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Abstract

The present article deals with the linear mixing of exponentiated Exponential and exponentiated Weibull distributions.
The proposed model is named as exponentiated Exponential-Exponentiated Weibull linear mixed distribution. Several
existing distributions arise as special cases of the proposed model. Statistical properties such as shape of the density
and the distribution function, moments, generating functions and reliability are studied. An empirical study is present-
ed for mean, variance, coefficient of skewness, and coefficient of kurtosis. The method of maximum likelihood is used
for estimation of the parameters. Applicability of the proposed model in the field of reliability and medical sciences
accommodate its validity.
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1. Introduction

Various researchers have done a considerable work for the finite mixture of distributions. Their motivation in mix-
ing of the distributions is to provide a model which has potential to deal with different causes of failures. Several
works are available regarding mixture models. Jewell (1982) has proposed a mixture of exponential distributions.
Nassar and Mahmoud (1985) have studied characterization of mixture of exponential distributions. Nassar (1988)
has obtained two properties which characterize mixtures of exponential distributions. Titterington et al. (1985) have
discussed finite mixture models in detail. Lindsay (1995) has worked on mixture models. Gharib (1995) has present-
ed two characterizations of the of a gamma mixture distribution. Gharib (1996) has derived characterizations of the
exponential distribution via mixing distributions. Rider (1961) has estimated the parameters of the mixture of two
exponential distributions using method of moments. Al-Hussaini (1999) has developed the mixture of two exponential
distributions in context of Bayesian analysis. Bartoszewicz (2002) has derived the Laplace transform order relation-
s for the mixtures using results on stochastic orders. Jaheen (2005) has used the maximum likelihood and Bayes
methods for estimating the parameters of the finite mixture of two exponential distributions based on record statistics.
Radhakrishna et al. (1992) have given estimation of parameters in a two-component mixture generalized gamma dis-
tribution. Al-Hussaini et al. (2000) have introduced finite mixture of two-component Gompertz distribution. Sultan
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et al. (2007) have developed a mixture of two inverse Weibull distributions. Mubarak (2011) has constructed mixture
of two Frechet distributions. Bakoban (2010) has suggested a mixture of exponential and exponentiated gamma distri-
butions. Abu-Zinadah (2010) has studied mixture of exponentiated Pareto and exponential distributions. Shawky and
Bakoban (2009) have defined mixture of two component exponentiated gamma distribution. Badr and Shawky (2014)
have suggested a mixture of exponentiated Frechet distribution. Nair and Abdul (2010) have provided a mixture of
exponential distributions. Soliman (2006) has consider the finite mixture of Rayleigh distribution.
Gupta and Kundu (2001) have introduced a new generalized exponential distribution which is named as exponentiated
exponential (EE) distribution. The generalized exponential distribution is the particular case of Gompertz-Verhulst
distribution. The distribution function (CDF) of the EE distribution is given as

FEE(y) = (1− e−yβ1)α1 , y > 0, α1, β1 > 0, (1)

where α1 is shape parameter and β1 is scale parameter. The density function (PDF) of EE distribution is

fEE(y) = α1β1e
−yβ1

(
1− e−yβ1

)α1−1
y > 0, α1, β1 > 0. (2)

If the shape parameter is equal to 1, then EE distribution reduces to classical exponential distribution. Mudholkar and
Srivastava (1993) have proposed exponentiated Weibull (EW) distribution. The CDF of EW distribution is provided
as

FEW (y) = (1− e−(yβ2)
λ

)α2 , y > 0, α2, β2, λ > 0, (3)

where λ and α2 are shape parameters and β2 is scale parameter. The PDF of EW distribution is

fEW (y) = α2β
λ
2 λy

λ−1e−(β2y)
λ
(

1− e−(β2y)
λ
)
α2−1, y > 0, α2, β2, λ > 0. (4)

In modeling real data, the common failure time distributions need not be the same but can be a mixture of different
lifetime distributions. Each of these distinct lifetime distributions can represent a different type of cause of failure
for the population. In this article, we have presented a finite mixture of exponentiated exponential and exponentiated
Weibull distributions, named as ”exponentiated exponential-exponentiated Weibull Linear Mixed Distribution (EE-EW
LMD)”. Several characteristics of the proposed model are studied. The proposed model consists of five parameters
which makes it more flexible and adaptable to handle the complex situation of the modeling phenomena.
The article layout follows. In Section 2, we have introduced the new model and have discussed its properties. In
Section 3, we have conducted an empirical study. In Section 4, estimation of the model parameters have been done.
In Section 5, we have illustrated the applicability of the proposed model. In Section 6, some concluding remarks are
stated.

