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Abstract  

 

A new three-parameter Nadarajah Haghighi model is introduced and studied. The new density has various shapes 

such as the right skewed, left skewed and symmetric and its corresponding hazard rate shapes can be increasing, 

decreasing, bathtub, upside down and constant. Characterization results are obtained based on two truncated 

moments and in terms of the hazard function. An example is presented for illustrating the importance of the new 

model. 
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1.Introduction and motivation 

In recent years, it has become quite usual to employ modern continuous distribution generators instead of traditional 

ones. In the statistical literature, the process of enlarging a class of distributions by including additional shape 

parameter(s) is well-known. Modeling and lifespan data analysis are essential in many practical fields, including, 

among others, health, engineering, and finance. Different forms of survival data have been modelled using a variety 

of lifetime distributions. The produced distribution has a significant impact on the effectiveness of the techniques 

employed in a statistical study. Additionally, without selecting the appropriate probability distribution, statistical 
modelling of the phenomena, applications, or the validity of data are all impossible (the mathematical form of the 

model). As a result, significant effort has been made to investigate novel statistical approaches. Additionally, the 

difficulties associated with computing special functions in the new expanded families may be readily overcome 

because to the computational and analytical capabilities found in programming languages like R, Maple, and 

Mathematica. 

 

Numerous statisticians are inspired to create new expanded models by these tools. However, several significant issues 

concerning actual data still exist and do not fit into any of the conventional statistical models. The ability to describe 

both monotonic and non-monotonic failure rates, even while the baseline failure rate may be monotonic, is what drives 

generalized distributions for lifetime data modelling. The additional shape parameter(s) is to induce skewness and to 

change the tail weights. Moreover, by expanding popular families of lifetime distributions, several classes of 

distributions have been created, and their varied properties have been examined. Because of their adaptable 
characteristics, generalized families of distributions have drawn the attention of theoretical and applied statisticians.  

 

Among the parametric distributions, the exponential (Exp) model is perhaps the most widely applied model in several 

fields. The Exp model has "constant" hazard rate function (HRF). A new generalization of the Exp distribution as an 
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alternative to the gamma, Weibull and exponentiated exponential (EExp) distributions was recently proposed and 

studied by Nadarajah and Haghighi (2011). The cumulative distribution function (CDF) of the Nadarajah and Haghighi 

(NH) model is given by 

𝐺𝑎,𝑏(𝑦) = 1 − 𝑒𝑥𝑝[1 − (1 + 𝑏𝑦)𝑎] |(𝑦>0). 

 

For  𝑎 = 1,  the NH model reduces to Exp the model. Lemonte (2013) proposed and studied a new three-parameter 

exponential-type model called the generalized Nadarajah-Haghighi (GNH). Ortega et al. (2015) investigated the 

Gamma-NH (GamNH) with a new regression model. Lemonte et al. (2016) proposed the Marshall-Olkin-NH 

(MONH). Yousof and Korkmaz (2017) proposed and studied the Topp-Leone Nadarajah-Haghighi (TLNH) model 

bsed on the Topp-Leone family (Rezaei et al. (2017). Based on the odd Lindley family (Silva et al. (2017)), Yousof 

et al. (2017) derived and studied the odd Lindley Nadarajah-Haghighi (OLNH) distribution. Using beta family, Dias 

et al. (2018) introduced and studied the beta-NH (BNH). Ibrahim (2019) studied the odd log-logistic NH (OLLNH) 

and Proportional reversed hazard rate (PRHRNH) models with its corresponding statistical properties and different 

methods of estimation. Recently, Nascimento et al. (2019) employed the  𝐺𝑎,𝑏(𝑦)  for building and new system of NH 

densities based on the odd ratio (OR) function  𝑂𝜓(𝑦) = 𝐺𝑎,𝑏(𝑦)/[1 − 𝐺𝑎,𝑏(𝑦)].  Following Lemonte (2013), the CDF 

of the GNH model is given by 

𝐺𝜃,𝑎,𝑏(𝑦) = (1 − 𝜏𝑦;𝑎,𝑏)
𝜃

| (𝑦>0), (1) 

where 

𝜏𝑦;𝑎,𝑏 = 𝑒𝑥𝑝[1 − (1 + 𝑏𝑦)𝑎], 

and the corresponding probability density function (PDF) is 

𝑔𝜃,𝑎,𝑏(𝑦) = 𝜃𝑎𝑏(1 + 𝑏𝑦)𝑎−1𝜏𝑦;𝑎,𝑏(1 − 𝜏𝑦;𝑎,𝑏)
𝜃−1

| (𝑦>0), (2) 

where the parameters  𝜃 > 0  and  𝑎 > 0  control the shape of the distribution and  𝑏 > 0  is the scale parameter. 

When  𝜃 = 1,  the GNH model reduces to the NH model (see Nadarajah and Haghighi (2011)). When  𝑎 = 1,  we 

have the generalized exponential (GExp) model (see Gupta and Kundu (1999)). When  𝜃 = 𝑎 = 1,  we have the 

standard Exp model. On the other hand, Silva et al. (2017) presented a new class of distributions called the odd Lindley 

G (OL-G) family. The PDF and CDF of the OL-G family of distributions are given by  

𝑓𝜓(𝑦) =
1

2

𝑔𝜓(𝑦)

𝐺𝜓

3
(𝑦)

𝑒𝑥𝑝 [−
𝐺𝜓(𝑦)

𝐺𝜓(𝑦)
] |(𝑦∈𝑅) , 

(3) 

and 

𝐹𝜓(𝑦) = 1 −
1 + 𝐺𝜓(𝑦)

2𝐺𝜓(𝑦)
𝑒𝑥𝑝 [−

𝐺𝜓(𝑦)

𝐺𝜓(𝑦)
] |(𝑦∈𝑅) , 

 

(4) 

respectively, where  𝐺𝜓(𝑦)  is the CDFof any baseline model,  𝐺𝜓(𝑦) = 1 − 𝐺𝜓(𝑦)  is the survival function (SF) of 

any baseline model,  𝑔𝜓(𝑦) =
𝑑

𝑑𝑦
𝐺𝜓(𝑦)  is the PDFof the baseline model. To this end, we use (1), (2) and (3) to obtain 

the three-parameter odd Lindley generalized Nadarajah-Haghighi (OLGNH) PDF as  

𝑓𝜃,𝑎,𝑏(𝑦) =
𝜃𝑎𝑏

2
(1 + 𝑏𝑦)𝑎−1

𝜏𝑦;𝑎,𝑏(1 − 𝜏𝑦;𝑎,𝑏)
𝜃−1

[1 − (1 − 𝜏𝑦;𝑎,𝑏)
𝜃

]
3 𝑒𝑥𝑝 [−

(1 − 𝜏𝑦;𝑎,𝑏)
𝜃

1 − (1 − 𝜏𝑦;𝑎,𝑏)
𝜃

]. 
 

