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Abstract  

 

In this paper, we use a regression model for modeling bounded outcome scores (BOS), where the outcome is 

Kumaraswamy distributed. Similar to the Beta distribution, this distribution can take a variety of shapes while being 

computationally easier to use. Thus, it is deemed as a suitable alternative distribution to the Beta in modeling 

bounded random processes. In the proposed model, the median of a bounded response is modeled by the linear 

predictors which are defined through regression parameters and explanatory variables. We obtained the maximum 

likelihood estimates (MLEs) of the parameters, provided closed-form expressions for the score functions and Fisher 

information matrix, and presented some diagnostic measures. We conducted Monte Carlo simulations to investigate 

the finite-sample performance of the MLEs of the parameters.  Finally, two practical applications of this model to 

the real data sets are presented and discussed. 

 
 

Keywords: Bounded outcome score; Kumaraswamy distribution; Beta regression; maximum likelihood 

estimation; diagnostic analysis. 
 

 

1. Introduction  

Bounded outcome scores (BOS) are measures restricted to a finite interval and are common in many health and 

medical disciplines. Visual Analogue Scale (VAS), which is often used to assess the severity of pain in pain relief 

studies (Wewers and Lowe, 1990) ; the PASI score that is used to record intensity psoriasis (Hu, Yeilding, Davis, and 

Zhou, 2011); the Barthel index for Activities of Daily Living (ADL) in stroke patients (Lesaffre, Rizopoulos, 

andTsonaka, 2006); quality-of-life (QoL) measures in survey studies involving health assessment (Arostegui, 

Núñez‐Antón, and Quintana, 2007; Hunger, Baumret, and Holle, 2011; Hunger, Döring, and Holle, 2012) are well-

known instances of BOS measure outcomes.  

The distributions of these outcomes can often take different shapes including unimodal, U-shaped, and J-shaped. Due 

to the variety of their distributions, BOS typically display heteroscedasticity, where the variance is smaller near the 

extremes, and asymmetry. Therefore, usual regression models such as simple linear or nonlinear regression models, 

are not suitable for these outcomes (Kieschnick and McCullough, 2003; Xu, Samtani, Yuan, and Nandy, 2014). 

Various strategies have been proposed for modeling BOS (Bottai, Cai, and McKeown, 2010; Hutton and Stanghellini, 

2011; Kieschnick and McCullough, 2003; Lesaffre et al., 2006; Smithson and Verkuilen, 2006; Verkuilen and 

Smithson, 2012; Xu et al., 2014; Xu et al., 2013). Beta distribution is a well-known distribution which is widely used 
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to model double bounded data. The popularity of Beta distribution lies in the high flexibility of its density function 

which can take many shapes (e.g. unimodal, uniantimodal, increasing, decreasing, and uniform) through changing its 

parameter. Beta regression model, introduced by Ferrari and Cribari-Neto (Ferrari and Cribari-Neto, 2004) has been 

used in various disciplines to model random variables limited on a finite interval.  

An alternative to the Beta distribution, which possesses similar characteristics, yet easier to use computationally is 

Kumaraswamy (“Kum for short”) distribution (Kumaraswamy, 1980). Kum distribution was proposed to model 

hydrological data, but is in fact useful for modeling many other outcomes that have lower and upper bounds such as 

heights of individuals, scores obtained in a test, atmospheric temperatures, and so on. 

