝜉)𝛽)−𝛼),                     (5) 

and  
𝑓(𝑥) =   𝐴𝛼𝛽𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛽−1(1 + 𝐺(𝑥; 𝜉)𝛽)−𝛼−1,                              (6) 

where 𝑥 > 0 and  𝛼, 𝛽 > 0, 𝐴 =
1

1−2−𝛼
 and 𝜉 is the set of parameters of the G(.) distribution.  The survival function, 

𝐹̅(𝑥), and hazard rate function, ℎ(𝑥), are, respectively, given by 

𝐹̅(𝑥) = 1 −   𝐴(1 − (1 + 𝐺(𝑥; 𝜉)𝛽)−𝛼), 

and 

ℎ(𝑥) =
𝐴𝛼𝛽𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛽−1(1 + 𝐺(𝑥; 𝜉)𝛽)−𝛼−1

1 −   𝐴(1 − (1 + 𝐺(𝑥; 𝜉)𝛽)−𝛼)
. 

 

4. Statistical Properties of the TPL- G family 

In this section, some statistical properties of the  TPL − G  family of distributions are investigated.  

4.1 Quantile function 

Let 𝑋 denotes a random variable has the cdf (5), the quantile function, say 𝑄(𝑢) of  𝑋 is given by 

𝑄(𝑢) = 𝐺
−1 { √[1 − (1 − 2−𝛼) 𝑢]

−1
𝛼 − 1

𝛽

  }, 

where, 0 < 𝑢 < 1 and 𝐺−1(. ) is the inverse cumulative distribution function of 𝐺(. ). 
4.2 Useful representation 

Some representations of the cdf and pdf for TPL − G family of distributions will be presented.  

It is well-known that, if 𝛼 > 0 and |𝑍| < 1 the generalized binomial theorem is written as follows 

(1 + 𝑍)−𝛼 = ∑ (−1)𝑖(𝛼+𝑖−1
𝑖
) 𝑍𝑖∞

𝑖=0  .                                              (7) 

Then, by applying the binomial theorem (7) in (6), the pdf of TPL − G distribution where 𝛼 is real becomes 

𝑓(𝑥) = ∑ 𝜂𝑖  𝑔(𝑥)𝐺(𝑥)
𝛽(𝑖+1)−1∞

𝑖=0 ,                                                    (8) 

where, 𝜂𝑖 = 𝐴𝛼𝛽 (−1)
𝑖(𝛼+𝑖

𝑖
).  

Further, an expansion for [𝐹(𝑥)]ℎ is derived, for ℎ is integer.  Again, the binomial expansion is worked out. 

                                                                             [𝐹(𝑥)]ℎ = ∑ 𝑆𝑘   𝐺(𝑥)
𝛽𝑘∞

𝑘=0 ,                                                                         (9) 
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where, 

𝑆𝑘 = 𝐴
ℎ   ∑ (−1)𝑗+𝑘

ℎ

𝑗=0
 (
ℎ

𝑗
) (
𝛼𝑗 + 𝑘 − 1

𝑘
) . 

 

4.3  Probability weighted moments 

Class of moments, called the probability-weighted moments (PWMs), has been proposed by Greenwood et al. (1979). 

This class is used to derive estimators of the parameters and quantiles of distributions expressible in inverse form. For a 

random variable 𝑋 the PWMs, denoted by 𝜏𝑟,ℎ can be calculated through the following relation 

𝜏𝑟,ℎ = 𝐸(𝑋
𝑟𝐹(𝑥)ℎ) = ∫ 𝑥𝑟𝑓(𝑥)

∞

−∞
𝐹(𝑥)ℎ𝑑𝑥.                                       (10) 

The PWM of TPL − G is obtained by inserting (8) and (9) into (10) as follows 

𝜏𝑟,ℎ = ∑  𝜂𝑖 

∞

𝑖,𝑘=0

𝑆𝑘 ∫ 𝑥
𝑟 𝑔(𝑥; 𝜉) 𝐺(𝑥; 𝜉)𝛽(𝑖+𝑘+1)−1

∞

−∞

𝑑𝑥. 

Then, 

𝜏𝑟,ℎ = ∑  𝜂𝑖 𝑆𝑘

∞

𝑖,𝑘=0

𝜏𝑟,𝛽(𝑖+𝑘+1)−1, 

where, 

Υ𝑟,𝛽(𝑖+𝑘+1)−1 = ∫ 𝑥𝑟𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛽(𝑖+𝑘+1)−1
∞

−∞

𝑑𝑥. 

