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Abstract  

 

If there is unobserved heterogeneity among susceptible patients in competing risks cure models, applying the 

methods that do not consider this heterogeneity may lead to invalid results. Therefore, this study aimed to introduce 

a model to cover the above properties of survival studies. We introduced a unified model by combining a parametric 

mixture cure gamma frailty model and vertical modeling of competing risks. We obtained estimates of parameters 

by an iterative method and Laplace transform technique. Then, we calculated the cumulative incidence functions 

(CIFs) and related confidence bounds using a bootstrap approach. We conducted an extensive simulation study to 

evaluate the performance of the proposed model. The results of the simulation study showed the superior 

performance of our proposed competing risks cure frailty model. Finally, we applied the proposed method to 

analyze a real dataset of breast cancer patients.  
 
 

Key Words: Survival analysis; Competing risks; Cumulative incidences; Frailty model; Mixture cure model. 

 

1. Introduction  

Survival modeling is a tool in biostatistics and epidemiology that can help one to predict the risk of disease. In medical 

studies, identifying the risk of failure for a given disease is remarkable for patients as well as physicians; this would 

benefit patients to choose the lifestyle, and it would be guidelines to physicians selecting a specific treatment approach. 

The need to know these risk factors requires the analysis of outcomes to be specific to that disease. Still, the prior 

occurrence of different types of events may change the probability of observing the event of interest. From the 

statistical perspective, the analysis is incorporated in the competing risks framework in this situation, and the usual 

techniques may give distorted results (Pepe and Mori, 1993). For modeling competing risks, several approaches such 

as the cause-specific model by Prentice et al. (1978), the Larson and Dinse’s model by Larson and Dinse (1985), the 

Fine and Gray’s model by Fine and Gray (1999), and the vertical modeling by Nicolaie, van Houwelingen, and Putter 
(2010) have been introduced. Competing risks models usually assume that all patients are susceptible; if there is a 

sufficient follow-up, all patients will experience any of the possible outcomes (Pintilie, 2011). However, due to 

advances in the early detection of diseases and their treatment, some patients may be long-term event-free survivors 

(cured fraction). When it is confirmed that there is a cured fraction in the study population, typical survival models 
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lead to overestimating the survival of the susceptible subjects, and deployment cure models are recommended 

(Corbière et al., 2009). A popular and well-known class of cure models is the mixture cure model (Berkson and Gage, 

1952; Boag, 1949; Farewell, 1982; Kuk and Chen, 1992). In a mixture cure model, the patients consist of two parts, 

including susceptible patients (uncured patients) and long-term survivor patients (cured patients). The relation between 

population survival time (S(t)) and the survival time of susceptible (uncured) patients (Su(t)) is defined as follows 
 𝑆(𝑡) = 𝜋. 𝑆𝑢(𝑡) + 1 − 𝜋. (1) 

In the above equation, 1-π is the probability of being cured, and it is evident that the survival probability of cured 

patients is embedded as one. In equation (1), 𝑆𝑢(𝑡) is referred to as the latency and 𝜋 is also referred to the incidence 

part of the mixture model.  

Modeling the competing risks in the presence of cured fractions has not yet developed very well. Gee (2004) extended 

a cause-specific competing risks model that a subpopulation of patients could be cured of the event of interest. He 

introduced two models based on exponential distribution and proportional hazards and employed expectation–

maximization (EM) algorithm and weighted risk set approaches to estimate parameters in a semi-parametric model. 

Basu and Tiwari (2010) unified the mixture cure and competing risks models in a Bayesian framework. Several authors 

extended the competing risks model of Larson and Dinse (1985) to a competing risks cure model. It is noteworthy that 
in the approach of Larson and Dinse, the joint distribution of time of failure (T) and failure type (D) decomposes as: 

 𝑃(𝑇, 𝐷) = 𝑃(𝑇|𝐷). 𝑃(𝐷). (2) 

For example, Cai (2013) presented a new estimation method for a semi-parametric mixture cure model with competing 

risks data. A disadvantage of the proposed approach of Larson and Dines (1985) is from an interpretational point of 

view. In this approach, the cause of failure is determined from the beginning, but its estimated distribution will depend 

on the length of follow-up, which is hard to adapt with the implied existence of such a distribution from the outset 

(Nicolaie, van Houwelingen, and Putter, 2010).  Nicolaie, Taylor, and Legrand (2018) combined competing risks and 

cured fractions in vertical modeling in which the cured fraction meant the individuals who are immune to all causes 

of failures. In the idea of vertical modeling, a new decomposition of the joint distribution of time (T) and cause of 

failure (D) is utilized as: 

 𝑃(𝑇, 𝐷) = 𝑃(𝑇). 𝑃(𝐷|𝑇). (3) 

From an interpretation point of view, the decomposition (3) does not have the disadvantage of the decomposition (2). 