2. Exponentiated Exponential-Exponentiated Weibull Linear Mixed Distribution and its Properties

In this section, we will derive the distribution function (CDF) and density function (PDF) of the EE-EW LMD.

2.1. The Model

A random variable X is said to have a linear mixed distribution if its CDF is given as

F (y) =

k∑
i=1

piFi(t), (5)

where each Fi is a CDF and p1, ......pk are the mixing proportions, which are non-negative and sum to one. The CDF
of EE-EW LMD is obtained by using the CDF’s of exponentiated-exponential and exponentiated-Weibull distributions
in the above equation and is given as

FEE−EW (y) = p1(1− e−yβ1)α1 + p2(1− e−(yβ2)
λ

)α2 , y > 0, α1, α2, β1, β2, λ > 0, p1 + p2 = 1. (6)
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The density function of EE-EW LMD is

fEE−EW (y) = p1α1β1e
−yβ1

(
1− e−yβ1

)α1−1
+ p2α2β

λ
2 λy

λ−1e−(β2y)
λ
(

1− e−(β2y)
λ
)
α2−1. (7)

For simplicity, we use p1 = p and p2 = 1−p. The proposed model reduces to exponentiated exponential-exponentiated
exponential linear mixed distribution for λ = 1. For α1 = 1, it reduces to exponential-exponentiated Weibull linear
mixed distribution. For α2 = 1, is converts into exponentiated exponential-Weibull linear mixed distribution. For
α1 = α2 = 1, it transforms into exponential-Weibull linear mixed distribution. For p = 0, it turns into exponentiated
Weibull distribution. For p = 1, it reduces to exponentiated Exponential distribution. We use α1 = α2 = α and
β1 = β2 = β for simplicity.
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Figure 1: Plots of Density for Different Values of the Parameters

2.2. Shape of CDF and PDF

The distribution function of the EE-EW LMD distribution is given in (6) as

FEE−EW (y) = p(1− e−yβ1)α1 + (1− p)(1− e−(yβ2)
λ

)α2 .

Using following identity given by Prudnikov et al. (1986)

(1 + x)a =

∞∑
j=0

Γ(a+ 1)

j!(a+ 1− j)
xj ,

the CDF of the EE-EW LMD distribution is written as

F (x) = p

∞∑
j=0

(−1)j
(α1 + 1)

j!Γ(α1 + 1− j)
(e−yβ1)j + (1− p)

∞∑
j=0

(−1)j
Γ(α2 + 1)

j!Γ(α2 + 1− j)
(e−(yβ2)

λ

)j . (8)
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Further, the PDF of the EE-EW LMD is written as

fEE−EW (y) = pβ1

∞∑
j=0

(−1)j
Γ(α1 + 1)

j!Γ(α1 − j)
(e−yβ1)j+1 + (1− p)λβλ2 yλ−1

∞∑
j=0

(−1)j
Γ(α2 + 1)

j!Γ(α2 − j)
(e−(yβ2)

λ

)j+1.

(9)

It can be seen that the density function is weighted sum of exponential and Weibull density functions.

2.3. Moments

Moments are very useful in studying several properties of the distribution. Moments are used to obtain the mean,
variance, coefficient of skewness and coefficient of kurtosis for any distribution. The k-th moment of the EE-EW
LMD is obtained by using (9) as

µ′k = pA∗Γ(k + 1) + (1− p)B∗Γ
(
k

λ
+ 1

)
,

where

A∗ =

∞∑
j=0

(−1)j
Γ(α1 + 1)

j!Γ(α1 − j)
1

βk1

(
1

j + 1

)k+1

B∗ =

∞∑
j=0

(−1)j
Γ(α2 + 1)

j!Γ(α2 − j)
1

βk2

(
1

j + 1

) k
λ+1

,

and k > 0. The mean of the EE-EW LMD is obtained by using k = 1 in above equation and is given as

µ′k =p

∞∑
j=0

(−1)j
Γ(α1 + 1)

j!Γ(α1 − j)
1

β1

(
1

j + 1

)2

Γ(2)

+ (1− p)
∞∑
j=0

(−1)j
Γ(α2 + 1)

j!Γ(α2 − j)
1

β2

(
1

j + 1

) 1
λ+1

Γ

(
1

λ
+ 1

)
.