4.4 Moments and Moment Generating function 

Since the moments are necessary and important in any statistical analysis, especially in applications. Therefore, we 

derive the 𝑟𝑡ℎ moment for the TPL − G family.  If 𝑋 has the pdf (8), then 𝑟𝑡ℎ moment is obtained as follows  

𝜇̀𝑟 = 𝐸(𝑋
𝑟) = ∫ 𝑥𝑟𝑓(𝑥)

∞

−∞
𝑑𝑥 = ∑  𝜂𝑖 

∞
𝑖=0 ∫ 𝑥𝑟 𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛽(𝑖+1)−1

∞

−∞
𝑑𝑥.  

Then, 

𝜇̀𝑟 = ∑  𝜂𝑖 
∞
𝑖=0 𝜏𝑟,𝛽(𝑖+1)−1.  

For a random variable 𝑋 it is known that, the moment generating function is defined as 

𝑀𝑋(𝑡) = ∑
𝑡𝑟

𝑟!  𝜇̀𝑟
∞
𝑟=0 = ∑

𝑡𝑟

𝑟!

∞
𝑖,𝑟=0  𝜂𝑖 𝜏𝑟,𝛽(𝑖+1)−1.  

 

4.5 The mean deviation 

In statistics, mean deviation about the mean and mean deviation about the median measure the amount of scattering in a 

population. For random variable 𝑋 with pdf 𝑓(𝑥), cdf 𝐹(𝑥), the mean deviation about the mean(𝜇) and mean deviation 

about the median (𝑀), are defined by  

𝛿1 = 2𝜇 𝐹(𝜇) − 2𝑇(𝜇)  and  𝛿2 = 𝜇 − 2𝑇(𝑀), 
respectively, where, 

𝑇(𝑞) = ∫𝑥 𝑓(𝑥)  𝑑𝑥,

𝑞

−∞

 

which is the first incomplete moment. 

4.6  Order statistics 

Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. Let 

𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed (i.i.d) random variables with their corresponding continuous 

distribution function 𝐹(𝑥). Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) be the corresponding ordered random sample from a population of 

size 𝑛. According to David (1981), the pdf of the 𝑘𝑡ℎ order statistic, is defined as 

 

           𝑓𝑥(𝑘)(𝑥) =
1

𝐵(𝑘,𝑛−𝑘+1)
[𝐹(𝑥)]𝑘−1𝑓(𝑥)[1 − 𝐹(𝑥)]𝑛−𝑘 ,            0 < 𝑥(𝑘) < ∞.                                          (11)                                               

By employing the binomial expansion in (11), then the pdf of  𝑘𝑡ℎ order statistic takes the following form  

              𝑓𝑥(𝑘)(𝑥) =
𝑓(𝑥)

𝐵(𝑘,𝑛−𝑘+1)
∑ (−1)𝑚(𝑛−𝑘

𝑚
)𝑛−𝑘

𝑚=0 𝐹(𝑥)𝑚+𝑘−1,                                                                    (12)   

𝐵(. , . ) stands for beta function. The pdf of the 𝑘𝑡ℎ order statistic for  TPL − G family is derived by substituting (8) and 

(9) in (12), replacing ℎ with 𝑚 + 𝑘 − 1 
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𝑓𝑥(𝑘)(𝑥) =
𝑔(𝑥; 𝜉)

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ ∑ 𝐶∗𝐺(𝑥; 𝜉)𝛽(𝑖+𝑘+1)−1,

∞

𝑖,𝑘=0

𝑛−𝑘

𝑚=0

 

where, 𝐶∗ = (−1)𝑚(𝑛−𝑘
𝑚
) 𝜂𝑖 𝑆𝑘 ,  𝑔(. ) and 𝐺(. ) are the pdf and cdf of the TPL − G family, respectively. 

Further, the rth moment of 𝑘𝑡ℎorder statistics for TPL − G family is defined by: 

                                                         𝐸(𝑋𝑟(𝑘)) = ∫ 𝑥𝑟𝑓𝑥(𝑘)(𝑥)
∞

−∞
𝑑𝑥.                                                                  (13)                                                                                                                                  

By substituting (12) in (13), leads to 

𝐸(𝑋𝑟(𝑘)) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ ∑ 𝐶∗ 𝜏𝑟,𝛽(𝑖+𝑘+1)−1

∞

𝑖,𝑗,𝑘,𝑙=0

𝑛−𝑘

𝑚=0

. 