Interestingly, the decomposition (3) consists of two observable quantities: the total hazard and the relative cause-

specific hazard. In this approach, the marginal event time distribution, P(T), can be estimated considering covariate 

effects on the total hazard rate using a semiparametric or a parametric regression model for time-to-event data, treating 

events of any type as failures. 

On the other hand, some unobserved information exists among individuals in the medical and epidemiological studies, 

which cannot be explained via observed covariates in survival analysis; so frailty models are recommended in this 

situation. In a univariate frailty model, the hazard at time t for a person with frailty w is: 

 𝜆(𝑡) = 𝑊𝜆0(𝑡)exp (𝛾𝑇𝑋), (4) 

where W follows a probability distribution with mean equal to one and variance 𝜎2, 𝛾𝑇is a vector of coefficients, X is 

a vector of covariates with the same dimension of coefficients and 𝜆0(𝑡) is the baseline hazard function. Patients with 

a high W value tend to have a high rate of the event; thus, the variance of this distribution is interpretable as a measure 

of heterogeneity across the population (Wienke, 2010). Hence, developing a competing risks model to include cured 

fraction and frailty is critical for analyzing a dataset with such properties. In this study, we intend to extend the 
modeling of competing risks when there are cured fractions as well as heterogeneity due to unobserved covariates. 

The paper is organized as follows: In Sections 2 to 6, we give details of our method and an extensive simulation 

scenario. Section 7 presents the application of the proposed model on the real dataset of breast cancer patients. Finally, 

in Sections 8 and 9, some points for discussion and concluding remarks are made, respectively.   
 

2. Competing risks-cure-frailty model 

 
In a survival study, consider n patients who may experience one of the K competing events or be right-censored. 

Furthermore, suppose that a fraction of individuals are long-term survivors (cured fraction) so that they do not 

experience any of the competing risks events by the end of sufficient follow-up. In these circumstances, patients can 

belong to any of the two subpopulations, susceptible and non-susceptible groups. Moreover, there may be 

heterogeneity due to unobserved covariates between susceptible patients so that patients with similar characteristics 

experience the failure at different times. To handle the above conditions, we want to develop the vertical modeling of 

competing risks with cured fraction, earlier proposed by Nicolaie, Taylor, and Legrand (2018). The vertical modeling 

of competing risks with cured fraction includes two parts, namely the incidence and latency part. In the latency part, 

we determine whether an individual is susceptible, in the sense that she experiences an event finally; in the latency 
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part, conditional on an individual being susceptible, we determine when and which event might occur. We want to 

extend the vertical modeling approaches to the mixture cure frailty framework for the latency part. Let Y be a binary 

variable so that Y=1 refers to a susceptible patient and Y=0 refers to a non-susceptible patient. If �̃� denotes the time 

of the event, D is the type of the event where D=1,2,…,k and C is the right-censoring time, the observed data for an 

individual i is 𝛰𝑖 = (𝑇𝑖 , Δ𝑖 , 𝑄𝒊) where 𝑇𝑖 = min (�̃�𝑖 , 𝐶𝑖) is the observed time, ∆𝑖= 1{�̃�𝑖 < 𝐶𝑖}𝐷𝑖 is an indicator for the 

type of event which is equal to zero in the case of censoring and 𝑄𝑖 is a vector of covariates measured at baseline for 

i=1,2,…,n. We assume that data from different patients are independent; also, the time of events and censoring times 

are independent given Q. Similar to mixture cure models, equation (1), the incidence part is specified by P(Y) so that 

𝑃(𝑌 = 1) = 𝑝, and 1 − 𝑝 represents the fraction of patients who are cured. Following the vertical modeling approach 

to competing risks, when 𝑊 is a frailty term, the conditional joint distribution 𝑃(𝑇, 𝐷|𝑌 = 1, 𝑊 = 𝑤) is decomposed 

as 

 𝑃(𝑇, 𝐷|𝑌 = 1, 𝑊 = 𝑤) = 𝑃(𝑇|𝑌 = 1, 𝑊 = 𝑤). 𝑃(𝐷|𝑇, 𝑌 = 1, 𝑊 = 𝑤), (5) 

for the latency part (Nicolaie, van Houwelingen, and Putter, 2010). 

