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Abstract

In this work, a new distribution called the Chen Pareto distribution was derived using the Chen-G family
of distributions. The mixture representation of the distribution was obtained. Furthermore, some statistical
properties such as moments, moment generating functions, order statistics properties of the distribution were
explored. The parameter estimation for the distribution was done using the maximum likelihood estimation
method and the performance of estimators was assessed by conducting an extensive simulation study. The
distribution was applied to a real data set in which it performed best when compared to some related
distributions
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1. Introduction

In a bid to get distributions that are more flexible and better fit to real-life data, generalization(extension)
of the distributions is done by the introduction of additional parameters to the baseline distribution. Re-
cently, researchers do such an extension by introducing the baseline distribution to a family of distribution.
Several mathematical properties of the extended distributions may be easily explored using mixture forms
of exponentiated-G (exp-G) of the distributions.
The Pareto distribution has been extensively studied and applied to many situations. This includes health,
economics, finances, survival analysis, engineering, and Actuarial sciences. The distribution gains interest
due to its ability to model heavy tailed data Lee and Kim (2018). It has many applications in actuarial
science, survival analysis, economics, life testing, hydrology, finance, telecommunication, reliability analysis,
physics, and engineering such as Brazauskas and Serfling (2003), Farshchian and Posner (2010) and Korkmaz
et.al (2018).
The Pareto distribution has been studied and extended by several authors. For example, Weibull Pareto
Alzaatreh et.al (2013), Beta Pareto Akinsete and Famoye (2008), Kumaraswamy Pareto Pereira et.al (2012),
Exponentiated Pareto Gupta et .al (1998) Nadarajah(2005), Beta Generalized Pareto Mahmoudi (2011),
Gamma Pareto Alzaatreh et.al (2012), Transmuted Pareto Faton and Llukan (2014) e.t.c. The c.d.f of
Pareto distribution is

G(x) = 1− (
k

x
)σ x ≥ k, k, σ > 0 (1)

g(x) =
σkσ

xσ+1
x ≥ k, k, σ > 0 (2)
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where k and σ is the scale and shape parameter respectively Considering a baseline cumulative distribution
function (c.d.f) G(x) with a corresponding probability distribution function (p.d.f) g(x), the c.d.f of the
Chen-G family of distribution is

F (x) = W [1− eµ(1−e
G(x)φ )] x > 0, φ, |µ| > 0 (3)

and the p.d.f as

f(x) = Wµφg(x)G(x)φ−1eG(x)βeµ(1−eG(x)β
)

x > 0, φ, |µ| > 0 (4)

where

W =
1

1− eµ(1−e)

It is of importance to note that W is a normalizing constant, µ is the scale parameter, and φ is the shape
parameter
For this research, we considered deriving a generalized form of Pareto distribution using the Chen-G family
of distribution Anzagra (2020). The plan of this article is as follows. Section 2 discusses the derivation of
the Chen-Pareto distribution. In section 3, we studied the mixture representation of the p.d.f and the c.d.f
of the Chen-Pareto distribution. Some statistical properties of the derived distribution were considered in
section 4 after which the parameter estimation of the distribution is done in section 5. Section 6 discussed
the simulation study to assess the performance of the parameters of the distribution. Section 7 discussed
the application to real-life data. The conclusions were done in section 8.

2. Derivation of the Chen-Pareto Distribution

In this section, we discussed the derivation of the c.d.f and p.d.f of the Chen-Pareto Distribution.
Inserting Equation (1) in (3) and Equation (2) in (4) respectively, a random variable X is said to be distributed
to Chen Pareto distribution when its c.d.f F(x) is

F (x) = W [1− eµ(1−e
(1−( k

x
)σ)φ )] x ≥ k, µ, σ, φ, k > 0 (5)

and the corresponding p.d.f is

f(x) =
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1
x ≥ k, µ, σ, φ, k > 0 (6)

The Chen-Pareto distribution becomes pareto distribution when µ=1 and φ=1. It becomes Chen distribution
when k=1 and σ=1
Figures 1 and 2 show the p.d.f and c.d.f of the Chen-Pareto distribution with assignment values for the
parameters.