4.7  Rényi entropy 

An entropy is a concept encountered in physics and engineering. It is a measure of variation or uncertainty of a random 

variable X (see Rényi (1961)). The Rényi entropy of X with pdf f (x) is defined by  

𝐼𝛿(𝑋) =
1

1 − 𝛿
𝑙𝑜𝑔∫ 𝑓(𝑥)𝛿

∞

−∞

𝑑𝑥,      𝛿 > 0    𝑎𝑛𝑑     𝛿 ≠ 1. 

Now, we consider the generalized binomial theorem (7), then the pdf 𝑓(𝑥)𝛿  can be expressed as follows: 

𝑓(𝑥)𝛿 =∑𝐶𝑖 𝑔(𝑥; 𝜉)
𝛿𝐺(𝑥; 𝜉)𝛽(𝑖+𝛿)−𝛿 ,

∞

𝑖=0

 

where, 𝐶𝑖 = (−1)
𝑖(𝐴𝛼𝛽)𝛿(𝛿(𝛼+1)+𝑖−1

𝑖
). Therefore, the Rényi entropy of TPL − G family of distributions is given by 

𝐼𝛿(𝑋) =
1

1 − 𝛿
𝑙𝑜𝑔∑𝐶𝑖 

∞

𝑖=0

∫ 𝑔(𝑥; 𝜉)𝛿𝐺(𝑥; 𝜉)𝛽(𝑖+𝛿)−𝛿
∞

−∞

𝑑𝑥. 

 

 

 

5. Sub-Models  

This section is devoted to discuss and describe five sub-models of the TPL-G family, namely; TPL -uniform, TPL -

Weibull, TPL -Ferchet, TPL -Kumaraswamy and TPL –Toppe-Leone. 

 

5.1 TPL -Uniform Distribution 

For 𝑔(𝑥; 𝜃) =
1

𝜃
 , 0 < 𝑥 < 𝜃, and 𝐺(𝑥; 𝜃) =

𝑥

𝜃
   the pdf of TPL -uniform (TPLU) is derived from (6) as the following  

𝑓(𝑥) =
𝐴𝛼𝛽(𝑥)𝛽−1  (1 + (

𝑥
𝜃
)
𝛽

)
−𝛼−1

 

𝜃𝛽
 ,      0 < 𝑥 < 𝜃. 

The corresponding cdf takes the following form 

𝐹(𝑥) = 𝐴(1 − (1 + (
𝑥

𝜃
)
𝛽

)

−𝛼

). 

The hrf of TPLU is given by 

ℎ(𝑥) =
𝐴𝛼𝛽(𝑥)𝛽−1  (1 + (

𝑥
𝜃
)
𝛽

)
−𝛼−1

 

𝜃𝛽 [1 − 𝐴(1 − (1 + (
𝑥
𝜃
)
𝛽

)
−𝛼

)]

.   

Plots of pdf and hrf for the TPLU are displayed in Figure 2. 



Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 661-674  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.3442 

 

 
A New Probability Distribution Family Arising From Truncated Power Lomax Distribution with Application  to Weibull Model 666 

 

 
 

(a) (b) 

Figure 2: (a) pdf and (b) hrf of the  TPLU distribution for different values of parameters 

 

From Figure 2 it appears that the shape of the distribution depends heavily on parameter values. 

 

5.2 TPL -Weibull  Distribution 

Let us consider the Weibull distribution with  𝑔(𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑥𝑏−1𝑒−𝑎𝑥
𝑏
,   𝑥, 𝑎, 𝑏 > 0   and   𝐺(𝑥; 𝑎, 𝑏) = 1 − 𝑒−𝑎𝑥

𝑏
, 

we obtain the TPL -Weibull (TPLW) density function as follows 

𝑓(𝑥) = 𝐴𝛼𝛽𝑎𝑏𝑥𝑏−1𝑒−𝑎𝑥
𝑏
(1 − 𝑒−𝑎𝑥

𝑏
)
𝛽−1

(1 + (1 − 𝑒−𝑎𝑥
𝑏
)
𝛽

)
−𝛼−1

, 𝑥, 𝑎, 𝑏 > 0. 

The cdf and hrf of the TPLW distribution are given, respectively, by  

𝐹(𝑥) = 𝐴(1 − (1 + (1 − 𝑒−𝑎𝑥
𝑏
)
𝛽

)
−𝛼

), 

and, 

ℎ(𝑥) =
𝐴𝛼𝛽𝑎𝑏𝑥𝑏−1𝑒−𝑎𝑥

𝑏
(1 − 𝑒−𝑎𝑥

𝑏
)
𝛽−1

(1 + (1 − 𝑒−𝑎𝑥
𝑏
)
𝛽

)
−𝛼−1

 

1 − 𝐴 (1 − (1 + (1 − 𝑒−𝑎𝑥
𝑏
)
𝛽
)
−𝛼

)
 .  