A random variable 𝑌̃ following a Kum distribution on the interval [𝑎, 𝑏] with respective shape parameters p > 0 and 

q > 0, is denoted by 𝐾𝑢𝑚(𝑝, 𝑞, 𝑎, 𝑏) and has a density function given by 

𝑓(𝑦̃; 𝑝, 𝑞) =
𝑝𝑞

𝑏 − 𝑎
(

𝑦̃ − 𝑎

𝑏 − 𝑎
)

𝑝−1

[1 − (
𝑦̃ − 𝑎

𝑏 − 𝑎
)

𝑝

]

𝑞−1

            ; 𝑦̃ ∈ (𝑎, 𝑏) 
 

(1) 

 

 The mean and variance of this distribution are respectively give by:  

E(𝑌̃) = 𝑎 + (𝑏 − 𝑎)𝑞𝐵 (1 +
1

𝑝
, 𝑞) 

 

(2) 

 

and 

Var(𝑌̃) = (𝑏 − 𝑎)2 {𝑞𝐵 (1 +
2

𝑝
, 𝑞) − [𝑞𝐵 (1 +

1

𝑝
, 𝑞)]

2

} 
 

(3) 

 

where 𝐵(. , . ) is the Beta function.  

The Kum distribution has many of the properties of the Beta distribution with some advantages in terms of tractability. 

Jones (Jones, 2009) specified the basic properties of the Kum distribution and discussed some similarities and 

differences between the Beta and Kum distributions. According to him, both distributions are very flexible and can 

take many different shapes depending on the values of their parameters. The author also emphasized several 

advantages of the Kum distribution over the Beta distribution: the normalizing constant is very simple; the distribution 

has a simple explicit formulae and quantile functions which do not involve any special functions; a simple formula 

for random variate generation; explicit formulae for moments of order statistics and L-moments. In addition, Jones 

noted that the Beta distribution has the following advantages over the Kum distribution: simpler formulae for moments 

and moment-generating function; a one-parameter sub-family of symmetric distributions; simpler moment estimation 

and more ways of generating the distribution via physical processes. Due to the similarity of Kum and Beta 

distributions and some advantages of Kum to the Beta distribution, including its explicit expression of the distribution 

and quantile functions, the Kum distribution has attracted some attention in the literature (Cordeiro, Nadarajah, and 

Ortega, 2012; Cordeiro, Ortega, and Nadarajah, 2010; de Pascoa, Ortega, and Cordeiro, 2011; Kızılaslan and Nadar, 

2016). This study aimed to use the Kum distribution for modeling BOS. However, since in the standard 

parameterization of the Kum distribution, shape parameters are functions of the covariates, formulation of regression 

modeling and interpretation of the parameters are more difficult.  

In addition, the lack of simple closed-form expressions for the mean and variance of the Kum distribution, given in 

(2) and (3), has limited its use for modeling purposes. On the other hand, the median of this distribution has the 

following simple expression, 

md(𝑌̃) = 𝜔̃ = 𝑎 + (𝑏 − 𝑎) (1 − 0.5
1
𝑞)

1
𝑝

 

 

(4) 

 

Therefore, we consider the median-based re-parameterization proposed by (Mitnik and Baek, 2013) aiming to 

facilitate its use in regression models. In order to develop the proposed model, we will follow the generalized linear 

models (McCullagh and Nelder, 1989) and Beta regression (Ferrari and Cribari-Neto, 2004) methodologies,; although 

as stated before, we will be modeling the median instead of the mean.  

The paper unfolds as follows. Section 2 presents the Kum regression model and discusses the maximum likelihood 

estimation of this model. A Monte Carlo simulation study for assessing the finite sample performance of the 

conditional maximum likelihood approach is performed in Section 3. Finally, two applications using real data are 

presented in Section 4 and concluding remarks are given in Section 5.  

 

2. Kum regression model and maximum likelihood estimator (MLE) 
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We use the general theory of maximum likelihood estimation. The estimates in this approach have properties such as 

asymptotic normality, consistency, and efficiency (see Ferguson, 2017; and Millar, 2011). 

Let a random variable 𝑌̃ has the Kum distribution with density given by (1). With 𝑌 = (𝑌̃ − 𝑎)/(𝑏 − 𝑎), its median-

based re-parameterization density function (Mitnik and Baek, 2013) is denoted by 𝐾𝑢𝑚(𝑝, 𝜔) which is given by 

𝑓(𝑦) = (
1

𝑏−𝑎
)

𝑝 log(0.5)

log(1−𝜔𝑝)
(𝑦)𝑝−1(1 − 𝑦𝑝)

ln(0.5)

ln(1−𝜔𝑝)
−1

            ; 0 < 𝑦 < 1, 
 

(5) 

 

where 𝜔 = (𝜔̃ − 𝑎)/(𝑏 − 𝑎), 0 < 𝜔 < 1, and p > 0.  