 

(5) 

 
The corresponding CDF is given by 

𝐹𝜃,𝑎,𝑏(𝑦) = 1 −
1 + [1 − (1 − 𝜏𝑦;𝑎,𝑏)

𝜃
]

2 [1 − (1 − 𝜏𝑦;𝑎,𝑏)
𝜃

]
𝑒𝑥𝑝 [−

(1 − 𝜏𝑦;𝑎,𝑏)
𝜃

1 − (1 − 𝜏𝑦;𝑎,𝑏)
𝜃

]. 

 

(6) 

The new CDF in (4) can be used for presenting a new discrete G family for modeling the count data (see Aboraya et 

al. (2020), Chesneau et al. (2021), Ibrahim et al. (2021) and Yousof et al. (2021) for more details).  The OLGNH 

density function can be expressed as an infinite mixture of GNH PDF as follows  

𝑓(𝑦) = ∑ 𝑐𝜅1 ,𝜅2

∞

𝜅1 ,𝜅2=0

𝜋𝜃∗,𝑎,𝑏(𝑦)|(𝜃∗=(𝜅1+𝜅2+1)𝜃), 
 

(7) 

where 
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𝑐𝜅1,𝜅2
=

(−1)𝜅2𝛤(𝜅1 + 𝜅2 + 3)

2(𝜅1 + 𝜅2 + 1)𝜅1! 𝜅2! 𝛤(𝜅2 + 3)
, 

and 

𝜋𝜃∗,𝑎,𝑏(𝑦) = 𝜃∗𝑎𝑏𝜏𝑦;𝑎,𝑏(1 + 𝑏𝑦)𝑎−1[1 − 𝜏𝑦;𝑎,𝑏]
𝜃∗−1

 

represents the GNH density with power parameter  𝜃∗ > 0 . The CDF of OLGNH model can be given by integrating 

(7) as 

𝐹(𝑦) = ∑ 𝑐𝜅1,𝜅2

∞

𝜅1 ,𝜅2=0

𝛱𝜅1+𝜅2+1(𝑦), 
 

(8) 

where 

𝛱𝜃∗,𝑎,𝑏(𝑦) = [1 − 𝜏𝑦;𝑎,𝑏]
𝜃∗

 

is the CDF of the GNH model with power parameter  𝜃∗ > 0. Table 1 gives some sub-models from the OLGNH 

model. In this paper, we present some characterizations of the OLGNH model in terms of a simple relationship 

between two two truncated moments (TTMs) and based on HRF, this characterization results are stable in the sense 

of weak convergence. The PDF of the OLGNH distribution has various useful shapes such as the right skewed, left 

skewed and symmetric. The HRF of the OLGNH model produces flexible HRF shapes such as "increasing", 

"decreasing", "bathtub (U-HRF)", "upside down" and "constant". Some of its properties such as moments, incomplete 

moments, moment generating function (MGF), moments of residual life and reversed residual life are mathematically 
derived. A numerical analysis for the variance, skewness and kurtosis measures is presented. The uncensored 

exceedances of flood peaks data are employed for comparing the combative model.  

 

Table 1: Some sub-models from the OLGNH model. 

θ a b Model CDF Author 

1   OLNH 
1 −

1 − 𝜏𝑦;𝑎,𝑏

2𝜏𝑦;𝑎,𝑏

𝑒𝑥𝑝 (− {[1 − 𝜏𝑦;𝑎,𝑏]
−1

− 1}
−1

) 
Yousof et al. (2017) 

 1  OLGExp 

1 −
[1 − 𝜏𝑦,𝑏]

𝜃

2 {1 − [1 − 𝜏𝑦;𝑏]
𝜃

}
𝑒𝑥𝑝 (− {[1 − 𝜏𝑦;𝑏]

−𝜃
− 1}

−1

) 

Yousof et al. (2017) 

1 1  OLExp 
1 −

1 − 𝜏𝑦,𝑏

2𝜏𝑦;𝑏

𝑒𝑥𝑝 (− {[1 − 𝜏𝑦;𝑏]
−1

− 1}
−1

) 
Yousof et al. (2017) 
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Figure 1: Plots of the OLGNH PDF for some parameter values. 
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Figure 2: Plots of the OLGNH HRF for some parameter values. 

Figure 1 shows that the OLGNH distribution has various PDF shapes such as the right skewed, left skewed and 

symmetric. Figure 2 shows that the OLGNH model produces flexible HRF shapes such as "increasing  
(𝜃 = 10, 𝑎 = 2, 𝑏 = 2)" , "decreasing  (𝜃 = 1, 𝑎 = 0.05, 𝑏 = 0.5)" , "bathtub (U-HRF)  (𝜃 = 0.5, 𝑎 = 0.4, 𝑏 = 1)" , 

"upside down  (𝜃 = 1.25, 𝑎 = 0.1, 𝑏 = 6)"  and "constant  (𝜃 = 0.5, 𝑎 = 0.5, 𝑏 = 1.5)" . These plots indicate that the 

OLGNH model is very useful in fitting different data sets with various shapes. 
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2.Characterizing the OLGNH model 

2.1Based on two truncated moments (TTMs) 

We present some characterizations of the OLGNH model in terms of a simple relationship between two TTMs. The 
first result employs the theorem according to Glänzel (1987), see Theorem 2.1.1 below. The result holds also when 

the interval  𝐻   is not closed, it could be also applied when the CDF  𝐹  does not have a certain closed form.  Due to 

Glänzel (1990), this characterization results are stable in the sense of weak convergence. 