3. Mixture Representation

In this section, we derived the mixture representation of the Chen-Pareto distribution. This analytical deriva-
tion will find use subsequently for the study of the statistical properties of the Chen-Pareto Distribution.
From the p.d.f of the Chen-Pareto distribution, Equation (6) can be re-written as

f(x) = Wµφeµ
σkσ

xσ+1
(1− (

k

x
)σ)φ−1e(1−(

k
x )
σ)e−µe

(1−( k
x

)σ)φ

(7)

Using Taylor series expansion

ex =

∞∑
n=0

xn

n!
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(a) k=0.5,σ=0.5,µ=2,φ=2 (b) k=0.5,σ=2,µ=0.5,φ=10

(c) k=0.5,σ=1.5,µ=4, φ=0.5

Figure 1: Graph of the p.d.f of Chen Pareto Distribution with various parameter values
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(a) k=0.5,σ=0.5,µ=2,φ=2 (b) k=0.5,σ=2,µ=0.5,φ=10

(c) k=0.5,σ=1.5,µ=4, φ=0.5

Figure 2: Graph of the c.d.f of Chen-Pareto Distribution with various parameter values

Therefore,

e(1−(
k
x )
σ)φ =

∞∑
l=0

(1− (kx )σ)lφ

l!
(8)

Let

q = e−µe
(1−( k

x
)σ)φ

Let
a = e(1−(

k
x )
σ)φ

then
q = e−µa (9)

Using the Taylor expression in (9)

q =

∞∑
m=0

(−µa)m

m!

q =

∞∑
m=0

(−1)mµme(1−(
k
x )
σ)φ

m!
(10)

q =

∞∑
m=0

∞∑
r=0

(−1)mµmmr(1− (kx )σ)rφ

m!r!
(11)

Inserting (11) and (8) in (7), we have the mixture representation for the p.d.f as

f(x) = Wµφeµ
σkσ

xσ+1

∞∑
l=0

∞∑
m=0

∞∑
r=0

(−1)mµmmr(1− (kx )σ)φ(r+l+1)−1

m!l!r!

f(x) =

∞∑
l=0

∞∑
m=0

∞∑
r=0

Wµφeµ
(−1)mµmmr

m!l!r!

σkσ

xσ+1
(1− (

k

x
)σ)φ(r+l+1)−1
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f(x) =

∞∑
l=0

∞∑
m=0

∞∑
r=0

ek
σkσ

xσ+1
(1− (

k

x
)σ)ζ−1 (12)

where ζ = φ(r + l + 1) and

ek = Wµφeµ
(−1)mµmmr

m!l!r!

Equation (12) can be written in terms of Exp-G p.d.f as

f(x) =

∞∑
l=0

∞∑
m=0

∞∑
r=0

jkΠζ (13)

where

jk = Wµφeµ
(−1)mµmmr

m!l!r!ζ

and

Πζ = ζ
σkσ

xσ+1
(1− (

k

x
)σ)φ(r+l+1)−1

Πζ is the p.d.f of the Exponentiated Pareto Distribution with φ(r + l + 1) power parameter. Therefore the
corresponding c.d.f for the mixture representation of the Chen-Pareto is derived by Integrating (13) to have

f(x) =

∞∑
l=0

∞∑
m=0

∞∑
r=0

jkΘζ

where Θζ is the c.d.f of the Exponentiated-Pareto Distribution with power parameter φ(r + l + 1)

4. Statistical Properties

In this section, we study some statistical properties of the Chen-Pareto distribution. This includes survival
function, hazard function, moments, moment generating function, order statistics, and entropies.

4.1. Reliability Function

The survival function s(x) of a Chen Pareto distribution is given as

s(x) = 1−W [1− eµ(1−e
(1−( k

x
)σ)φ )] (14)

It has the hazard function h(x) as equation (15) and the reverse hazard h̄(x) as equation (16). Figure 3
shows the plots of the survival function and the hazard function with assigned parameter values.

h(x) =
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1(1−W [1− eµ(1−e(1−( k
x

)σ)φ )])
(15)

h̄(z) =
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)φeµ(1−e

(1−( k
x

)σ))φ

xσ+1W [1− eµ(1−e(1−( k
x

)σ)φ )
(16)

4.2. Quantile Function

The quantile function (xu) of the Chen-Pareto distribution is derived by solving for x in equation 6 to have

u = W [1− eµ(1−e
(1− k

x
)σ )φ ]
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(a) k=0.5,σ=0.5,µ=2,φ=2