The coefficient of variation (CV ), coefficient of skewness (CS), and coefficient of kurtosis (CK) can be obtained as

CV =

√
µ2

µ′1
.

CS =
µ3

µ
3/2
2

.

CK =

(
µ4

µ2
2

)
− 3.

These coefficients can be computed for different values of the parameters.

2.4. Moment Generating Function

The moment generating function (mgf) of a distribution is obtained as

My(t) =

∫ ∞
−∞

etyf(y)dy.
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Using the relation ety =
∑∞
m=0

t!ym

m! , the mgf of the EE-EW LMD is

My(t) = pa∗Γ(m+ 1) + (1− p)b∗Γ(
m

λ
+ 1),

where

a∗ =

∞∑
j,m=0

(−1)j
t!Γ(α1 + 1)

j!m!Γ(α1 − j)
1

βm1

(
1

j + 1

)m+1

b∗ =

∞∑
j,m=0

(−1)j
t!Γ(α2 + 1)

j!m!Γ(α2 − j)
1

βm2

(
1

j + 1

)m
λ +1

.

Moment generating function can be used to obtain moments of the distribution.

2.5. Reliability and Hazard Function

The reliability function (rf) and hazard rate function (hrf) of the mixture model are defined as

R(y) = pR1(y) + (1− p)R2(y)

h(y) =
f(y)

R(y)
.

So the rf of the EE-EW LMD is given as

REE−EW (y) = p(1− (1− e−yβ1)α1) + (1− p)(1− (1− e−(yβ2)
λ

)α2).

The hrf is given as

hEE−EW (y) =
pα1β1e

−yβ1
(
1− e−yβ1

)α1−1
+ (1− p)α2β

λ
2 λy

λ−1e−(β2y)
λ
(

1− e−(β2y)
λ
)
α2−1

p(1− (1− e−yβ1)α1) + (1− p)(1− (1− e−(yβ2)λ)α2)
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Figure 2: Plots of Hazard Rate Function for Different Values of the Parameters

3. Empirical Study

In this section, we have performed an empirical study for the mean, variance, coefficient of skewness and coefficient
of kurtosis. The results of this empirical study are given in the following tables.

From Table (1), it is observed that different combination of the parameters provide different values for the mean.
This table shows that for fixed values of α and λ, as the values of β increases the mean of the proposed model decreas-
es. For the fixed values of α and β, as λ increases the mean of the proposed model also increases. For the fixed values
of λ and β, as α increases the mean of the proposed model also increases.
From Table (2), it is observed that different combination of the parameters provide different values for the variance.
From this table, we can see that for fixed values of α and λ, as the values of β increases the variance of the proposed
model decreases. For fixed values of α and β, as λ increases the variance of the proposed model decreases. For fixed
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Table 1: Mean of EE-EW Distribution for Different Values of Parameters

p=0.25 p=0.5 p=0.75

λ λ λ
α β 2 3 4 2 3 4 2 3 4
1 1 0.9147 0.9197 0.9298 0.9431 0.9465 0.9532 0.9716 0.9732 0.9766
1 2 0.4573 0.4599 0.4649 0.4716 0.4732 0.4766 0.4858 0.4866 0.4883
1 3 0.3049 0.3066 0.3099 0.3144 0.3155 0.3177 0.3239 0.3244 0.3255
2 1 1.2343 1.1829 1.1630 1.3229 1.2886 1.2753 1.4114 1.3943 1.3877
2 2 0.6172 0.5915 0.5815 0.6614 0.6443 0.6377 0.7057 0.6972 0.6938
2 3 0.4114 0.3943 0.3877 0.4410 0.4295 0.4251 0.4705 0.4648 0.4626
3 1 1.4261 1.3372 1.2993 1.5619 1.5026 1.4773 1.6976 1.6680 1.6553
3 2 0.7131 0.6686 0.6497 0.7809 0.7513 0.7387 0.8488 0.8340 0.8277
3 3 0.4754 0.4457 0.4331 0.5206 0.5009 0.4924 0.5659 0.5560 0.5518