This form of density function allows us to use Kum distribution and develop models analogous to the Beta regression 

models. With a Kum-distributed dependent variable, 𝑦𝑡  ~ 𝐾𝑢𝑚(𝜔𝑡 , 𝑝), t=1,…,n ; the model is obtained by assuming 

that the median of 𝑦𝑡  can be written as: 

𝑔(𝜔𝑡) = ∑ 𝑥𝑡𝑖𝛽𝑖

𝑛

𝑖=1
= 𝜂𝑡 

 

(6) 

where 𝜂𝑡 is the linear predictor, 𝛽 = (𝛽1, … , 𝛽𝑘)𝑇  is a vector of unknown regression parameters (𝛽 ∈ ℝ𝑘) and 

𝑥𝑡1, … , 𝑥𝑡𝑘 are observations on k known covariates (𝑘 < 𝑛). Moreover, we assume that the link function 

𝑔(. ): (0,1) ⟶ ℝ is a strictly monotonic and twice differentiable. Note that a number of various link functions such 

as logit, probit, log-log, and complementary log-log can be used. A comparison of these link functions can be found 

in Atkinson (1985, Ch. 7) and (Atkinson and Atkinson, 1985; McCullagh and Nelder, 1989). Our focus will be on the 

logit link, 𝑔(𝜔) = log (
𝜔

1−𝜔
), which is one of the more popular link function that can be used. The popularity of the 

logit function is due to its straightforward interpretation, since the resulting regression coefficients can be interpreted 

as odds ratios. 

Let 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇 be a random sample of size n from Kum distribution and 𝜽 = (𝛽𝑇 , 𝑝)𝑇 be a (𝑘 + 1)-dimensional 

parameter vector. The log-likelihood function for the Kum regression model can be written as:  

𝑙(𝜽) = 𝑙(𝛽, 𝑝) = ∑ 𝑙𝑡(𝜔𝑡 , 𝑝)𝑛
𝑡=1  ,  

(7) 

 

where 

  𝑙𝑡(𝜔𝑡 , 𝑝) = log(𝑝) − log(𝑏 − 𝑎) + log (
log 0.5

log(1−𝜔𝑡
𝑝

)
) + (𝑝 − 1) log 𝑦𝑡 + (

log 0.5

log(1−𝜔𝑡
𝑝

)
− 1) log(1 − 𝑦𝑡

𝑝
) 

with 𝜔𝑡 = 𝑔−1(𝜂𝑡) as defined in (6) is a function of β. The MLE can be calculated by maximizing the log-likelihood 

function (7). 

The components of the score vector are obtained by differentiating the log-likelihood function with respect to the 

unknown parameters 𝛽 and 𝑝. The derivative of the log-likelihood function with respect to the ith element of 𝛽, is 

given, for i=1, . . ., k, as 

𝑈𝛽(𝜽) =
𝜕𝑙(𝜽)

𝜕𝛽𝑖

= ∑
𝜕𝑙𝑡(𝜔𝑡 , 𝑝)

𝜕𝜔𝑡

d𝜔𝑡

d𝜂𝑡

𝜕𝜂𝑡

𝜕𝛽𝑖

𝑛

𝑡=1

 

where 
d𝜔𝑡

d𝜂𝑡
=

1

𝑔′(𝜔𝑡)
  and 

𝜕𝜂𝑡

𝜕𝛽𝑖
= 𝑥𝑡𝑖 , and 

𝜕𝑙𝑡(𝜔𝑡 , 𝑝)