 If the survival time is continuous, we can define the conditional total or overall caused hazard by  

ℎ⋆(𝑡|𝑌 = 1, 𝑊 = 𝑤) = lim
△𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 ≥ 𝑡, 𝑌 = 1, 𝑊 = 𝑤)

∆𝑡
, 

and its cumulative form by  

 
H∗(𝑡|𝑌 = 1, 𝑊 = 𝑤) = ∫ ℎ⋆(𝑢|𝑌 = 1, 𝑊 = 𝑤)𝑑𝑢

𝑡

0

. 
(6) 

Equation (6) specifies the conditional failure distribution 𝑃(𝑇|𝑌 = 1, 𝑊 = 𝑤)in equation (5), and the conditional 

survival function of susceptible individuals is given by: 

𝑆∗(𝑡|𝑌 = 1, 𝑊 = 𝑤) = exp(−H∗(𝑡|𝑌 = 1, 𝑊 = 𝑤)). 

To estimate 𝑃(𝐷|𝑇, 𝑌 = 1, 𝑊 = 𝑤), if ℎ𝑗(𝑡|𝑌 = 1, 𝑊 = 𝑤) is the conditional cause-specific hazard of cause j, we 

define the conditional relative cause-specific hazard as  

𝜋𝑗(𝑡|𝑌 = 1, 𝑊 = 𝑤) =
ℎ𝑗(𝑡|𝑌 = 1, 𝑊 = 𝑤)

ℎ∗(𝑡|𝑌 = 1, 𝑊 = 𝑤)
 

 

 
=

𝑊ℎ𝑗(𝑡|𝑌 = 1)

𝑊ℎ∗(𝑡|𝑌 = 1)
=

ℎ𝑗(𝑡|𝑌 = 1)

ℎ∗(𝑡|𝑌 = 1)
= 𝜋𝑗(𝑡|𝑌 = 1),      𝑗 = 1, … , 𝐾.    

(7) 

So we assume that W is conditionally independent of D|T,Y=1 and Y; therefore, equation (5) can be written as 
 𝑃(𝑇, 𝐷|𝑌 = 1, 𝑊 = 𝑤) = 𝑃(𝑇|𝑌 = 1, 𝑊 = 𝑤). 𝑃(𝐷|𝑇, 𝑌 = 1). (8) 

The relative cause-specific hazard deals with cause and failure time. Hence, its estimation involves only observed 

susceptible individuals as 

 𝜋𝑗(𝑡|𝑌 = 1) = 𝑃(𝐷 = 𝑗|�̃� = 𝑡, 𝑌 = 1) = 𝑃(𝐷 = 𝑗|�̃� = 𝑡) =  𝜋𝑗(𝑡),             𝑗 = 1,2, … , 𝑘. 

Thus, the latency part is completely specified by  𝜋𝑗(𝑡) and ℎ⋆(𝑡|𝑌 = 1, 𝑊 = 𝑤). The conditional cumulative 

incidence function of cause j can be estimated as  

𝐹𝑗(𝑡|𝑌 = 1, 𝑊 = 𝑤) = ∫ ℎ𝑗(𝑢|𝑌 = 1, 𝑊 = 𝑤). 𝑆(𝑢|𝑌 = 1, 𝑊 = 𝑤)𝑑𝑢 =
𝑡

0

 

 
∫ ℎ∗(𝑢|𝑌 = 1, 𝑊 = 𝑤). 𝜋𝑗(𝑢). 𝑆(𝑢|𝑌 = 1, 𝑊 = 𝑤)𝑑𝑢,

𝑡

0

             𝑗 = 1, … , 𝐾.   
(9) 

The population survival function can also be estimated as  

𝑆𝑝𝑜𝑝(𝑡|𝑊 = 𝑤) = 𝑃(𝑌 = 1). 𝑃(𝑇 ≥ 𝑡|𝑌 = 1, 𝑊 = 𝑤) + 𝑃(𝑌 = 0). 𝑃(𝑇 ≥ 𝑡|𝑌 = 0, 𝑊 = 𝑤) 

= 𝑝. 𝑆(𝑡|𝑌 = 1, 𝑊 = 𝑤) + 1 − 𝑝. 
It is obvious that the population survival function is improper in the sense that  

lim
𝑡→∞

𝑆𝑝𝑜𝑝(𝑡|𝑊 = 𝑤) = 1 − 𝑝. 