Plots of pdf and hrf for the TPLW are displayed in Figure 3. 

  

(a) (b) 

Figure 3: (a) pdf and (b) hrf of the TPLW distribution for different values of parameters 

 

5.3 TPL -Frechet Distribution 
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We consider the Frѐchet distribution with  𝑔(𝑥; 𝜇, 𝛿) = 𝛿𝜇𝛿𝑥−𝛿−1𝑒−
(
𝜇

𝑥
)
𝛿

, 𝑥, 𝜇, 𝛿 > 0 and 𝐺(𝑥; 𝜇, 𝛿) = 1 − 𝑒−
(
𝜇

𝑥
)
𝛿

, we 

obtain the TPL -Frechet (TPLF) density function as follows 

𝑓(𝑥) = 𝐴𝛼𝛽𝛿𝜇𝛿𝑥−𝛿−1𝑒−
(
𝜇
𝑥
)
𝛿

(1 − 𝑒−
(
𝜇
𝑥
)
𝛿

)

𝛽−1

(1 + (1 − 𝑒−
(
𝜇
𝑥
)
𝛿

)

𝛽

)

−𝛼−1

, 𝑥, 𝜇, 𝛿 > 0. 

The cdf and hrf of the TPLF distribution are given, respectively, by  

𝐹(𝑥) = 𝐴(1 − (1 + (1 − 𝑒−
(
𝜇

𝑥
)
𝛿

)

𝛽

)

−𝛼

), 

and 

ℎ(𝑥) =

 𝐴𝛼𝛽𝛿𝜇𝛿𝑥−𝛿−1𝑒
−(
𝜇
𝑥)
𝛿

(1−𝑒
−(
𝜇
𝑥)
𝛿

)

𝛽−1

(1+(1−𝑒
−(
𝜇
𝑥)
𝛿

)

𝛽

)

−𝛼−1

1−𝐴

(

 1−(1+(1−𝑒
−(
𝜇
𝑥)
𝛿

)

𝛽

)

−𝛼

)

 

  . 

Plots of pdf and hazard rate function for the TPLF are displayed in Figure 4. 

 
 

(a) (b) 

Figure 4: (a) pdf and (b) hrf of the TPLF distribution for different values of parameters 

 

 

5.4 TPL -Kumaraswamy Distribution 

For 𝑔(𝑥; 𝑘, 𝑠) = 𝑘𝑠 𝑥𝑘−1(1 − 𝑥𝑘)𝑠−1, 0 < 𝑥 < 1     , 𝑘, 𝑠 > 0  and 𝐺(𝑥; 𝑘, 𝑠) = 1 − (1 − 𝑥𝑘)𝑠,  we obtain the TPL -

Kumaraswamy (TPLK) density function as follows 

𝑓(𝑥) = 𝐴𝛼𝛽𝑘𝑠𝑥𝑘−1(1 − 𝑥𝑘)𝑠−1  [1 − (1 − 𝑥𝑘)𝑠]𝛽−1 × {1 + [1 − (1 − 𝑥𝑘)𝑠]𝛽}
−𝛼−1

, 0 < 𝑥 < 1. 
The cdf and hrf of the TPLK distribution are given, respectively, by   

𝐹(𝑥) = 𝐴(1 − (1 + [1 − (1 − 𝑥𝑘)𝑠]𝛽)
−𝛼
), 

and 

ℎ(𝑥) =
 𝐴𝛼𝛽𝑘𝑠𝑥𝑘−1(1 − 𝑥𝑘)𝑠−1  [1 − (1 − 𝑥𝑘)𝑠]𝛽−1{1 + [1 − (1 − 𝑥𝑘)𝑠]𝛽}

−𝛼−1

1 − 𝐴(1 − (1 + [1 − (1 − 𝑥𝑘)𝑠]𝛽)−𝛼)
.   

Plots of pdf and hrf for the TPLK are displayed in Figure 5. 
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(a) (b) 

Figure 5:(a) pdf and (b) hrf of the TPLK distribution for different values of parameters 

 

5.5 TPL –Toppe Leone ( TPLTL) Distribution 

For 𝑔(𝑥; 𝑞) = 2𝑞 𝑥𝑞−1(1 − 𝑥)(2 − 𝑥)𝑞−1, 0 < 𝑥 < 1     , 𝑞 > 0   and  𝐺(𝑥; 𝑞) = 𝑥𝑞(2 − 𝑥)𝑞 ,  we obtain the TPL –

Toppe Leone (TPLTL) density function as follows 

𝑓(𝑥) = 2𝐴𝛼𝛽𝑞𝑥𝑞𝛽−1(1 − 𝑥)(2 − 𝑥)𝑞𝛽−1  (1 + 𝑥𝑞𝛽(2 − 𝑥)𝑞𝛽)
−𝛼
, 0 < 𝑥 < 1     , 𝑞 > 0.    