Table 2: Variance of EE-EW Distribution for Different Values of Parameters

p=0.25 p=0.5 p=0.75

λ λ λ

α β 2 3 4 2 3 4 2 3 4

1 1 0.4134 0.3311 0.3001 0.6105 0.5555 0.5345 0.8061 0.7785 0.7678
1 2 0.1033 0.0828 0.0750 0.1526 0.1389 0.1336 0.2015 0.1946 0.1920
1 3 0.0459 0.0368 0.0333 0.0678 0.0617 0.0594 0.0896 0.0865 0.0853
2 1 0.4764 0.4033 0.3819 0.7499 0.7079 0.6965 1.0078 0.9901 0.9859
2 2 0.1191 0.1008 0.0955 0.1875 0.1770 0.1741 0.2520 0.2475 0.2465
2 3 0.0529 0.0448 0.0424 0.0833 0.0787 0.0774 0.1120 0.1100 0.1095
3 1 0.5218 0.4696 0.4600 0.8384 0.8214 0.8238 1.1182 1.1186 1.1241
3 2 0.1304 0.1174 0.1150 0.2096 0.2054 0.2059 0.2795 0.2797 0.2810
3 3 0.0580 0.0522 0.0511 0.0932 0.0913 0.0915 0.1242 0.1243 0.1249

values of λ and β, as α increases the variance of the proposed model increases.
Table (3) provides values of coefficient of skewness (CS). It can be seen from this table that for fixed values of α
and λ, the increasing values of β demonstrate the increasing behavior of CS. For fixed values of α and β, the CS
increases as the values of λ increases. For fixed values of β and λ, one can see that the values of CS decreases as α
increases.
Table (4) provides values of coefficient of kurtosis (CK). For the fixed values of α and λ, the increasing values of
β demonstrate the mixed behavior for CK. For the fixed values of α and β, the CK increases as the values of λ
increases. For the fixed values of β and λ, one can see that the values of CS are mixed as α increases.

4. Inference

In this section we have discussed the maximum likelihood estimation of the parameters of EE-EW LMD. For this let
y1, y2, ......, yn be a random sample from EEEW(x, α1, β1, α2, β2, λ) distribution then their likelihood function is
written as

L (f(yi)) =

n∏
i=1

f(yi).
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Table 3: Coefficient of Skewness EE-EW distribution for Different Values of Parameters

p=0.25 p=0.5 p=0.75

λ λ λ

α β 2 3 4 2 3 4 2 3 4

1 1 0.5806 0.6028 0.6105 0.5896 0.5978 0.6005 0.5932 0.5961 0.5969
1 2 0.7071 0.6935 0.6854 -0.6547 -0.4006 -0.2811 0.4631 0.3683 0.3269
1 3 0.5722 0.5798 0.5816 0.6245 0.6275 0.6277 0.6771 0.6773 0.6769
2 1 0.5459 0.5637 0.5726 0.5727 0.5802 0.5834 0.5833 0.5860 0.5871
2 2 0.0383 0.4540 0.5061 0.6281 0.5205 0.4796 0.6776 0.6861 0.6885
2 3 0.5536 0.5713 0.5797 0.6456 0.6544 0.6589 0.7071 0.7071 0.7070
3 1 0.5417 0.5591 0.5684 0.5718 0.5792 0.5826 0.5837 0.5864 0.5875
3 2 -0.2139 -0.7059 -0.6944 0.6822 0.7005 0.7038 0.5890 0.5999 0.6033
3 3 0.5561 0.5821 0.5953 0.6849 0.6937 0.6981 0.5833 0.5673 0.5541

Table 4: Coefficient of Kurtosis EE-EW Distribution for Different Values of Parameters

p=0.25 p=0.5 p=0.75

λ λ λ

α β 2 3 4 2 3 4 2 3 4

1 1 2.1895 2.2093 2.2161 2.2068 2.2139 2.2161 2.2130 2.2154 2.2162
1 2 1.0114 1.0786 1.1543 2.2274 2.1961 2.1790 2.2075 2.2158 2.2188
1 3 2.1946 2.2061 2.2089 2.2697 2.2713 2.2716 2.0540 2.0623 2.0683
2 1 2.1832 2.2012 2.2078 2.2054 2.2120 2.2142 2.2134 2.2156 2.2164
2 2 2.1411 1.9712 1.9204 2.1990 2.2152 2.2189 2.1287 2.1351 2.1367
2 3 2.1974 2.2210 2.2312 2.1262 2.1012 2.0852 1.1071 1.0991 1.0922
3 1 2.1851 2.2025 2.2090 2.2078 2.2141 2.2163 2.2159 2.2180 2.2188
3 2 2.2553 2.2591 2.2540 2.1391 2.1552 2.1588 2.0907 2.0960 2.0972
3 3 2.2205 2.2432 2.2507 1.5154 1.4346 1.3803 1.4656 1.4853 1.5056