 

Theorem 2.1.1. 

 Let (𝛺, 𝐹, 𝑃) be a given probability space and let 𝐻 = [𝑑𝐻 , 𝑒]  be an interval for some   𝑑𝐻 < 𝑒    
(𝑑𝐻 = −∞, 𝑒 = +∞  might as well be allowed).  Let  𝑌 : 𝛺 → 𝐻  be a continuous RV with the CDF  𝐹  and let  𝛻(1)  

and  𝛻(1)  be two real functions defined on  𝐻  such that 𝐸[𝛻(2)(𝑌) | 𝑌 ≥ 𝑦] = 𝐸[𝛻(1)(𝑌) | 𝑌 ≥ 𝑦]𝜁(𝑌)|(𝑦∈𝐻), is defined 

with some real function  𝜁 . Let  𝛻(1), 𝛻(2) ∈ 𝑐1(𝐻) ,  𝜁 ∈ 𝑐2(𝐻)  and  𝐹  is twice continuously differentiable and 

strictly monotone function on the set  𝐻 . Finally, assume that  𝜁𝛻(1) = 𝛻(2)  has no real solution in the interior of  𝐻 

. Then  𝐹  is uniquely determined by the functions  𝛻(1), 𝛻(2)  and  𝜁 , particularly 

 

𝐹(𝑦) = ∫ 𝑐
𝑦

𝑎

|
𝜁′(𝑣)

𝜁(𝑣)𝛻(1)(𝑣) − 𝛻(2)(𝑣)
| 𝑒𝑥𝑝(−𝑠(𝑣))  𝑑𝑣 , 

 

where the function 𝑠 is a solution of the differential equation (Diff-E) 𝑠′ =
𝜁′𝛻(1)

𝜁𝛻(1)−𝛻(2)
 and 𝑐 is the normalization 

constant, such that  ∫
𝐻

𝑑𝐹 = 1 . 

 

Remark 2.1.1.  The goal in Theorem 2.1.1 is to have  𝜁(𝑦)  as simple as possible. 

Proposition 2.1.1.  Let  𝑌  :   𝛺 → (0, ∞)  be a continuous RV and let   

𝛻(1)(𝑌) =
([1 − (1 − 𝜏𝑦;𝑎,𝑏)

𝜃
]

3

𝑒𝑥𝑝 {[(1 − 𝜏𝑦;𝑎,𝑏)
−𝜃

− 1]
−1

})

[1 − 𝜏𝑦;𝑎,𝑏]
𝜃−1  

 and   𝛻(2)(𝑌) = 𝛻(1)(𝑌)𝜏𝑦;𝑎,𝑏|(𝑦>0).  The RV  𝑌   has PDF  (5)  if and only if the function  𝜁  defined in Theorem 2.1.1 

has the form  𝜁(𝑦) =
1

2
𝜏𝑦;𝑎,𝑏|(𝑦>0). 

Proof.  Let  𝑌  be a RV with PDF  (5) , then (1 − 𝐹(𝑦))𝐸[𝛻(1)(𝑌) | (𝑌≥𝑦)] =
𝜃

2
𝜏𝑦;𝑎,𝑏|(𝑦>0), and 

(1 − 𝐹(𝑦))𝐸[𝛻(2)(𝑌) | (𝑌≥𝑦)] =
𝜃

4
𝑒𝑥𝑝[2 − 2(1 + 𝑏𝑦)𝑎] |(𝑦>0), 

and finally, 𝜁(𝑦)𝛻(1)(𝑌) − 𝛻(2)(𝑌) = −
1

2
𝛻(1)(𝑌)𝜏𝑦;𝑎,𝑏 < 0 |(𝑦>0). Conversely, if  𝜁  is given as above, then 

𝑠′(𝑦) =
𝜁′(𝑦)𝛻(1)(𝑌)

𝜁(𝑦)𝛻(1)(𝑌) − 𝛻(2)(𝑌)
= 𝑎𝑏(1 + 𝑏𝑦)𝑎−1|(𝑦>0), 

and hence 𝑠(𝑦) = (1 + 𝑏𝑦)𝑎 − 1 |(𝑦>0). Now, in view of Theorem 2.1.1,  𝑌   has density  (5).  
Corollary 2.1.1. 

Let  𝑌  :   𝛺 → (0, ∞)   be a continuous RV and let  𝛻(1)(𝑌)  be as in Proposition 2.1.1. The PDF of  𝑌  is  (5)  if and 

only if there exist functions  𝛻2  and  𝜁  defined in Theorem 2.1.1 satisfying the Diff-E 
 

𝜁′(𝑦)𝛻(1)(𝑌)

𝜁(𝑦)𝛻(1)(𝑌) − 𝛻(2)(𝑌)
= 𝑎𝑏(1 + 𝑏𝑦)𝑎−1|(𝑦>0). 

Corollary A.1.2. 

A general solution of the Diff-E in Corollary 2.1.1 is 

𝜉(𝑦) = 𝑒𝑥𝑝[−1 + (1 + 𝑏𝑦)𝑎] [− ∫ 𝑎𝑏(1 + 𝑏𝑦)𝑎−1𝜏𝑦;𝑎,𝑏 (𝛻(1)(𝑌))
−1

𝛻(2)(𝑌) + 𝐷], 

where  𝐷  is a constant. Note that a set of functions satisfying the above Diff-E is given in Proposition 2.1.1 with  𝐷 =
0.  However, it should be also noted that there are other triplets  (𝛻1, 𝛻2, 𝜁)  satisfying the conditions of Theorem 2.1.1.  