The cdf and hrf of the TPLTL distribution are given, respectively, by  

𝐹(𝑥) = 𝐴(1 − (1 + 𝑥𝑞𝛽(2 − 𝑥)𝑞𝛽)
−𝛼
), 

and 

ℎ(𝑥) =
 2𝐴𝛼𝛽𝑞𝑥𝑞𝛽−1(1 − 𝑥)(2 − 𝑥)𝑞𝛽−1  (1 + 𝑥𝑞𝛽(2 − 𝑥)𝑞𝛽)

−𝛼

1 − 𝐴(1 − (1 + 𝑥𝑞𝛽(2 − 𝑥)𝑞𝛽)−𝛼)
 .  

Plots of pdf and hrf for the TPLTL are displayed in Figure 6. 

  
(a) (b) 

Figure 6. (a) pdf and (b) hrf of the TPLTL distribution for different values of parameters 

 

6. Maximum Likelihood Method to Estimation 

This section deals with the maximum likelihood estimators of the unknown parameters for the TPL-G family of 

distributions on the basis of complete samples. Let  𝑋1, 𝑋2, … , 𝑋𝑛 be the observed values from the TPL-G family with 

set of parameter 𝛷 = (𝛼, 𝛽, 𝜉)𝑇. The log-likelihood function for parameter vector 𝛷 = (𝛼, 𝛽, 𝜉)𝑇 is obtained as follows 
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𝑙𝑛 𝐿(𝛷) = 𝑛𝑙 𝑛 𝛼 + 𝑛 𝑙𝑛 𝛽 − 𝑛 𝑙𝑛(1 − 2−𝛼)

+∑𝑙𝑛 𝑔(𝑥𝑖; 𝜉) + (𝛽 − 1)∑𝑙𝑛 𝐺(𝑥𝑖 ; 𝜉)

𝑛

𝑖=1

−

𝑛

𝑖=1

(𝛼 + 1)∑𝑙𝑛[1 + 𝐺(𝑥𝑖 ; 𝜉)
𝛽]

𝑛

𝑖=1

. 

The partial derivatives of the log-likelihood function with respect to 𝛼, 𝛽 and 𝜉 components of the score vector 𝑈𝐿 =
(𝑈𝛼 , 𝑈𝛽 , 𝑈𝜉)

𝑇  can be obtained as follows 

𝑈𝛼 =
𝑛

𝛼
−
𝑛 2−𝛼𝑙𝑛2

1 − 2−𝛼
−∑𝑙𝑛[1 + 𝐺(𝑥𝑖; 𝜉)

𝛽]

𝑛

𝑖=1

,  

𝑈𝛽 =
𝑛

𝛽
+∑𝑙𝑛𝐺(𝑥𝑖; 𝜉)

𝑛

𝑖=1

− (𝛼 + 1)∑
𝐺(𝑥𝑖; 𝜉)

𝛽 𝑙𝑛 𝐺(𝑥𝑖 ; 𝜉)

1 + 𝐺(𝑥𝑖 ; 𝜉)
𝛽

𝑛

𝑖=1

, 

and 

𝑈𝜉 =∑
𝑔′(𝑥𝑖 ; 𝜉)

𝑔(𝑥𝑖; 𝜉)

𝑛

𝑖=1

+ (𝛽 − 1)∑
𝐺′(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖 ; 𝜉)

𝑛

𝑖=1

− 𝛽(𝛼 + 1)∑
𝐺′(𝑥𝑖 ; 𝜉) 𝐺(𝑥𝑖; 𝜉)

𝛽−1

1 + 𝐺(𝑥𝑖; 𝜉)
𝛽

𝑛

𝑖=1

 , 

where, 𝑔′(𝑥𝑖 ; 𝜉) = 𝜕𝑔(𝑥𝑖; 𝜉) 𝜕𝜉⁄  and 𝐺′(𝑥𝑖 , 𝜉) = 𝜕𝐺(𝑥𝑖 ; 𝜉) 𝜕ξ⁄ . Setting 𝑈𝛼 , 𝑈𝛽 , 𝑎𝑛𝑑 𝑈𝜉  equal to zero and solving these 

equations simultaneously yield the maximum likelihood estimators 𝛷̂ = (𝛼̂, 𝛽̂, 𝜉)𝑇 of 𝛷 = (𝛼, 𝛽, 𝜉)𝑇. Unfortunately 

these equations cannot be solved analytically and numerical iterative methods could be used to solve.  