𝜕𝜔𝑡

= (
𝑝ω𝑡

𝑝−1

(1 − ω𝑡
𝑝

) log(1 − ω𝑡
𝑝

)
) [1 +

log 0.5

log(1 − ω𝑡
𝑝

)
log(1 − 𝑦𝑡

𝑝
)] 

 

(8) 

 

thus  

𝑈𝛽(𝜽) = ∑ {(
𝑝ω𝑡

𝑝−1

(1 − ω𝑡
𝑝

) log(1 − ω𝑡
𝑝

)
) [1 +

log 0.5

log(1 − ω𝑡
𝑝

)
log(1 − 𝑦𝑡

𝑝
)]}

1

𝑔′(𝜔𝑡)
𝑥𝑡𝑖

𝑛

𝑡=1

. 
 

(9) 

By 

𝑞𝑡 =
log 0.5

log(1−ω𝑡
𝑝

)
 ,   and    𝑐𝑡 = {(

𝑝ω𝑡
𝑝−1

(1−ω𝑡
𝑝

) log(1−ω𝑡
𝑝

)
) [1 + 𝑞𝑡 log(1 − 𝑦𝑡

𝑝
)]} , 

 

(10) 

The matrix form of (9) is given by 

 

𝑈𝛽(𝜽) = 𝑋𝑇𝑇𝑐 ,  

(11) 

with 𝑋 being an 𝑛 × 𝑘 matrix whose tth entry is 𝑥𝑡
𝑇, 𝑇 = 𝑑𝑖𝑎𝑔{1/𝑔′(𝜔1), … ,1/𝑔′(𝜔𝑛)} and 𝑐 = (𝑐1, … , 𝑐𝑛)𝑇 with 

equation (10). 
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Similarly, the score function for 𝑝 can be obtained by differentiating the log-likelihood function with respect to 𝑝, 

yielding 

𝑈𝑝(𝜽) =
𝜕𝑙(𝜽)

𝜕𝑝
= ∑

𝜕𝑙𝑡(𝜔𝑡 , 𝑝)

𝜕𝑝

𝑛

𝑡=1

 

where 

          
𝜕𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝑝
=

1

𝑝
+ log 𝑦𝑡 + (

ω𝑡
𝑝

log 𝜔𝑡

(1−ω𝑡
𝑝

) log(1−ω𝑡
𝑝

)
) [1 +

log 0.5

log(1−ω𝑡
𝑝

)
log(1 − 𝑦𝑡

𝑝
)] − (

log 0.5

log(1−ω𝑡
𝑝

)
− 1)

𝑦𝑡
𝑝

log 𝑦𝑡

1−𝑦𝑡
𝑝       

and by using (10), it can be written as follows: 

𝑈𝑝(𝜽) =
𝑛

𝑝
+ ∑ {log 𝑦𝑡 + 𝑐𝑡

𝜔𝑡 log 𝜔𝑡

𝑝
− (𝑞𝑡 − 1)

𝑦𝑡
𝑝

log 𝑦𝑡

1−𝑦𝑡
𝑝 }𝑛

𝑡=1 . 
 

(12) 

The MLEs of 𝛽 and 𝑝 are obtained as the solution of the equations 𝑈𝛽(𝜽) = 0 and 𝑈𝑝(𝜽) = 0. These equations do 

not have a closed-form and can be obtained through standard numerical optimization procedures, e.g. the Newton or 

quasi-Newton algorithm such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Nocedal and Wright, 1999; 

Press, Teukolsky, Vetterling, and Flannery, 2007). An iterative optimization algorithm requires initial value. The 

starting value of the regressors parameter β was selected from the maximum likelihood estimate from a Beta 

regression.  