 

2.2 Based on HRF 

It is well known that the HRF,  ℏ𝐹 , of a twice differentiable distribution function,  𝐹 , satisfies the first order Diff-E 
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𝑓 ′

𝑓 
=

ℏ𝐹
′

ℏ𝐹

− ℏ𝐹 . 

For many univariate continuous distributions, this is the only characterization available in terms of the HRF. The 

following proposition establishes a characterization of OLGNH distribution in terms of the HRF, which is not of the 

above trivial form. 

 

Proposition 2.2.1. 

  Let  𝑌  :   𝛺 → (0, ∞)  be a continuous RV.  The PDF of   𝑌   is  (5)  if and only if its HRF  ℏ𝐹  satisfies the Diff-E 

 

[
ℏ𝐹

′ (𝑦)

+𝑎𝑏(1 + 𝑏𝑦)𝑎−1ℏ𝐹

] =
𝜃𝑎𝑏𝜏𝑦;𝑎,𝑏

(
𝑑

𝑑𝑦
{

(1 + 𝑏𝑦)𝑎−1[1 − 𝜏𝑦;𝑎,𝑏]
𝜃−1

{1 + [1 − 𝜏𝑦;𝑎,𝑏]
𝜃

} {1 − [1 − 𝜏𝑦;𝑎,𝑏]
𝜃

}
2})

−1 |( 𝑦>0). 

Proof.  Is straightforward and hence omitted. 

 

3. Properties 

3.1 Moments and moment generating function (MGF) 

The rth moment of  𝑌 , say  𝜇𝑟
′  , follows from (7) as 

𝜇𝑟
′ = 𝐸(𝑌𝑟) = ∑ ∑ 𝑐𝜅1,𝜅22

𝑟

𝜁2=0

∞

𝜅1,𝜅2 ,𝜁1=0

𝑉𝜁1,𝜁2

[𝜃∗ ,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1), 

 

(9) 

where  𝑉𝜁1,𝜁2

[𝜃∗,𝑟]
= 𝜃∗𝑏−𝑟(−1)𝑟+𝜁1−𝜁2(1 + 𝜁1)−(

𝜁2
𝑎

+1)
𝑒𝑥𝑝(1 + 𝜁1) (

𝜃∗ − 1
𝜁1

) (
𝑟
𝜁2

). Or 

𝜇𝑟
′ = 𝐸(𝑌𝑟) = ∑ ∑ ∑ 𝑐𝜅1 ,𝜅2

𝑟

𝜁2=0

𝜃∗−1

𝜁1=0

∞

𝜅1,𝜅2=0

𝑉𝜁1 ,𝜁2

[𝜃∗,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1) |(𝜃∗>0 and integer) 

The variance (Var(𝑌)), skewness (Ske(𝑌)) and kurtosis (Ku(𝑌)) measures can be calculated from the ordinary 

moments using well-known relationships. Table 2 give a numerical analysis for the  𝐸(𝑌),  Var(𝑌) , Ske(𝑌)  and 

Ku(𝑌) for the OLGNH distribution. Based on Table 2 we note that: The skewness of the OLGNH distribution is 

always positive. The kurtosis of the OLGNH distribution can be only more than three.  
 

The parameter  𝑏  has a fixed effect on the Ske(𝑌)  and Ku(𝑌)  for all different values of all other parameter ,  when  

𝜃 =0.5  and  𝑎 =0.35 ,  Ske(𝑌) = 0.7405238 and Ku (𝑌) =3.306488 for any value of the parameter  𝑏 , when  𝜃 =2 

and  𝑎 =0.15 ,  Ske(𝑌) =3.608101 and Ku (𝑌) =23.82384 for any value of the parameter  𝑏. The mean of the OLGNH 

model increases as  𝜃  increases. The mean of the OLGNH model decreases as  𝑎  increases. The mean of the OLGNH 

model decreases as  𝑏  increases. Based on Tables 2 and 3 we note that, the skewness of the OLGNH distribution can 

range in the interval (0.7, 11.7), whereas the skewness of the GNH distribution varies only in the interval (0.435, 3.17). 

Further, the spread for the OLGNH kurtosis is ranging from 3.306 to 256.4, whereas the spread for the GNH kurtosis 

only varies from 3.37 to 9 with the above parameter values. 

Table 2: E(Y), Var(Y), Ske(Y) and Ku(Y) of the OLGNH distribution. 

θ a b E(Y) Var(Y) Ske(Y) Ku(Y) 

0.05 0.2 4 0.003295 0.000212 11.71085 256.3675 
0.10   0.037353 0.0103854 7.055484 94.4865 

0.50   2.107714 11.96853 3.863399 27.19396 

1   8.35206 134.0818 2.989657 16.71037 

2   27.73286 1056.389 2.340927 11.00752 

5   106.3427 10203.5 1.745389 7.166646 

10   251.9827 42840.98 1.429758 5.632246 

20   536.2111 1487620 1.191500 4.692096 

50   1274.686 613750.4 0.957295 3.944527 

75   1797.298 1074415 0.8747941 3.721898 

100   2264.638 1564916 0.8223643 3.591269 

       
2 0.15 2.5 267.9287 180084.6 3.608101 23.82384 
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 0.20  44.37258 2704.355 2.340927 11.00752 

 0.25  15.53627 219.533 1.711201 6.913076 

 0.30  7.768556 40.60619 1.327297 5.09611 

 0.35  4.72495 11.94158 1.065177 4.135207 

       
5 0.35 0.50 55.21963 1035.263  0.7405238 3.306488 

  1 27.60981 258.8157 0.7405238 3.306488 

  2 13.80491 64.70392 0.7405238 3.306488 

       

2 0.15 1 669.8218 1125529 3.608101 23.82384 

  2 334.9109 281382.3 3.608101 23.82384 

  3 223.2739 125058.8 3.608101 23.82384 

  5 133.9644 45021.16 3.608101 23.82384 

  10 66.98218 11255.29 3.608101 23.82384 

 

Table 3: E(Y), Var(Y), Ske(Y) and Ku(Y) of the GNH distribution. 