 

7. Simulation Study 

In this section, the performance of the maximum likelihood estimators is assessed in terms of the sample size 𝑛. A 

numerical evaluation is carried out to examine the performance of maximum likelihood estimators for TPLW model (as 

particular case from the family). The evaluation of estimates is performed based on the biases and the empirical mean 

square errors (MSEs). The simulation is made using the MATHEMATICA package and the numerical steps are listed 

as follows: 

Step 1: A random sample 𝑋1, 𝑋2, …𝑋𝑛 of sizes; n =10, 20, 30, 50,75 and 100 are considered, these random samples are 

generated from the TPLW distribution by using inversion method.   

Step 2: Six sets of the parameters are considered as Set1 [𝛼 = 0.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5 ], Set2 [𝛼 = 0.5, 𝛽 =
0.5, 𝑎 = 0.5, 𝑏 = 1.5], Set3 [𝛼 = 0.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 2.0], Set4 [𝛼 = 1.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5], 

Set5 [𝛼 = 2.0, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5], and Set6 [𝛼 = 1.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 1.5]. The maximum 

likelihood estimate (MLE) of TPLW model is evaluated for each parameters value and for each sample size.  

Step 3: Repeat this process 3000 times and then obtain the means, biases and MSEs of the MLE for different values of 

model parameters at each sample size. Empirical results are reported in Tables 1-3. We can detect from these 

tables that the estimates are quite stable and are close to the true value of the parameters as the sample sizes 

increase. 

 

Table 1: MLE, Bias and MSE of Model Parameters for Set 1 and Set 2 

𝑛 Parameters 
Set 1: 𝛼 = 0.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5 Set 2: 𝛼 = 0.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 1.5 

MLE Bias MSE MLE Bias MSE 

10 

𝛼 0.50013 0.00013 0.00025 0.50059 0.00059 0.00025 

𝛽 0.58751 0.08751 0.07775 0.57699 0.07699 0.06661 

𝑎 0.51592 0.01592 0.00875 0.51870 0.01870 0.00906 

𝑏 0.61550 0.11550 0.14135 1.82395 0.32395 0.96733 

20 

𝛼 0.50029 0.00029 0.00013 0.50027 0.00027 0.00012 

𝛽 0.53747 0.03747 0.02558 0.53530 0.03530 0.02231 

𝑎 0.50931 0.00931 0.00475 0.51009 0.01009 0.00446 

𝑏 0.54514 0.04514 0.03058 1.65493 0.15493 0.31111 

30 
𝛼 0.49996 -0.00004 0.00008 0.50002 0.00002 0.00008 

𝛽 0.52537 0.02537 0.01366 0.52548 0.02548 0.01407 
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𝑎 0.50554 0.00554 0.00302 0.50600 0.00600 0.00306 

𝑏 0.53427 0.03427 0.01991 1.59985 0.09985 0.17032 

50 

𝛼 0.50018 0.00017 0.00005 0.50015 0.00015 0.00005 

𝛽 0.51336 0.01336 0.00748 0.51287 0.01287 0.00693 

𝑎 0.50443 0.00443 0.00186 0.50320 0.00320 0.00183 

𝑏 0.52023 0.02022 0.01077 1.54944 0.04944 0.09067 

75 

𝛼 0.50003 0.00003 0.00003 0.50019 0.00019 0.00003 

𝛽 0.50990 0.00990 0.00497 0.50854 0.00854 0.00493 

𝑎 0.50280 0.00280 0.00127 0.50302 0.00302 0.00135 

𝑏 0.51380 0.01380 0.00672 1.53698 0.03698 0.06242 

100 

𝛼 0.50012 0.00012 0.00002 0.50008 0.00008 0.00003 

𝛽 0.50552 0.00552 0.00350 0.50710 0.00710 0.00362 

𝑎 0.50220 0.00220 0.00091 0.50199 0.00199 0.00095 

𝑏 0.50794 0.00794 0.00446 1.52819 0.02819 0.04420 

 

 

 

 

 

 

Table 2: MLE, Bias and MSE of Model Parameters for Set 3 and Set 4 

𝑛 Parameters 
Set 3: 𝛼 = 0.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 2.0 Set 4: 𝛼 = 1.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5 