 
3. Assessing covariates effects on latency and incidence 

For assessing the effects of covariates on the incidence, 𝑝(𝑿) = 𝑃(𝑌 = 1|𝑿), where 𝑿 ⊆ 𝑸 we postulate a logistic 

model as 

 
ln

𝑝(𝑋)

1 − 𝑝(𝑋)
= 𝛽𝑇𝑿∗, 

(10) 
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where 𝑿∗ = (1, 𝑿) and 𝜷𝑻denotes a vector of unknown regression parameters. 

For assessing the effects of covariates on the latency, we need two models; a model for conditional total hazard and a 

model for relative cause-specific hazard. For modeling the conditional total hazard, we postulate a Weibull Gamma 

frailty model as: 

 ℎ∗(𝑡|𝑌 = 1, 𝑊 = 𝑤) = ℎ0∗(𝑡|𝑌 = 1). 𝑤. exp(𝜸𝑻. 𝒁), (11) 

where, 𝒁 ⊆ 𝑸, 𝜸𝑻stands for a vector of unknown regression parameters, ℎ0∗(𝑡|𝑌 = 1)follows a Weibull distribution 

with shape parameter k and scale parameter λ and 𝑊 has a gamma distribution with mean equal to one and variance 

equal to 𝜎2. Furthermore, for the relative cause-specific hazard we specify 

 
𝜋𝑗(𝑡|𝑼) =

exp (𝜂𝑗
𝑇𝑩(𝒕) + 𝜈𝑗

𝑇𝑼)

∑ exp (𝜂𝑗
𝑇𝑩(𝒕) + 𝜈𝑗

𝑇𝑼)𝐾
𝑗=1

 
(12) 

where, 𝑩(𝒕) is an r-vector of pre-specified time functions, 𝑼 ⊆ 𝑸 is a vector of independent variables, 𝜂𝑗
𝑇  and 𝜈𝑗

𝑇  stand 

for m-vectors of unknown regression parameters and j=1,…,K is jth cause of failure. We denote all regression 

parameters (𝜷, 𝜸, 𝜼𝟏 , … , 𝜼𝑲, 𝝂𝟏, … , 𝝂𝑲) by 𝜽. 

4. Likelihood 

 
For convenience, we omit covariates for a moment. It is worth noting that we assumed 𝑊 is conditionally independent 

of 𝐷|𝑇, 𝑌 = 1 and Y. The observed likelihood (conditional on frailty term, 𝑊𝑖) is the product of contributions of 

patients from two categories: a patient who experiences an event with type 𝑗 at time 𝑡𝑖 contributes 
 

𝑃(�̃�𝑖 = 𝑡𝑖 , 𝐷𝑖 = 𝑗, 𝑌𝑖 = 1|𝑤𝑖) = 𝑃(�̃�𝑖 = 𝑡𝑖 , 𝑌𝑖 = 1|𝑤𝑖). 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖 , 𝑌𝑖 = 1, 𝑤𝑖) 

= 𝑃(�̃�𝑖 = 𝑡𝑖 , 𝑌𝑖 = 1|𝑤𝑖). 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖 , 𝑤𝑖) = 𝑃(�̃�𝑖 = 𝑡𝑖 , 𝑌𝑖 = 1|𝑤𝑖). 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖) 

= 𝑃(�̃�𝑖 = 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖). 𝑃(𝑌𝑖 = 1|𝑤𝑖). 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖) 

= 𝑃(�̃�𝑖 = 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖). 𝑃(𝑌𝑖 = 1). 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖), 
 

and a patient who is censored at time 𝑡𝑖 contributes  

𝑃(�̃�𝑖 > 𝑡𝑖|𝑤𝑖) = 𝑃(𝑌𝑖 = 1|𝑤𝑖). 𝑃(�̃�𝑖 > 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖) + 𝑃(𝑌𝑖 = 0|𝑤𝑖) 