The log-likelihood function for EE-EW LMD is written as

` =n ln p+ n lnα1 + n lnβ1 + (1− α1)

n∑
i=1

ln(1− e−yiβ1)− β1
n∑
i=1

yi

+ ln q + n lnα2 + n lnλ+ nλ lnβ2 + (λ− 1)

n∑
i=1

ln yi

+ (α2 − 1)

n∑
i=1

ln[1− e−(yiβ2)
λ

]−
n∑
i=1

(yiβ2)λ. (10)

Differentiating w.r.t α1, α2, β1, β2, λ and equating resulting derivatives to zero, the likelihood equations are

n

α1
+

n∑
i=1

ln(1− e−yiβ1) = 0 (11)

n

α2
+

n∑
i=1

ln[1− e−(yiβ2)
λ

] = 0 (12)

n

β1
+ (α1)

n∑
i=1

yie
−yiβ1

1− e−yiβ1
−

n∑
i=1

yi = 0, (13)
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nλ

β2
+ (1− α2)λβλ−12

n∑
i=1

e−(yiβ2)
λ

1− e−(yiβ2)λ
yλi − λβλ−12

n∑
i=1

yλi = 0 (14)

n

λ
+ n lnβ2 +

n∑
i=1

ln yi + (α2 − 1)λ

n∑
i=1

e−(yiβ2)
λ

1− e−(yiβ2)λ
yλi ln(yiβ2)− βλ

1

2

n∑
i=1

yλi ln(yiβ2) = 0. (15)

The maximum likelihood estimators α̂1, α̂2, β̂1, β̂2 and γ̂ are obtained by solving (11)-(15) numerically or by using
nlm() function in R. The asymptotic normality of maximum likelihood estimates can be used to obtain the asymptotic
confidence intervals for the unknown parameters. This results is stated as

√
n(θ̂ − θ) −→ N5(0, I−1(θ)), (16)

where

I(θ) = pα1β1
(
1− e-xβ1

)α1−1
e-xβ1 + (1− p)α2λβ

λ
2 x

λ−1
(

1− e(xβ2)
λ
)α2−1

e(xβ2)
λ

. (17)

The entries of Fisher information matrix are given as

I(θ) = − 1

n



E(
∂2I

∂α2
1

) E(
∂2I

∂α1∂β1
) E(

∂2(I)

∂α1∂α2
) E(

∂2I

∂α1∂β2
) E(

∂2I

∂α1λ
)

E(
∂2I

∂β1α1
) E(

∂2I

∂β2
1

) E(
∂2I

∂β1∂α2
) E(

∂2I

∂β1∂β2
) E(

∂2I

∂β1∂λ
)

E(
∂2I

∂α2∂α1
) E(

∂2I

∂α2∂β1
) E(

∂2I

∂α2
2

) E(
∂2I

∂α2∂β2
) E(

∂2I

∂α2∂λ
)

E(
∂2I

∂β2∂α1
) E(

∂2I

∂β2∂β1
) E(

∂2I

∂β2∂α2
) E(

∂2I

∂β2
2

) E(
∂2I

∂β2∂λ
)

(
∂2I

∂λ∂α1
) (

∂2I

∂λ∂β1
) (

∂2I

∂λ∂α2
) (

∂2I

∂λ∂β2
) E(

∂2I

∂λ2
)


Inverting the above matrix, the asymptotic variances and covariances of the ML estimators for α1, α2, β1β2 and λ can
be obtained. Using above, approximate 100(1− λ)% confidence intervals for α1, α2, β1β2 and λ are obtained as:

α̂1 ± Zβj
2

√
E(

∂2I

∂α2
1

), α̂2 ± Zβ
2

√
E(

∂2I

∂α2
2

), β̂1 ± Zβ
2

√
E(

∂2I

∂β2
1

), β̂2 ± Zβ
2

√
E(

∂2I

∂β2
2

),

λ̂± Zβ
2

√
E(

∂2I

∂λ2
). (18)

In the following we have given a real data application of the proposed distribution.