θ a b E(Y) Var(Y) Ske(Y) Ku(Y) 

1 1 1 1 1 2 9 

2   1.5 1.25 1.609969 7.08 

5   2.283333 1.463611 1.339221 6.025973 

10   2.928968 1.549768 1.241416 5.703086 
20   3.597740 1.596163 1.190993 5.548813 

50   4.499205 1.625133 1.160248 5.458834 

75   4.901356 1.631689 1.153366 5.439116 

100   5.187378 1.634984 1.149918 5.429296 

200   5.878031 1.639947 1.144738 5.414611 

500   6.792823 1.642936 1.141626 5.405815 

       

5 0.5 5 2.248778 4.20089400 3.176333 22.94556 

 1  0.4566667 0.05854444 1.339221 6.025973 

 2  0.1568573 0.00398623 0.7435537 3.776470 

 3  0.09323104 0.00117149 0.5688394 3.366604 
 5  0.0512124 0.00030503 0.435122 6.044819 

       

1.5 2 0.1 4.75017 10.469720 1.04087 4.228012 

  0.5 0.950034 0.4187887 1.04087 4.228012 

  1 0.475017 0.1046971 1.04087 4.228012 

  5 0.09500339 0.0041879 1.04087 4.228012 

       

2.5 2.5 4 0.1137808 0.0034247 0.7489036 3.576191 

2 2 3 0.1823958 0.01180120 0.9293953 4.007148 

1 2 4 0.0947340 0.00615846 1.253913 4.772774 

4 2 1 0.7265553 0.1023400 0.7698508 3.792370 

0.5 2.5 1 0.1828302 0.04319620 1.664298 6.044604 
1.5 2.5 5 0.0719500 0.00222103 0.923067 3.827275 

 

 

The MGF  𝑀𝑌(𝑡) = 𝐸(𝑒𝑡𝑌)  of  𝑌 . Clearly, the first one can be derived using (7) as  

𝑀𝑌(𝑡) = ∑ ∑ 𝑐𝜅1 ,𝜅2

𝑟

𝜁2=0

∞

𝜅1 ,𝜅2,𝜁1 ,𝑟=0

𝑡𝑟

𝑟!
𝑉𝜁1 ,𝜁2

[𝜃∗,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1). 

Or 

𝑀𝑌(𝑡) = ∑ ∑ ∑ 𝑐𝜅1,𝜅2

𝑟

𝜁2=0

𝜃∗−1

𝜁1=0

∞

𝜅1 ,𝜅2,𝑟=0

𝑡𝑟

𝑟!
𝑉𝜁1,𝜁2

[𝜃∗,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1) |(𝜃∗>0 and integer). 
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3.2 Incomplete moments 

The  𝑟 th incomplete moment, say  𝐼𝑟,𝑡 , of  𝑌  can be expressed using (7) as  

𝐼𝑟,𝑡 = ∫ 𝑦𝑟
𝑡

−∞

𝑓(𝑦)𝑑𝑦 = ∑ ∑ 𝑐𝜅1,𝜅2

𝑟

𝜁2=0

∞

𝜅1,𝜅2 ,𝜁1=0

𝑉𝜁1,𝜁2

[𝜃∗ ,𝑟]
[

𝛤 (
𝜁2

𝑎
+ 1,1 + 𝜁1)

−𝛤 (
𝜁2

𝑎
+ 1, (1 + 𝜁1)(1 + 𝑏𝑡)𝑎)

]. 

 

 

(10) 

Or 

𝐼𝑟,𝑡 = ∑ ∑ ∑ 𝑐𝜅1,𝜅2

𝑟

𝜁2=0

𝜃∗−1

𝜁1=0

∞

𝜅1,𝜅2=0

𝑉𝜁1,𝜁2

[𝜃∗,𝑟]
[

𝛤 (
𝜁2

𝑎
+ 1,1 + 𝜁1)

−𝛤 (
𝜁2

𝑎
+ 1, (1 + 𝜁1)(1 + 𝑏𝑡)𝑎)

] |(𝜃∗>0 and integer). 

 

3.3 Residual life (RL) and reversed residual life (RRL) 

The rth moment of the RL, say  𝑧𝑟(𝑡) = 𝐸[(𝑌 − 𝑡)𝑟] |(𝑌>𝑡 and r=1,2,… ). The  𝑟 th moment of the RL of  𝑌  is given as  

𝑧𝑟(𝑡) =
1

1−𝐹(𝑡)
∫ (𝑌 − 𝑡)𝑟∞

𝑡
𝑑𝐹(𝑦). Then 

𝑧𝑟(𝑡) =
1

1 − 𝐹(𝑡)
∑ ∑ 𝑐𝜅1 ,𝜅2

(1)

𝑟

𝜁2=0

∞

𝜅1 ,𝜅2,𝜁1=0

𝑉𝜁1,𝜁2

[𝜃∗,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1), 

where  𝑐𝜅1,𝜅2

(1)
= 𝑐𝜅1 ,𝜅2

∑ (
𝑛
ℎ

)𝑛
ℎ=0 (−𝑡)𝑛−ℎ . Or 

𝑧𝑟(𝑡) =
1

1 − 𝐹(𝑡)
∑ ∑ ∑ 𝑐𝜅1,𝜅2

(1)

𝑟

𝜁2=0

𝜃∗−1

𝜁1=0

∞

𝜅1 ,𝜅2=0

𝑉𝜁1,𝜁2

[𝜃∗ ,𝑟]
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1) |(𝜃∗>0 and integer). 

The  𝑟 th moment of the RRL, say 𝑍𝑟(𝑡) = 𝐸[(𝑡 − 𝑌)𝑟] |(𝑌≤𝑡,𝑡>0 and r=1,2,… ). Then 𝑍𝑟(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑌)𝑟𝑡

0
𝑑𝐹(𝑦). 