= 𝑃(𝑌𝑖 = 1). 𝑃(�̃�𝑖 > 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖 ) + 𝑃(𝑌𝑖 = 0). 
Therefore, based on the non-informative censoring assumption, the observed likelihood is proportional to  

𝐿 = ∏ [𝑝𝑖 . 𝑃(�̃�𝑖 = 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖). ∏ 𝑃(𝐷𝑖 = 𝑗|�̃�𝑖 = 𝑡𝑖)
𝟏{𝐷𝑖=𝑗}

𝐾

𝑗=1

]

𝟏{𝐷𝑖>0}
𝑛

𝑖=1

 

       . ∏[𝑝𝑖 . 𝑃(�̃�𝑖 > 𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖) + (1 − 𝑝𝑖)]
𝟏{𝐷𝑖=0}

𝑛

𝑖=1

. 

In terms of cause-specific hazard and conditional total hazard, the observed likelihood can be written as  

𝐿 = ∏ [𝑝𝑖 . ℎ∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖). exp(−𝐻∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖)) ∏ 𝜋𝑗(𝑡𝑖)
𝟏{𝐷𝑖=𝑗}

𝐾

𝑗=1

]

𝟏{𝐷𝑖>0}
𝑛

𝑖=1

 

 
. ∏[𝑝𝑖 . exp(−𝐻∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖)) + (1 − 𝑝𝑖)]

𝟏{𝐷𝑖=0}
𝑛

𝑖=1

 
(13) 

 
which can be separated in the following way: 

 𝐿(𝜽|𝑤) = 𝐿1(𝜷, 𝜸|𝑤). 𝐿2(𝜼𝟏, … , 𝜼𝑲, 𝝂𝟏, … , 𝝂𝑲), (14) 
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where  

𝐿1(𝜷, 𝜸|𝑤) = ∏[𝑝𝑖 . ℎ∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖). exp(−𝐻∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖))]
𝟏{𝐷𝑖>0}

𝑛

𝑖=1

 

             . ∏[𝑝𝑖 . exp(−𝐻∗(𝑡𝑖|𝑌𝑖 = 1, 𝑤𝑖)) + (1 − 𝑝𝑖)]
𝟏{𝐷𝑖=0}

𝑛

𝑖=1

 

and  

𝑳𝟐 = ∏ ∏ 𝝅𝒋(𝒕𝒊)
𝟏{𝑫𝒊=𝒋}

𝑲

𝒋=𝟏

𝒏

𝒊=𝟏

. 

5. Estimation 

 

We wish to estimate the regression parameters in the incidence, latency, and relative cause-specific hazard parts of 

the model. In cure models, the EM algorithm is usually used to estimate the parameters (Peng and Dear, 2000; Sy and 

Taylor, 2000); when the baseline hazard is specified, the Newton-Raphson iterative procedure can be applied 

(Rondeau et al., 2013). We obtained the asymptotic variance of regression parameters by inverting the observed 

information matrix, and we used the asymptotic properties of maximum likelihood estimators for inferences. An 

interesting fact in the likelihood (14) is that the maximum likelihood estimations of the parameters can be obtained by 

maximizing the 𝐿1(𝜷, 𝜸, 𝝈𝟐) and 𝐿2(𝜼𝟏, … , 𝜼𝑲 , 𝝂𝟏, … , 𝝂𝑲) independently. Therefore, to estimate the corresponding 

parameters in 𝐿2(𝜼𝟏, … , 𝜼𝑲, 𝝂𝟏, … , 𝝂𝑲), standard softwares such as the glm function in R can be used. We employed 

the optim function in R and utilized the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to estimate the 

corresponding parameters in 𝐿1(𝜷, 𝜸, 𝝈𝟐) as well. By accepting the estimates of parameters, we calculated the CIFs 

and obtained their confidence intervals using the bootstrapping method. In the bootstrapping method, we re-sampled 

the original data 200 times and estimated the CIFs in each iteration. We used a quantile-based bootstrap method to 

compute 95% confidence bands for CIFs. 