(b) k=0.5,σ=2,µ=0.5,φ=10

(c) k=0.5,σ=1.5,µ=4, φ=0.5

Figure 3: Graph of the survival function of Chen-Pareto Distribution with various parameter values
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(a) k=0.5,σ=0.5,µ=2,φ=2

(b) k=0.5,σ=2,µ=0.5,φ=10

(c) k=0.5,σ=1.5,µ=4, φ=0.5

Figure 4: Graph of the hazard function of Chen Pareto Distribution with various parameter values
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where u∈ Uniform (0,1). Making x the subject of the formula, we have

xu =
k

(1− (ln(1− 1
µ ln(1− u

W )))
1
φ )

1
σ

(17)

To obtain the three quartiles, Q1, Q2, Q3 we assign u= 0.25, 0.5 and 0.75 respectively. Equation (17) will
also be useful for simulating data that is distributed to the Chen-Pareto distribution.

4.3. Moments

In this section, the moments of the Chen-Pareto is derived. The moments help to describe the distribution.
Let X1, X2, X3, ..., Xn be distributed to a particular distribution, the rth is defined as

E[Xr] =

∫ ∞
0

xrf(x)∂x

Therefore, the rth moment of the Chen-Pareto is given as

E[Xr] =

∫ ∞
0

xr
∞∑
l=0

∞∑
m=0

∞∑
r=0

jkζ
σkσ

xσ+1
(1− (

k

x
)σ)ζ−1∂x

E[Xr] =

∞∑
l=0

∞∑
m=0

∞∑
r=0

jk

∫ ∞
0

xrζ
σkσ

xσ+1
(1− (

k

x
)σ)ζ−1∂x

E[Xr] =

∞∑
l=0

∞∑
m=0

∞∑
r=0

jkζσk
σ

∫ ∞
0

xr−σ−1(1− (
k

x
)σ)ζ−1∂x

(1− (
k

x
)σ)ζ−1 =

∞∑
f=0

(
ζ

f

)
(kσx−σ)f∂x

E[Xr] =

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

jkζσk
σ(f+1)

(
ζ

f

)∫ ∞
0

xr−σ−σf−1∂x

E[Xr] = ζσ

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

jkk
σ(f+1)

(
ζ

f

)
Γ(τ)

τ r−σ−σf

∫ ∞
0

τ r−σ−σf

Γ(τ)
xr−σ−σf−1∂x

Finally,

E[Xr] = ζσ

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

jkk
σ(f+1)

(
ζ

f

)
Γ(τ)

τ r−σ−σf
(18)

From equation (18), we can derive the mean (E[X]), second moment (E[X2]), Variance (E[X2] − (E[X])2),
Skewness, and Kurtosis.

4.4. Moment Generating Function

In this section, we derived the moment generating function of the Chen-Pareto. It is also a function that can
help in the derivation of the moments of the distribution. The moment generating function of Chen Pareto
distribution is obtained as

MX(t) = E[etx] =

∫ ∞
0

etxf(x)∂x

MX(t) =

∫ ∞
0

etx∂x
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=

∫ ∞
0

∞∑
l=0

∞∑
m=0

∞∑
r=0

jkζ
σkσ

xσ+1
(1− (

k

x
)σ)ζ−1∂x

=

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

jkζσk
σ(f+1)

(
ζ

f

)∫ ∞
0

etxx−σ−σf−1∂x (19)

Expanding etx

etx =

∞∑
d=0

(tx)d

d!
(20)

Inserting equation (20) in (19), we have

MX(t) = ζσ

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

∞∑
d=0

jk
td

d!
kσ(f+1)

(
ζ

f

)∫ ∞
0

xt−σ−σf−1∂x

which finally gives

MX(t) = ζσ

∞∑
l=0

∞∑
m=0

∞∑
r=0

∞∑
f=0

∞∑
d=0

jk
td

d!
kσ(f+1)

(
ζ

f

)
Γ(τ)

τ t−σ−σf

4.5. Order Statistics

If X(1), X(2), X(3), ..., X(n) is an order statistics taken from a randomly sampled values X1, X2, X3, ..., Xn

with p.d.f f(x) and c.d.f F(x), then the p.d.f of the hth samples is

fh:n(x) = n

(
n− 1

h− 1

)
f(x)[F (x)]h−1[1− F (x)]n−h h = 1, 2., ..., n (21)