Then, the  𝑟 th moment of the RRL of  𝑦  becomes  

𝑍𝑟(𝑡) =
1

𝐹(𝑡)
∑ ∑ 𝑐𝜅1,𝜅2

(2)

𝑟

𝜁2=0

∞

𝜅1,𝜅2 ,𝜁1=0

𝑉𝜁1,𝜁2

[𝜃∗,𝑟] [
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1)

−𝛤 (
𝜁2

𝑎
+ 1, (1 + 𝜁1)(1 + 𝑏𝑡)𝑎)

], 

where 

  𝑐𝜅1 ,𝜅2

(2)
= 𝑐𝜅1 ,𝜅2

∑ (−1)ℎ𝑛
ℎ=0 (

𝑛
ℎ

) 𝑡𝑛−ℎ . Or 

𝑍𝑟(𝑡) =
1

𝐹(𝑡)
∑ ∑ ∑ 𝑐𝜅1 ,𝜅2

(2)

𝑟

𝜁2=0

𝜃∗−1

𝜁1=0

∞

𝜅1,𝜅2=0

𝑉𝜁1 ,𝜁2

[𝜃∗,𝑟] [
𝛤 (

𝜁2

𝑎
+ 1,1 + 𝜁1)

−𝛤 (
𝜁2

𝑎
+ 1, (1 + 𝜁1)(1 + 𝑏𝑡)𝑎)

] |(𝜃∗>0 and integer). 

 

3.4 Order statistics 

Suppose  𝑌1, 𝑌2, … , 𝑌𝑛  is a random sample (RS) from an OLGNH model. Let  𝑌𝑖  :  𝑛  denote the ith order statistic. The 

PDF of  𝑌𝑖  :  𝑛  can be expressed as  

𝑓𝑖  :  𝑛(𝑦) =
𝑓(𝑦)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑦)𝑖−1[1 − 𝐹(𝑦)]𝑛−𝑖 . 

 

 

(11) 

We can write the density function of  𝑌𝑖  :  𝑛  in (11) as  

𝑓𝑖  :  𝑛(𝑦) = ∑ ∑ 𝜐𝜁1,𝜅1 ,𝑝

𝜅2+𝑛−𝑖

𝜁1=0

∞

𝜅1,𝑝=0

𝜋(𝜁1+𝜅1+𝑝)𝜃(𝑦), 

 

(12) 

where 

𝜐𝜁1,𝜅1 ,𝑝 = ∑
(−1)𝜅2+𝜅1

𝐵(𝑖, 𝑛 − 𝑖 + 1)𝜅1! [(𝜁1 + 𝜅1 + 𝑝)𝜃 + 1]

𝑛−1

𝜅2=0

(
(𝜁1 + 𝜅1 + 𝑝)𝜃

𝜁1 + 𝜅1
) (

𝜅2 + 𝑛 − 𝑖
𝜁1

) (
𝑖 − 1

𝜅2
). 

The  𝑝 th moment of  𝑌𝑖  :  𝑛  is given by  
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𝐸(𝑌𝑖  :  𝑛
𝑝

) = ∑ ∑ ∑ 𝜐𝜁1,𝜅1,𝑝

𝑟

𝑙=0

𝜅2+𝑛−𝑖

𝜁1=0

∞

𝜅1,𝑝,𝑤=0

𝑉𝜁1,𝑖
[(𝜁1+𝜅1+𝑝)𝜃,𝑟]

𝛤 (
𝑙

𝑎
+ 1,1 + 𝑤). 

 

(13) 

Or 

𝐸(𝑌𝑖  :  𝑛
𝑝

) = ∑ ∑ ∑ ∑ 𝜐𝜁1 ,𝜅1,𝑝

(𝜁1+𝜅1+𝑝)𝜃−1

𝑤=0

𝑟

𝑙=0

𝜅2+𝑛−𝑖

𝜁1=0

∞

𝜅1 ,𝑝=0

𝑉𝜁1,𝑖
[(𝜁1+𝜅1+𝑝)𝜃,𝑟]

𝛤 (
𝑙

𝑎
+ 1,1 + 𝑤) |((𝜁1+𝜅1+𝑝)𝜃>0 and integer). 

 

4. Maximum likelihood estimation (MLE) 

Maximum likelihood estimation (MLE) is a statistical technique for estimating the parameters of a probability 

distribution that has been assumed given some observed data. This is accomplished by maximizing a likelihood 

function to make the observed data as probable as possible given the assumed statistical model. The maximum 
likelihood estimate is the location in the parameter space where the likelihood function is maximized. Maximum 

likelihood is a popular approach for making statistical inferences since its rationale is clear and adaptable. The 

derivative test for figuring out maxima can be used if the probability function is differentiable. The ordinary least 

squares estimator, for illustration, maximizes the likelihood of the linear regression model, letting the first-order 

requirements of the likelihood function to be explicitly solved in some circumstances. However, in the majority of 

cases, it will be essential to use numerical techniques to determine the probability function's maximum. MLE is 

typically comparable to maximum a posteriori estimates under a uniform prior distribution on the parameters from the 

viewpoint of Bayesian inference. MLE is a specific example of an extremum estimator in frequentist inference, with 

likelihood as the objective function. Let  𝑌1, … , 𝑌𝑛   be a RS from this distribution with parameter vector  𝛹 = (𝜃, 𝑎, 𝑏)𝑇 

. The log-likelihood function for  𝛹 , say  ℓ(𝛹) , is given by 

ℓ(𝛹) = 𝑛 𝑙𝑜𝑔 (
1

2
) + 𝑛 𝑙𝑜𝑔(𝜃) + 𝑛 𝑙𝑜𝑔(𝑎) + 𝑛 𝑙𝑜𝑔(𝑏) + (𝑎 − 1) ∑ 𝑙𝑜𝑔( 1 + 𝑏𝑦𝑖)

𝑛

𝑖=0

+ ∑[1 − (1 + 𝑏𝑦𝑖)
𝑎]

𝑛

𝑖=0

+ (𝜃 − 1) ∑ 𝑙𝑜𝑔(1 − 𝜏(𝑦𝑖;𝑎,𝑏))

𝑛

𝑖=0

 

−3 ∑ 𝑙𝑜𝑔[1 − 𝜏(𝑦𝑖 ;𝑎,𝑏)(𝜃)]