In the next step, we obtain an expression for Fisher information matrix as minus the expected value of the second 

derivatives of the log-likelihood. It is shown in Appendix A that Fisher information matrix is given by:  

𝐾(𝜽) = (
𝐾𝛽𝛽 𝐾𝛽𝑝

𝐾𝑝𝛽 𝐾𝑝𝑝
), 

 

(13) 

 

where 𝐾𝛽𝛽 = 𝑋𝑇𝑅2𝑇2𝑋, 𝐾𝛽𝑝 = 𝐾𝑝𝛽
𝑇 = −𝑋𝑇𝐵𝑇𝟏 , 𝐾𝑝𝑝 = −𝑡𝑟(𝐷), with 

          𝑅 = 𝑑𝑖𝑎𝑔{𝑟1, … , 𝑟𝑛}, with 𝑟𝑡 in equation (A1), 

          𝐵 = 𝑑𝑖𝑎𝑔{𝑏1, … , 𝑏𝑛}, with equation (A3), 

          𝐷 = 𝑑𝑖𝑎𝑔{
𝜕2𝑙1(𝜔1,𝑝)

𝜕𝑝2 , … ,
𝜕2𝑙𝑛(𝜔𝑛,𝑝)

𝜕𝑝2 }, 

          𝟏 is an 𝑛 × 1 vector of ones 

and 𝑡𝑟(. ) is the trace function. 

Under the usual regularity conditions and provided that the sample size is large enough, it can be shown that the 

asymptotic distribution of the MLE 𝜽̂ = (𝛽̂𝑇 , 𝑝̂) is the multivariate normal distribution with mean 𝜽 = (𝛽𝑇 , 𝑝) and 

variance-covariance matrix 𝐾−1(𝜽), that is, 

          𝜽̂ ~ 𝑁𝑘+1(𝜽, 𝐾−1(𝜽)) 

where 𝐾−1(𝜽) is the expected information matrix which can be computed numerically.  

In large sample inference in the Kum regression model, the 100(1 − 𝛼)% asymptotic confidence interval for 𝛽𝑖 , 𝑖 =

1, … , 𝑘, is given by 𝛽̂𝑖 ± Φ−1 (1 −
𝛼

2
) 𝑠𝑒(𝛽̂𝑖), where 𝑠𝑒(𝛽̂𝑖) is the asymptotic standard error of the maximum 

likelihood estimator of 𝛽̂𝑖 obtained from the inverse of Fishers information matrix evaluated at the maximum 

likelihood estimates. 

 

3. Numerical results 

In this section, we present the results of Monte Carlo simulation, where we study the finite-sample distributions of the 

MLEs of the parameters 𝛽 and 𝑝 along with the Kum regression model in which  

          𝑔(ωt) = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡, 𝑡 = 1, … , 𝑛, 

where 𝑔(. ) is the logit link function.  

The covariate values are obtained as random draws from the following distributions: covariate 𝑥1𝑡 is generated from 

a continuous Uniform U (1, 5) distribution, while 𝑥2𝑡 is generated from a Binomial distribution with three number of 

trials and 0.5 success probability in each trial (x2t~𝐵𝑖𝑛(3,0.5)). The covariate values remain constant throughout the 

simulations. We take 𝛽0 = −6.0, 𝛽1 = 1.0 and 𝛽2 = 2.0, which resulted in median values between zero and one. The 

value of p is also set at p = 2.   

We take samples of sizes n = 50, 100, 200, and 500. For each sample size, we perform 1000 simulations and compute 

the mean of the estimates, percentage relative bias and mean square errors. It should be noted that the percentage 

relative bias is defined as the ratio between the bias and the true parameter value times 100. Table 1 presents the 

simulation results, and the plot of corresponding percentage relative bias (RB %) for the different sample sizes n, is 
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shown in Figure 1. We note that the mean of estimates is close to the true parameter values, the percentage relative 

bias and mean square errors decrease as sample size increases. Overall, we observe that the estimates improve with 

increasing sample size.  