Substituting equations (3) and (4) in (21), we have the order statistics of the Chen-Pareto distribution as

fh:n(x) = n

(
n− 1

h− 1

)
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1

(
A[1− eµ(1−e

(1−( k
x

)σ)φ )]

)h−1
(

1−W [1− eµ(1−e
(1−( k

x
)σ)φ )]

)n−h
(22)

Therefore, from (22), the p.d.f of the first order, X(1) (i.e h=1) is

f1:n(x) = n
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1

(
1−W [1− eµ(1−e

(1−( k
x

)σ)φ )]

)n−1
(23)

and the p.d.f of the last order, X(n) is

fh:n(x) = n
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1

(
W [1− eµ(1−e

(1−( k
x

)σ)φ )]

)n−1

4.6. Shanon Entropy

Entropy measures the uncertainty of a random variable X. Shannon(1948) defined the entropy of a random
variable X. The entropy B for the Chen-Pareto distribution is given as

B = −E[log(f(x))] (24)
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B = −E[log(
Wµφσkσ(1− (kx )σ)φ−1e(1−(

k
x )
σ)eµ(1−e

(1−( k
x

)σ))φ

xσ+1
)] (25)

This can be estimated iteratively.

5. Parametric Estimation

In this section, the parametric estimation of the distribution is conducted. Let X1, X2, ..., Xn be samples
assumed to be distributed to the Chen Pareto distribution, the loglikelihood l is given as

l = n lnW + n lnµ+ n lnφ+ n lnσ + nσ ln k − (σ + 1)

n∑
i=0

ln(xi) + (φ− 1)

n∑
i=0

ln(1− (
k

xi
)σ)

+

n∑
i=0

(1− (
k

xi
)σ)φ +

n∑
i=0

µ(1− e(1− (
k

xi
)σ)φ) (26)

Differentiating l with respect to the distribution parameters, we have

∂l

∂φ
=
n

φ
+

n∑
i=0

ln(1− (
k

xi
)σ) +

n∑
i=0

(1− (
k

xi
)σ)φ ln 1− (

k

xi
)σ +

n∑
i=1

µ(e
(1−( kxi )

σ)φ ln 1−( kxi )
σ

) (27)

∂l

∂σ
=
n

σ
+ n ln k −

n∑
i=1

lnxi − (φ− 1)

n∑
i=1

( kxi )
σ ln k

xi

1− ( kxi )
σ

+ φ

n∑
i=1

(1− (
k

xi
)σ)φ−1(

k

xi
)σ ln

k

xi

−
n∑
i=1

µφe
(1−( kxi )

σ)φ
(1− (

k

xi
)σ)φ−1(

k

xi
)σ ln

k

xi
(28)

∂l

∂µ
=
eµ(1−e)(1− e)
(1− eµ(1−e))2

+
n

µ
+

n∑
i=1

1− e(1−(
k
xi

)σ)φ
(29)

∂l

∂k
=
nσ

k
−

n∑
i=1

σkσ−1

xσ

1− ( kxi )
σ

+

n∑
i=1

φ(1− (
k

xi
)σ)φ−1

σkσ−1

xσ
+ φσµ

n∑
i=1

e
(1−( kxi )

σ)φ
(1− (

k

xi
)σ)φ−1

kσ−1

xσ
(30)

Setting ∂l
∂φ = 0, ∂l

∂µ = 0, ∂l
∂σ = 0, ∂l

∂b = 0 and solving the resulting equations will result in obtaining the

estimates φ̂ , µ̂, σ̂, k̂ respectively.
As n|∞, we obtained the asymptotic distribution of the estimates obtained from equations (27)-(30) as

θ̂ ∈ N(θ, α) (31)

where θ=
[
φ, σ, µ, k

]
’ and α=


αφ,φ αφ,σ αφ,µ αφ,k
ασ,φ ασ,σ ασ,µ ασ,k
αµ,φ αµ,σ αµ,µ αµ,k
αk,φ αk,σ αk,µ αk,k


α is the variance-covariance matrix of the estimates.An asymptotic confidence interval with significance level
γ for each parameter θi is given by