𝑛

𝑖=0

− ∑
𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)

1 − 𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)

𝑛

𝑖=0

, 

 

 

 

 

 

 
(14) 

where 𝜏(𝑦𝑖;𝑎,𝑏)(𝜃) = [1 − 𝜏(𝑦𝑖 ;𝑎,𝑏)]
𝜃
 and 𝜏(𝑦𝑖;𝑎,𝑏) = 𝑒𝑥𝑝[1 − (1 + 𝑏𝑦𝑖)

𝑎]. Equation (14) can be maximized by using 

the different programs like R, SAS or by solving the nonlinear equations obtained by differentiating (14). The score 

vector elements are easily to be derived as  

𝜕ℓ(𝛹)

𝜕𝜃
=

𝑛

𝜃
+ ∑ 𝑙𝑜𝑔[1 − 𝜏(𝑦𝑖;𝑎,𝑏)]

𝑛

𝑖=0

+ 3 ∑
𝜏(𝑦𝑖;𝑎,𝑏)(𝜃) 𝑙𝑜𝑔[1 − 𝜏(𝑦𝑖;𝑎,𝑏)]

1 − [1 − 𝜏(𝑦𝑖;𝑎,𝑏)]
𝜃

𝑛

𝑖=0

− ∑
𝜏(𝑦𝑖;𝑎,𝑏)(𝜃) 𝑙𝑜𝑔[1 − 𝜏(𝑦𝑖 ;𝑎,𝑏)]

{1 − 𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)}
2

𝑛

𝑖=0

, 

 

𝜕ℓ(𝛹)

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑜𝑔( 1 + 𝑏𝑦𝑖)

𝑛

𝑖=0

− ∑(1 + 𝑏𝑦𝑖)
𝑎

𝑛

𝑖=0

𝑙𝑜𝑔( 1 + 𝑏𝑦𝑖) + (𝜃 − 1) ∑
(1 + 𝑏𝑦𝑖)

𝑎𝜏(𝑦𝑖;𝑎,𝑏) 𝑙𝑜𝑔( 1 + 𝑏𝑦𝑖)

1 − 𝜏(𝑦𝑖;𝑎,𝑏)

𝑛

𝑖=0

 

 

𝜕ℓ(𝛹)

𝜕𝑏
=

𝑛

𝑏
+ (𝑎 − 1) ∑

𝑦𝑖

1 + 𝑏𝑦𝑖

𝑛

𝑖=0

− 𝑎 ∑ 𝑦𝑖

𝑛

𝑖=0

(1 + 𝑏𝑦𝑖)
𝑎−1 + (𝜃 − 1) ∑

𝑎𝑦𝑖(1 + 𝑏𝑦𝑖)
𝑎−1𝜏(𝑦𝑖;𝑎,𝑏)

1 − 𝜏(𝑦𝑖;𝑎,𝑏)

𝑛

𝑖=0

 

+3 ∑
𝑎𝜃𝑦𝑖(1 + 𝑏𝑦𝑖)

𝑎−1𝜏(𝑦𝑖;𝑎,𝑏)𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)

1 − 𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)

𝑛

𝑖=0

− ∑
𝑎𝜃𝑦𝑖(1 + 𝑏𝑦𝑖)

𝑎−1𝜏(𝑦𝑖;𝑎,𝑏)𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)

{1 − 𝜏(𝑦𝑖;𝑎,𝑏)(𝜃)}
2

𝑛

𝑖=0

. 

Setting 
𝜕ℓ(𝛹)

𝜕𝜃
= 0 and 

𝜕ℓ(𝛹)

𝜕𝑎
= 0 and solving them simultaneously using any software like “R” yields the MLEs for the 

model parameters. The Newton-Raphson algorithms are employed for the numerically solving in such cases. As usual, 

under regularity conditions, the properties of consistency and asymptotic normality are satisfied. Especially, the 

asymptotic distribution behind the MLEs is multivariate normal, with mean and covariance matrix derived to the 

inverse of the expected Fisher covariance matrix. This asymptotic distribution is useful to construct confidence 

intervals (CIs), confidence regions, and various kinds of likelihood test. 
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5. Data analysis 

In this section, we propose an application to a real data set based to show the importance and flexibility of the OLGNH 

model. The OLGNH is compared with the MONH, GamNH, exponentiated Weibull NH (New), OLNH, GNH, 
PRHRNH, OLLNH and BNH distributions. The selection of the best model is applied using the estimated log-

likelihood, Kolmogorov-Smirnov (K-S), Akaike Information Criterion (AIC), Consistent Akaike IC (CAIC), Bayesian 

IC (BIC), and Hannan-Quinn IC (HQIC). Consider the data of Choulakian and Stephens (2001), the data consist of 

72 exceedances for the years 1958-1984, rounded to one decimal place, the data are: 1.70, 2.2, 14.40, 1.40, 18.7, 8.5, 

25.50, 11.6, 14.10, 22.1, 1.1, 2.50, 14.40, 1.7, 37.6, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 

0.6, 2.2, 39.0, 0.3, 15.0, 1.1, 0.40, 20.6, 5.30, 0.7, 1.90, 13.0, 12.0, 9.3, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 

25.5, 3.40, 11.90, 21.50, 27.6, 36.40, 2.7, 64.0, 1.5, 2.50, 27.4, 1.0, 27.10, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. Some 

other useful real-life data set can be used (see Merovci et al. (2017 and 2020)). 

 

 

The total time on test (TTT) plot (Aarset (1987)) is useful for exploring the HRF of the used data set. The TTT plot, 
the quantile-quantile (Q-Q) plot and the box plot for the exceedances of flood peaks data is given in Figure 3. Figure 

4 give the estimated PDF, estimated CDF and estimated HRF plots for the OLGNH for the exceedances of flood peaks 

data. Figure 5 give the P-P and Kaplan-Meier survival plots of the OLGNH for the exceedances of flood peaks data. 