 

Table 1 Estimation of the mean parameters, percentage relative bias (RB%) and mean square errors (MSE) for 

Kum regression model (N=1000) 

Parameter  β0 = -6 β1 = 1 β2 = 2 p = 2 

n=50 

Mean -6.0337 1.0035 2.0229 2.1503 

RB (%) 0.5619 0.3473 1.1474 7.5161 

MSE 0.1306 0.0123 0.0393 0.1336 

n=100 

Mean -6.0195 1.0038 2.0084 2.0645 

RB (%) 0.3252 0.3755 0.4201 3.2268 

MSE 0.1111  0.0084 0.0152 0.0539 

n=200 

Mean -6.0084 1.0006 2.0073 2.0364 

RB (%) 0.1396 0.0583 0.3667 1.8219 

MSE 0.0330  0.0030 0.0088 0.0234 

n=500 

Mean -5.9990 0.9997 2.0008 2.0180 

RB (%) -0.0173 -0.0303 0.0415 0.8991 

MSE 0.0143  0.0013 0.0023 0.0087 

 

Figure 1: Percentage relative bias (RB%) versus sample size of  β0, β1 β2, p. 
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4. Application 

In this Section, we present two applications of the Kum regression model described in Section 2.  

4.1. Health-related quality of life in patients with epilepsy 

The first application is based on an empirical dataset that comes from a longitudinal study on the quality of life in 

patients with epilepsy in Iran from March 2014 to December 2015.  

 Epilepsy is one of the most common chronic brain disorders that has a considerable impact on person's QoL. We will 

examine the relationship between medication adherence and seizure severity on QoL. Medication Adherence and 

seizure severity were assessed by the Medication Adherence Report Scale (MARS-5) and the Liverpool Seizure 

Severity Scale (LSSS) questionnaires, respectively. The quality of life in epilepsy (QOLIE-31) was used for measuring 

health-related QoL in epileptic patients. QOLIE-31 has seven sub-scales, which are seizure worry, cognitive 

functioning, energy/fatigue, emotional well-being, social functioning, medication effects, and overall QoL (Cramer et 

al., 1998).The subscales are constrained to a bounded interval (e.g. at 0 and 1) and a higher score indicates better QoL. 

Our interest is to model one of the sub-scales of QoL, namely social functioning, as a function of medication adherence 

and seizure severity. Table 2 lists some summary statistics for the social functioning. We note that the median of social 

functioning is greater than its mean, indicating left skewness of its distribution. 

 

Table 2 Statistical description of social functioning 

Variable Min. Max. Mean Med. SD Skewness Kurtosis 

Social Function .001 .999 .794 .874 .202 -0.718 -0.244 

 

Given that the outcome, social functioning, is bounded between 0 and 1 and its distribution is negatively skewed, the 

traditional regression models may not be suitable for regression modeling. Therefore, the Beta and Kum regression 

models which is proposed in Section 2 will be used instead. We determine the MLEs of the model parameters using 

the quasi-Newton optimization algorithm known as BFGS with analytical derivatives. The choice of starting values 

for the unknown parameters is based on the suggestion made in the second section. The MLEs of the model parameters, 

their estimated standard errors, and the Akaike Information Criterion (AIC) are presented in Table 3. We note that the 

AIC value for the Kum model is smaller than the AIC value for Beta model. So, based on the AIC criterion, the Kum 

distribution is preferable in fitting these data than the Beta distribution. 

Table 3 Parameter estimates with logit link 

 Beta regression  Kum regression 

Estimate Std. error p  Estimate Std. error p 

Intercept 1.516* 0.175 <0.001  2.464* 0.345 <0.001 

LSSS score  -0.007* 0.002 <0.001  -0.014* 0.004 <0.001 

MARS-5 score 0.028* 0.007 <0.001  0.059* 0.015 <0.001 

Phi 1.929* 0.105 <0.001  1.718* 0.116 <0.001 

AIC -1815.36  -1817.39 
LSSS, Liverpool Seizure Severity Scale; MARS-5, Medication Adherence Report Scale; AIC, Akaike information criterion  

4.2. Food expenditure  

The next application is based on the food expenditure data analyzed by (Ferrari and Cribari-Neto, 2004), the source 

of the data is (Griffiths, Carter Hill, and Judge, 1993). We model the proportion of income spent on food as a function 
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of the level of income and the number of persons in the household using Beta and Kum regression models. The link 

function used is the logit link. 