ACI(θi, 100(1− γ)) = θ̂ − z γ
2

√
αθ̂,θ̂, θ + z γ

2

√
αθ̂,θ̂ (32)

where αθ̂,θ̂ is the ith diagonal element of Kn(θ̂)−1 for i = 1, 2, 3, 4 and zγ/2 is the quantile of the standard
normal distribution. The expressions of the elements of α are in Appendix 1
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6. Simulation Studies

In this section, we carried out the simulation study to assess the performance of the maximum likelihood
estimates of the Chen- Pareto distribution. The simulation study was conducted by deriving a random
sample of sizes 50, 100, 200,300 from the Chen Pareto distribution for different values of the parameters.
For each sample size, the maximum likelihood estimators are obtained and the procedure is repeated 10,000
times. We have computed the Average estimate, bias, and MSE of parameter estimates for these 10,000
values, and the results are presented in Tables 1, 2, 3 and 4 . The results show that the Bias is small, that
is the estimated values are close to the true values. Also, the MSE reduces as the sample sizes increase for
each parameter. This shows that the estimation method is adequate and consistent.

Table 1: Table displaying simulation results for CP(k=1,σ=0.5,µ=1,φ=3 )

Sample size Parameter AE Bias M.S.E

50 σ
µ
φ

2.993
0.578
0.559

1.494
-0.921
-0.941

4.129
2.244
3.600

100 σ
µ
φ

2.887
0.534
0.798

1.388
-0.965
-0.702

3.332
2.215
2.888

200 σ
µ
φ

2.913
0.516
0.948

1.414
-0.982
-0.552

3.314
2.126
2.183

300 σ
µ
φ

2.901
0.504
1.038

1.436
-0.994
-0.462

3.306
2.015
2.034
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Table 2: Table displaying simulation results for CP(k=1,σ=1.5,µ=2,φ=2 )

Sample size Parameter AE Bias M.S.E

50 σ
µ
φ

2.032
2.277
0.915

0.199
0.443
-0.918

0.389
0.901
2.434

100 σ
µ
φ

1.976
2.039
1.195

0.143
0.205
-0.638

0.197
0.544
1.823

200 σ
µ
φ

1.988
1.893
1.451

0.155
0.060
-0.382

0.133
0.391
1.156

300 σ
µ
φ

2.005
1.808
1.583

0.172
-0.024
-0.250

0.117
0.323
0.919

Table 3: Table displaying simulation results for CP(k=1,σ=3,µ=0.5,φ=0.5 )

Sample size Parameter A.E Bias M.S.E

50 σ
µ
φ

0.509
3.197
0.882

-0.825
1.864
-0.450

2.114
6.182
3.539

100 σ
µ
φ

0.500
3.024
0.538

-0.834
1.692
-0.793

2.110
4.896
2.580

200 σ
µ
φ

0.499
3.014
0.529

-0.835
1.681
-0.802

2.092
4.586
2.299

300 σ
µ
φ

0.503
2.992
0.533

-0.831
1.660
-0.799

2.086
4.425
2.210

7. Application to Real life Data

In this section, we applied the Chen-Pareto distribution to a real dataset. Here, the Floyd River dataset was
considered. The Floyd River is located in Iowa, U.S.A. which provides the consecutive annual flood discharge
rates for the year 1935–1973.In literature, this dataset has been analyzed using different distribution, for
example in Akinsete et al. (2008), Rahman et. al (2018), Mudholkar and Huston (1996) e.t.c. Table 5 gives
the summary statistics of the dataset. The Pareto and Cubic Transmuted Pareto were fitted using this data.
The M.L.E’s and their respective -loglikelihood with corresponding Akaike Information Criterion, Bayesian
Information Criterion are presented in Table 6. From the results on the table, using the comparison criterion,
it is sufficient to say that the Chen-Pareto is the most appropriate for this data.
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Table 4: Table displaying simulation results for CP(k=1,σ=1,µ=2.5,φ=1 )

Sample size Parameter AE Bias M.S.E

50 σ
µ
φ

0.972
1.887
1.258

-0.527
0.386
-0.240

0.823
1.332
1.803

100 σ
µ
φ

0.964
1.621
1.554

-0.535
0.120
0.055

0.810
1.003
1.623

200 σ
µ
φ

0.976
1.439
1.847

-0.523
-0.061
0.347

0.779
0.856
1.585

300 σ
µ
φ

0.986
1.346
1.978

-0.512
-0.154
0.479

0.767
0.755
1.572

Table 5: Table displaying Descriptive analysis of survival time of Floyd River Data