MLE Bias MSE MLE Bias MSE 

10 

𝛼 0.50056 0.00056 0.00025 1.51148 0.01148 0.01935 

𝛽 0.57704 0.07704 0.06617 0.60320 0.10320 0.11383 

𝑎 0.51867 0.01867 0.00886 0.51342 0.01342 0.00688 

𝑏 2.42679 0.42679 1.74762 0.61597 0.11597 0.14514 

20 

𝛼 0.50048 0.00048 0.00012 1.50696 0.00696 0.00985 

𝛽 0.53158 0.03158 0.02233 0.54673 0.04673 0.03267 

𝑎 0.51064 0.01064 0.00454 0.50832 0.00832 0.00368 

𝑏 2.19139 0.19139 0.56633 0.55332 0.05332 0.03763 

30 

𝛼 0.50023 0.00023 0.00008 1.50717 0.00717 0.00616 

𝛽 0.52471 0.02471 0.01383 0.52280 0.02280 0.01605 

𝑎 0.50699 0.00699 0.00302 0.50609 0.00609 0.00235 

𝑏 2.13850 0.13850 0.30946 0.52797 0.02797 0.01894 

50 

𝛼 0.49998 -0.00002 0.00005 1.50341 0.00341 0.00386 

𝛽 0.51448 0.01448 0.00755 0.51501 0.01501 0.00956 

𝑎 0.50276 0.00276 0.00188 0.50330 0.00330 0.00149 

𝑏 2.07118 0.07118 0.16556 0.51742 0.01742 0.01086 

75 
𝛼 0.49997 -0.00003 0.00003 1.50109 0.00109 0.00263 

𝛽 0.50966 0.00966 0.00483 0.51287 0.01287 0.00618 
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𝑎 0.50178 0.00178 0.00128 0.50213 0.00213 0.00101 

𝑏 2.04795 0.04795 0.10956 0.51487 0.01487 0.00686 

100 

𝛼 0.50000 0.00001 0.00002 1.50145 0.00145 0.00193 

𝛽 0.50743 0.00743 0.00347 0.50802 0.00802 0.00425 

𝑎 0.50177 0.00177 0.00092 0.50120 0.00120 0.00078 

𝑏 2.04063 0.04063 0.07781 0.50833 0.00833 0.00498 

 

Table 3: MLE, Bias and MSE of Model Parameters for Set 5 and Set 6 

𝑛 Parameters 
Set5: 𝛼 = 2.0, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5 Set6: 𝛼 = 1.5, 𝛽 = 0.5, 𝑎 = 0.5, 𝑏 = 1.5 

MLE Bias MSE MLE Bias MSE 

10 

𝛼 2.02690 0.02690 0.06281 1.5114 0.01143 0.01942 

𝛽 0.60687 0.10687 0.90418 0.6046 0.10467 0.11833 

𝑎 0.51150 0.01150 0.00666 0.5126 0.01269 0.00692 

𝑏 0.61663 0.11663 0.22513 1.8382 0.33823 1.25968 

20 

𝛼 2.01666 0.01666 0.03020 1.5065 0.00652 0.00998 

𝛽 0.54769 0.04769 0.03915 0.5366 0.03669 0.03114 

𝑎 0.50688 0.00688 0.00334 0.5063 0.00631 0.00370 

𝑏 0.54819 0.04819 0.03885 1.6099 0.10990 0.26747 

30 

𝛼 2.01104 0.01104 0.02046 1.5007 0.00077 0.00640 

𝛽 0.53232 0.03232 0.02420 0.5350 0.03507 0.01997 

𝑎 0.50513 0.00513 0.00228 0.5033 0.00339 0.00242 

𝑏 0.53194 0.03194 0.02221 1.6102 0.11027 0.19135 

50 

𝛼 2.00299 0.00299 0.01158 1.5023 0.00234 0.00391 

𝛽 0.51893 0.01893 0.01042 0.5176 0.01760 0.00978 

𝑎 0.50147 0.00147 0.00137 0.5032 0.00323 0.00153 

𝑏 0.51754 0.01754 0.01050 1.5612 0.06124 0.10012 

75 

𝛼 2.00460 0.00460 0.00790 1.5023 0.00231 0.00259 

𝛽 0.51118 0.01118 0.00639 0.5098 0.00984 0.00600 

𝑎 0.50202 0.00202 0.00093 0.5027 0.00278 0.00101 

𝑏 0.51172 0.01172 0.00663 1.5372 0.03724 0.05851 

100 

𝛼 2.00379 0.00379 0.00585 1.5019 0.00199 0.00190 

𝛽 0.50870 0.00870 0.00482 0.5059 0.00591 0.00431 

𝑎 0.50169 0.00169 0.00068 0.5016 0.00168 0.00075 

𝑏 0.50949 0.00949 0.00501 1.5205 0.02059 0.04312 

 

 

8. Applications to real data 

In this section, real data set are analyzed to illustrate the merit of TPLW distribution compared to some models; namely, 

Type I half logistic Weibull (TIHLW) (Cordeiro et al. (2015)), Weibull Weibull (WW) (Abouelmagd et al. (2017)), 

Weibull exponential (WE) (Oguntunde et al. (2015)), and  beta Weibull (BW)  (Lee et al. (2007)) dsitributions.  