Estimates of the parameters, their standard errors, and the Akaike Information Criterion (AIC) are given in Table 4. 

The values in Table 4 show that the estimated coefficients associated with the covariates are quite similar in both 

models. The lower AIC value for the Kum model indicates that this model is a better fit for the current data than the 

Beta model. 

 

Table 4 Parameter estimates with logit link 

 Beta regression  Kum regression 

Estimate Std. error p  Estimate Std. error p 

Intercept -0.622* 0.224 0.005  -0.844* 0.199 <0.0001 

Total family income -0.012* 0.003 <0.0001  -0.009* 0.002 <0.0001 

Number of residents  0.118* 0.035 0.001  0.135* 0.028 <0.0001 

Phi 35.733* 8.080 <0.0001  4.949* 0.661 <0.0001 

AIC -82.667  -89.717 

 

5. Concluding remarks 

In this paper we introduced a regression model for the double bounded dependent outcomes. The underlying 

assumption was that the response variable follows a Kum distribution. In the proposed regression model, the median 

of the dependent variable was modeled by a linear predictor that was defined by regression parameters and explanatory 

variables. Inference about the Kum regression model was discussed and the parameter estimation was performed via 

maximum likelihood. The closed-form expressions were obtained for the score functions and the Fisher's information 

matrix. Based on the asymptotic normality of the maximum likelihood estimator, confidence interval and hypothesis 

testing were obtained. Furthermore, some diagnostic measures were provided. A Monte-Carlo simulation study was 

performed to evaluate the finite-sample performance of the MLEs of β and p with the Kum regression model. The 

simulation results showed that the MLE performs well even for small sample sizes. Finally, to illustrate its usefulness, 

two applications of the Kum regression model to the empirical real data were presented, where one of them was based 

on a previously published results. We hope the current model could attract applications in several areas.  
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Appendix A 

In this appendix we provide observed information matrix for (𝛽, 𝑝) in the class of kum regression models. The 

information matrix can be obtained as minus the expected value of the second derivatives of the log-likelihood.  

Observed information matrix 

The second-order partial derivative of equation (7) with respect to 𝛽s is given by 

          
𝜕2𝑙(𝛽,𝑝)

𝜕𝛽𝑖𝜕𝛽𝑗
= ∑

𝜕

𝜕𝜔𝑡
(

𝜕𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝜔𝑡

d𝜔𝑡

d𝜂𝑡
)

d𝜔𝑡

d𝜂𝑡

𝜕𝜂𝑡
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𝑥𝑡𝑖

𝑛
𝑡=1  

                       = ∑ (
𝜕2𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝜔𝑡
2

d𝜔𝑡

d𝜂𝑡
+

𝜕𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝜔𝑡

𝜕

𝜕𝜔𝑡

d𝜔𝑡

d𝜂𝑡
)

d𝜔𝑡

d𝜂𝑡
𝑥𝑡𝑖𝑥𝑡𝑗

𝑛
𝑡=1  

where 
d𝜔𝑡

d𝜂𝑡
=

1

𝑔′(𝜔𝑡)
  and 

𝜕𝜂𝑡

𝜕𝛽𝑗
= 𝑥𝑡𝑗 .  