5. Application

In this section, we have discussed real data applications of the EE-EW LMD. We have used data sets from the field
of reliability and medical sciences. Data sets are given by Bethea (1995) and Birnbaum and Saunders (1969) and
are given in the appendix. The results of estimated parameters, -2 Log-likelihood (-2ll), AIC (Akaike information
criterion), and BIC (Bayesian Information criterion) are obtained. For computational and graphical analysis, we have
used software mathematica. The results are compared with following well known distributions.
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1. Burr XII distribution (B-XII) by Rodriguez (1977)

f(y) =
αγyαγ−1

(1 + yα)γ+1

2. Poisson Lomax (PL) distribution by Al-Zahrani and Sagor (2014)

f(y) =
αβλ(1 + βy)−(α+1)e−λ(1+βy)

−α

1− e−λ

3. Inverse Weibull (IW) distribution given by Hanook et al. (2013)

f(y) = αy−(α+1)e−y
−α

(19)

4. Burr type II (B-II) distribution by Rodriguez (1977)

f(y) =
α(1 + e−y)−(α+1)

ey

5. A new Generalized Weighted Weibull (GWW) distribution by Abbas et al. (2019)

f(y) = 2βαγ(1 + λγ)yγ−1e−2αy
γ(1+λγ)[1− e−2αy

γ(1+λγ)]β−1 (20)

6. Rayleigh (R) distribution by Abdi and Kaveh (1998)

f(y) = 2αye−αy
2
(

1− e−αy
2
)

Results of the descriptive statistics, estimated model parameters, and goodness of fit criterion are given in tables 5-7.

Table 5: Descriptive Statistics for the Data Sets
Data Max Min Mean Median Variance S.D Skewness Kurtosis

I 53 0.9 14.675 10.75 186.697 13.667 1.3487 4.2799
II 147 5 68.34 67 502.631 22.4194 0.409 4.2524

Table 6: Estimated Parameters of EEEW distribution
Data Model Parameters

EEEW α1=2.0946 β1=0.1585 α2=17.2106 β2 =0.0972 λ=0.7892
GWEx α=0.653534 β=81.3931 γ=0.2167 λ=3.1883

PL α=0.9901 β =4.4292 λ =24.4338
I BXII α =0.082 β =5.4724

BII α =28.2605
IW α =0.5838
R α =0.0041

EEEW α1 =4777.44 β1 =1218.62 α2 =9.67 β2 =0.04 λ =1319.79
GWEx α =1.14 β =83997.70 λ =0.15 γ =59.63

PL α =1.81 β =0.35 λ =201.30
II BXII α =0.03 β =7.98

BII α =14882.50
IW α =0.32
R α =0.0002

The results indicate that the proposed model is a better fit to both the considering data sets as compared with the other
distributions because it has smaller values of -2`, AIC, and BIC. The graphical representation of the density plot
also demonstrates the adequacy of the EE-EW LMD distribution.

Exponentiated Exponential-Exponentiated Weibull Linear Mixed Distribution 525



Pak.j.stat.oper.res. Vol.16 No.3 2020 pp 517-527 DOI: https://doi.org/10.18187/pjsor.v16i3.3415

Table 7: Estimated Values of -2`, AIC, and BIC of EEEW distribution
Data Set I

EEEW GWEx PL BXII BII IW R
-2` 146.7 163.029 152.108 175.492 494.757 149.195 230.946
AIC 154.7 167.029 158.108 177.492 496.757 157.195 232.946
BIC 158.683 169.021 161.095 178.488 497.752 161.178 233.942

Data Set II
-2` 927.843 1316.61 1018.44 1378.96 11946.3 1006.36 1049.64
AIC 935.843 1320.61 1024.44 1380.96 11948.3 1014.36 1051.64
BIC 939.826 1322.6 1027.42 1381.96 11949.3 1018.34 1052.64
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Figure 3: Plots of Density for EEEW distribution

6. Conclusion

In this article, we have proposed a mixture of exponentiated exponential distribution and exponentiated Weibull distri-
bution. The proposed model is named as exponentiated Exponential-exponentiated Weibull linear mixed distribution.
Several characteristics of the new model are studied. An empirical study of model parameters through mean, variance,
coefficient of skewness, and coefficient of kurtosis are discussed. Method of maximum likelihood is used for estima-
tion of the model parameters. Two real-life data sets are used to test the competency of the new model. We have found
that the proposed model is more compatible and flexible as compared with the competing models.
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Appendix

Data I 0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 24.8, 31.5, 38.1 , 53.0.

Data II 5, 25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43, 43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55, 55, 56, 56,
56, 58, 59, 59, 59, 59, 59, 63, 63, 64, 64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 69, 69, 69, 69, 71, 71, 72, 73,
73, 73, 74, 74, 76, 76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 84, 84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97,
98, 98, 99, 101, 103, 105, 109, 136, 147.s
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