Table 4 give the estimates of the competitive models fitted to the Choulakian and Stephens data. Table 5 give statistics 

of the competitive models fitted to the Choulakian and Stephens data. The results displayed in Table 4 show that the 

OLGNH distribution has the lowest AIC, CAIC, BIC, HQIC and has the biggest estimated log-likelihood among all 

the fitted models. So, it could be chosen as the best model under these criteria among all the fitted models. So, the 

new model may be chosen as the best model under these criteria. Yousof et al. (2017) introduced the OLNH and 

studied its properties, the model of Yousof et al. (2017) has three parameters one of them is a scale parameter. 

However, the new OLGNH model has three shape parameter, and its flexibility is better that the OLNH model as 

shown in Table 5. Based on Figures 4 and 5, the OLGNH model provides a closer fit to the empirical PDF and CDF. 

Also, from Figure 3, we have a bathtub-shaped (U-shape) HRF for the exceedances of flood peaks data, which are in 
accordance with TTT plot. 

Table 4: Estimates of the competitive models fitted to the Choulakian and 

Stephens data. 

Model Estimates (SD) 

Exp(b) 0.082    

 (0.01)    

NH(a,b) 0.841 0.1094   

 (0.259) (0.059)   

RNH(a,b) 0.125 6.28   

 (0.012) (2.919)   

OLLNH(θ,a,b) 0.777 1.501 0.051  

 (0.105) (0.685) (0.033)  

OLNH(θ,a,b) 0.7293 0.2519 1.8065  
 (0.6059) (0.052) (3.355)  

PRHRNH(θ,a,b) 0.364 1.714 0.031  

 (0.068) (1.191) (0.031)  

GamNH(θ,a,b) 0.7286 1.9299 0.0242  

 (0.1385) (1.7591) (0.0312)  

MONH(θ,a,b) 23.77 0.0011 0.2660  

 (5.5053) (0.0003) (0.0895)  

GNH(θ,a,b) 0.7289 1.7126 0.0309  

 (0.1404) (1.2607) (0.0330)  

BNH(θ,β,a,b) 0.8381 316.0285 0.6396 0.0003 

 (0.1215) (4.2194) (0.8227) (0.0004) 

EWNH(θ,β,a,b) 2.7591 0.3989 0.4732 0.6129 
 (1.742) (0.167) (0.158) (0.959) 

OLGNH(θ,a,b) 2.5565 0.2009 13.1264  

 (3.3153) (0.06599) (49.51049)  
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Table 5: Statistics of the competitive models fitted to the Choulakian and Stephens data. 

Model loglike AIC CAIC BIC HQIC 

OLGNH -250.276 506.552 506.905 513.381 509.271 

OLLNH -250.412 506.824 507.188 513.655 509.542 

RNH -251.722 507.445 507.624 513.990 509.744 

NH -251.987 507.974 508.153 515.532 509.795 

OLNH -250.589 507.183 507.535 514.014 509.962 

PRHRNH -300.832 607.666 608.024 614.494 610.385 

GamNH -250.917 507.834 508.187 514.663 510.555 
MONH -251.087 508.175 508.532 515.005 510.894 

EWNH -250.032 508.064 508.666 517.171 511.690 

GNH -250.925 507.849 508.202 514.679 510.571 

BNH -251.356 510.713 511.315 519.822 514.344 

Exp -252.128 506.256 506.313 513.533 507.162 

TTT plot Q-Q plot

Box plot

 

  Figure 3: TTT plot of the exceedances of flood peaks data. 
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Figure 4: EPDF, ECDF and EHRF plots. 
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Figure 5: P-P and Kaplan-Meier survival plots. 

6. Conclusions 

In this paper, a new three-parameter version of the Nadarajah Haghighi model is introduced and studied. Some of its 
properties such as moments, incomplete moments, moment generating function (MGF), moment of residual life and 

reversed residual life are mathematically derived. The new density has various shapes such as the right skewed, left 

skewed and symmetric and its corresponding hazard rate shapes can be "increasing", "decreasing", "bathtub", "upside 

down" and "constant". Characterization results are obtained based on two TTMs and in terms of the HRF. Uncensored 

and Censored validation via a modified chi-squared goodness-of-fit test is presented under the new model. The 

modified chi-squared test is based on the Nikulin-Rao-Robson statistic. A numerical analysis for the variance, 

skewness and kurtosis measures is presented. The uncensored exceedances of flood peaks data are employed for 

comparing the combative model.   As a future work, we will consider many new useful goodness-of-fit tests for right 

censored validation such as the Nikulin-Rao-Robson goodness-of-fit test and Bagdonavičius-Nikulin goodness-of-fit 

test as performed by Ibrahim et al. (2019), Goual et al. (2019, 2020), Mansour et al. (2020a-f), Yadav et al. (2020), 

Goual and Yousof (2020), Aidi et al. (2021) and Ibrahim et al. (2022), among others.  Some useful reliability studies 
based on multicomponent stress-strength and the remained stress-strength concepts can be presented (Rasekhi et al. 

(2020), Saber et al. (2022a,b), Saber and Yousof (2022)). For modelling of the bivariate real data sets, we shall derive 

some new bivariate odd Lindley generalized Nadarajah-Haghighi type distribution using “Farlie-Gumbel-

Morgenstern copula” (FGMC), modified,”Clayton copula ”,  “Renyi's entropy copula (REC) and “Ali-Mikhail-Haq 

copula (AMHC)” (see also Shehata and Yousof (2021a,b), Elgohari and Yousof (2020a,b), Al-babtain et al. (2020a,b), 

Elgohari and Yousof (2021), Alizadeh et al. (2020a,b), Elgohari et al. (2021), Aryal and Yousof (2017), Aryal et al. 

(2017), Ali  et al. (2021a,b), Shehata et al. (2021), Hamedani et al. (2022) and Shehata et al. (2022)). Some new 

acceptance sampling plans based on the complementary geometric Weibull-G family or based on some special 

members can be presented in separate article (see Ahmed and Yousof (2022) and Ahmed et al. (2022)). Some recent 

studies on estimating the survival rates and risk claim-size data can be found in Shrahili et al. (2021) and Mohamed 

et al. (2022a,b,c). 
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