           
𝜕2𝑙(𝛽,𝑝)

𝜕𝛽𝑖𝜕𝛽𝑗
= ∑ (

𝜕2𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝜔𝑡
2 ) (

1

𝑔′(𝜔𝑡)
)

2

𝑥𝑡𝑖𝑥𝑡𝑗
𝑛
𝑡=1  

Now, by differentiating the equation (8) with respect to 𝜔𝑡, and taking the expected value of the second derivative, 

since 𝐸(log(1 − 𝑦𝑡
𝑝

)) = −
1

𝑞𝑡
 , yielding 

          𝐸 (
𝜕2𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝜔𝑡
2 ) = − (

𝑝𝜔𝑡
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𝑝
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𝑝
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Therefore  

          𝐸 (
𝜕2𝑙(𝛽,𝑝)

𝜕𝛽𝑖𝜕𝛽𝑗
) = − ∑ [(

𝑝𝜔𝑡
𝑝−1

(1−𝜔𝑡
𝑝
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𝑝
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(
1

𝑔′(𝜔𝑡)
)

2

𝑥𝑡𝑖𝑥𝑡𝑗]𝑛
𝑡=1 . 

In matrix notation, we have  

          𝐸 (
𝜕2𝑙(𝛽,𝑝)

𝜕𝛽𝑖𝜕𝛽𝑗
) = −𝑋𝑇𝑅2𝑇2𝑋 

with 𝑋 being an 𝑛 × 𝑘 matrix whose tth row is 𝑥𝑡
𝑇, 𝑇 = 𝑑𝑖𝑎𝑔{1/𝑔′(𝜔1), … ,1/𝑔′(𝜔𝑛)} and 𝑅 = 𝑑𝑖𝑎𝑔{𝑟1, … , 𝑟𝑛} , with  

𝑟𝑡 = 𝑝𝑚𝑡 (A1) 

where 𝑚 = (𝑚1, … , 𝑚𝑛)𝑇 with equation 𝑚𝑡 =
𝜔𝑡

𝑝−1

(1−𝜔𝑡
𝑝

) log(1−𝜔𝑡
𝑝

)
 . 

Analogously, the second derivative of the log-likelihood function with respect to 𝛽𝑖 and p is given by 

          
𝜕2𝑙𝑡(𝛽,𝑝)
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taking conditional expectation in (A2) and since 𝐸(log(1 − 𝑌𝑡
𝑝

)) = −
1

𝑞𝑡
, 𝐸 (
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𝑝 ) =
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 , with 𝜓(. ) 

denotes the digamma function defined as 𝜓(z) =
𝑑

𝑑𝑧
log(Γ(𝑧)), and 𝛾 is the Euler-Mascheroni constant  ( 𝛾 =

0.57721566 … ), it follows that 
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In matrix form, we have 

          𝑈𝛽𝑝(𝛽, 𝑝) = 𝐸 (
𝜕2𝑙𝑡(𝛽,𝑝)

𝜕𝛽𝑖𝜕𝑝
) = 𝑋𝑇𝐵𝑇𝟏 

with 𝑋 being an 𝑛 × 𝑘 matrix whose tth is 𝑥𝑡
𝑇, 𝐵 = 𝑑𝑖𝑎𝑔{𝑏1, … , 𝑏𝑛} with equation (A3), 𝑇 = 𝑑𝑖𝑎𝑔{1/𝑔′(𝜔1), … ,1/

𝑔′(𝜔𝑛)} and 𝟏 is an 𝑛 × 1 vector of ones. 

Finally, the second derivative of 𝑙(𝛽, 𝑝) with respect to 𝑝 comes by differentiating the expression in equation (12) 

with respect to p. Therefore 𝐸 (
𝜕2𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝑝2 ) = ∑ 𝑑𝑡
𝑛
𝑡=1  ,which, in matrix notation, can be written as 

          𝐸 (
𝜕2𝑙𝑡(𝜔𝑡,𝑝)

𝜕𝑝2 ) = 𝑡𝑟(𝐷) 

where 𝐷 = 𝑑𝑖𝑎𝑔{
𝜕2𝑙1(𝜔1,𝑝)

𝜕𝑝2 , … ,
𝜕2𝑙𝑛(𝜔𝑛,𝑝)

𝜕𝑝2 } and 𝑡𝑟(. ) is the trace function. 

Now, the Fisher information matrix for (𝛽, 𝑝) as given in (13), can be obtained. 

 

 

 

 