Minimum First Quartile Median Mean Third Quartile Maximum

318 1590 3570 6771 6725 71500

8. Conclusion

In statistics, generalization of distributions have attracted the interest of Statisticians in a bid to get better
fits for real-life data. In this work, the Chen-Pareto distribution, which is a generalized distribution of the
Pareto distribution, was studied. The Chen-Pareto distribution extends the pareto distribution by adding two
shape parameters. The mixture representation of the distribution which enables us to study some statistical
properties such as moments, moment generating function, order statistics, entropy, reliability functions, and
quantile function was provided. The estimation of the parameters of the model has also been discussed. A
simulation study to assess the adequacy of the estimation method and consistency of the parameters was
conducted, and It has been shown, by means of a real data sets, that the Chen-Pareto distribution can
provide better fits than the Pareto distribution.

Table 6: Table displaying results of the analysis of Floyd River dataset

Model Parameters Estimates -L AIC BIC

Chen-P σ
µ
φ
k

1.294
-2.272
87.280
20.414

376.46 760.92 767.57

Cubic Transmuted-P k
φ
ρ

318
0.71
-0.90

381.190 768.379 773.370

Pareto φ
k

318
0.412

392.810 787.620 789.283
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Appendix Elements of the Variance-Covariance Matrix of α

∂2l

∂µ2
= − n

µ2

∂2l

∂µ∂k
=

∂2l

∂k∂µ
=

n∑
i=1

φσ(1− (kx )σ)φ−1e(1− (kx )σ)φkσ−1

xσ

∂2l

∂µ∂σ
=

∂2l

∂σ∂µ
= −

n∑
i=1

φe(1− (
k

x
)σ)φ(1− (

k

x
)σ)(φ− 1)(

k

x
)σ ln(

k

x
)

∂2l

∂µ∂φ
=

∂2l

∂φ∂µ
=

n∑
i=1

e(1−(
k
x )
σ)φ ln(1−( kx )

σ)

∂2l

∂µ∂φ
=

∂2l

∂φ∂µ
=

n∑
i=1

(kx )σ ln(kx )

1− (kx )
+

n∑
i=1

(
k

x
)σ ln(

k

x
)(1− (

k

x
)σ)φ−1(1 + φ ln(1− (

k

x
)σ))

+µ

n∑
i=1

(
k

x
)σ ln(

k

x
)(1− (

k

x
)σ)φ−1(1 + φ ln(1− (

k

x
)σ))e(1−(

k
x )
σ)φ ln(1−( kx )

σ)

∂2l

∂k∂φ
=

∂2l

∂φ∂k
= −

n∑
i=1

σkσ−1

(1− (kx )σ)xσ
−

n∑
i=1

σkσ−1

xσ
(1 + φ ln(1− (

k

x
)σ))

Chen Pareto Distribution : Properties and Application 825



Pak.j.stat.oper.res. Vol.16 No.1 2020 pp 812-826 DOI: http://dx.doi.org/10.18187/pjsor.v16i4.3418

−
n∑
i=1

σkσ−1

xσ
(1− (

k

x
)σ)φ−1(1 + φ ln(1− (

k

x
)σ))e(1−(

k
x )
σ)φ ln(1−( kx )

σ)

∂2l

∂φ2
= − n

φ2
+

n∑
i=1

(1− (
k

x
)σ)φ(ln(1− (

k

x
)σ))2 +

n∑
i=1

µ(1− (
k

x
)σ)φ(ln(1− (

k

x
)σ))2

Chen Pareto Distribution : Properties and Application 826


	1 Introduction
	2 Derivation of the Chen-Pareto Distribution
	3 Mixture Representation
	4 Statistical Properties
	4.1 Reliability Function
	4.2 Quantile Function
	4.3 Moments
	4.4 Moment Generating Function
	4.5 Order Statistics
	4.6 Shanon Entropy

	5 Parametric Estimation
	6 Simulation Studies
	7 Application to Real life Data
	8 Conclusion