We obtain the MLE and their corresponding standard errors (in parentheses) of the model parameters. To compare the 

distribution models, we consider criteria like; minus two of log-likelihood function (-2lnL), Akaike information 



Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 661-674  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.3442 

 

 
A New Probability Distribution Family Arising From Truncated Power Lomax Distribution with Application  to Weibull Model 672 

 

criterion (AIC), the correct Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan Quinn 

information criterion (HQIC), the Kolmogorov-Smirnov test (K-S) and p-value. However, the better distribution 

corresponds to the smaller values of -2 lnL, AIC, CAIC, BIC, HQIC, K-S criteria and largest p-value. Furthermore, we 

plot the histogram for each data set and the estimated pdf of the TPLW, TIHLW, WE, BW and WW models. Moreover, 

the plots of empirical cdf of the data set and estimated pdf of TPLW, TIHLW, WE, BW and WW models are displayed 

in Figure 7.  

The data set have been obtained from Hinkley (1977) and represents thirty successive values of March precipitation (in 

inches) in Minneapolis/St Paul. The data are as follows: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 

3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

Table 4 gives the MLE of parameters of the TPLW and their standard error (SE). The values of the log-likelihood 

functions, AIC, CAIC, BIC, HQIC, K-S and p-values are presented in Table 5. 

 

Table 4: MLE and SE of the model parameters for data set 

Model MLEs and SE 

TPLW (𝛼, 𝛽, 𝑎, b) 
48.865 

(143.009) 

26.911 

(138.04) 

1.767 

(4.393) 

0.217 

(0.508) 
 

TIHLW(𝛼, 𝛽, 𝜆) 
0.626 

(0.124) 

1.532 

(0.293) 

0.889 

(0.1791) 
- - 

WE(𝛼, 𝛽, 𝜆) - - 
35.218 

(0.26269) 

1.69 

(0.234) 

0.06 

(0.044) 

BW (𝑎, 𝑏, 𝛼, 𝛽) 
25.851 

(1.533) 

15.276 

(0.787) 

0.884 

(0.201) 

0.335 

(0.027) 
- 

WW(𝛼, 𝛽, 𝜆, 𝛾) 
39.853 

(0.414) 

3.154 

(0.518) 

0.196 

(0.102) 

0.5 

(0.072) 
- 

 

 

 

Table 5: The values of -2LnL, AIC, BIC, CAIC, HQIC, K-S and p-value for data set 

Model -2LnL AIC CAIC BIC HQIC K-S p-value 

TPLW 76.209 84.209 85.809 82.118 86.002 0.0581 0.9999 

TIHLW 106.63 112.63 112.211 113.562 115.358 0.069 0.9988 

WE 112.10 118.10 119.031 116.539 119.452 0.0753 0.996 

BW 149.89 157.89 157.326 159.497 161.522 0.0795 0.9913 

WW 138.19 146.19 145.623 147.794 149.819 0.0754 0.9955 

 

We find that the TPLW distribution with four-parameter provides a better fit than some new models. It has the smallest 

K-S, AIC, CAIC, BIC and HQIC values among those considered here. Plots of the fitted densities and the histogram are 

given in Figures 7. 

 
 

Figure 7. Estimated cumulative and estimated densities for all models for data set 
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9. Summary and Conclusion 

In this paper, a new truncated family of probability distributions called the right truncated power Lomax-G family is 

introduced. The new family is considered as the generalization of truncated Lomax-G family presented by Hassan et al. 

(2020 b). Several structural properties of the family, such as, linear representations for the density function and 

cumulative distribution function, expressions for the ordinary moments, moment generating function and order statistics 

are investigated. Special sub-models are presented. A simulation study is carried out for one particular case, to assess 

the finite sample behavior of the maximum likelihood estimates. It can be detected that the estimates are quite stable 

and are close to the true value of the parameters as the sample sizes increase. An application to a real life data shows 

that the right truncated power Lomax Weibull distribution is a strong and better competitor for the Type I half logistic 

Weibull distribution, Weibull Weibull distribution, Weibull exponential distribution, and the beta Weibull distribution. 
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