6. Simulation 

We conducted a simulation study of the competing risks-cure-frailty model to assess the performance of the estimators 

when the proposed model is correct and compare the competing risks-cure-frailty model with a competing risks cure 

one (without frailty term). We assumed that there are 500 patients, each of whom can experience event 1 (the event 

of interest) or event 2 (competing event) or can be subjected to right-censoring. We also assumed a fraction of patients 

could be cured (which means they are immune to two causes of failure). The study cut-off time is 16 years after 

inclusion in the study. For simplicity, we only considered two covariates, 𝑋 and 𝑍, for the incidence and latency parts, 

respectively. The covariates 𝑋 and 𝑍 were both generated from a Bernoulli distribution with the probability of success 

equal to 0.5. For each patient (𝑖), the survival data based on the competing risks-cure-frailty model were generated as 

follows: 

The censoring times 𝐶𝑖 were generated for each patient from a uniform distribution with a maximum of 16 years. 

1. The frailty term (𝑊𝑖) was generated from a gamma distribution with mean equals one and variance 

equals 𝜎2. 

2. The cure status was generated from a Bernoulli distribution with the probability 

1 − 𝜋𝑖 = 1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) = 1 −
exp(𝛽0 + 𝛽1𝑥𝑖)

1 + exp(𝛽0 + 𝛽1𝑥𝑖)
. 

3. The overall failure time (�̃�𝑖) was generated from a Weibull-Gamma frailty model as 

ℎ∗(𝑡𝑖|𝑌𝑖 = 1, 𝑊𝑖 = 𝑤𝑖 , 𝑍𝑖 = 𝑧𝑖) = ℎ0∗(𝑡𝑖|𝑌𝑖 = 1). 𝑤𝑖 . exp(𝛾𝑧𝑖), 

where 

𝑊𝑖~Gamma (𝑠ℎ𝑎𝑝𝑒 = 1
𝜎2⁄ , scale = 𝜎2), 

and  
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    ℎ0∗(𝑡𝑖|𝑌𝑖 = 1) = 𝜆𝑘𝑡𝑖
𝑘−1   ,    𝑘 > 0 , 𝜆 > 0 . 

 

Table 1: Estimated bias and mean squared error (MSE) of regression parameters based on simulated data in the 

competing risks cure frailty model 

𝜎2 

cure 

 rate for 

X=1 

parameter 

true 

value 

competing risks cure 

frailty model 
competing risks cure model 

bias MSE bias MSE 

0.5 

25% 

𝛽0 -0.9 0.0023 0.0199 -0.0018 0.0200 

𝛽1 2.0 0.0041 0.0406 -0.0004 0.0402 

γ 0.5 0.0107 0.0350 -0.1343 0.0439 

k 2.0 0.0205 0.0325 -0.5001 0.2574 

λ 0.5 0.0013 0.0057 -0.0538 0.0053 

𝜎2 0.5 0.0050 0.0346 - - 

50% 

𝛽0 1.0 0.0146 0.0199 0.0061 0.0194 

𝛽1 -1.0 -0.0186 0.0357 -0.0145 0.0352 

γ 0.5 0.0122 0.0304 -0.1343 0.0389 

k 2.0 0.0186 0.0284 -0.5074 0.2639 

λ 0.5 0.0012 0.0050 -0.0532 0.0048 

𝜎2 0.5 0.0074 0.0328 - - 

80% 

𝛽0 1.0 0.0052 0.0211 -0.0012 0.0207 

𝛽1 -2.4 -0.0127 0.0483 -0.0050 0.0480 

γ 0.5 0.0137 0.0388 -0.1379 0.0453 

k 2.0 0.0232 0.0427 -0.5007 0.2655 

λ 0.5 0.0021 0.0060 -0.0515 0.0051 

𝜎2 0.5 0.0067 0.0430 - - 

1 

20% 

𝛽0 -0.9 -0.0082 0.0194 -0.0326 0.0197 

𝛽1 2.0 0.0248 0.0476 -0.0196 0.0427 

γ 0.5 0.0107 0.0544 -0.2233 0.0763 

k 2.0 0.0350 0.0499 -0.7443 0.5587 

λ 0.5 0.0125 0.0097 -0.0855 0.0094 

𝜎2 1 0.0388 0.1302 - - 

50% 

𝛽0 1.0 0.0078 0.0241 -0.0559 0.0233 

𝛽1 -1.0 -0.0144 0.0418 0.0154 0.0376 

γ 0.5 0.0221 0.0486 -0.2261 0.0731 

k 2.0 0.0370 0.0440 -0.7486 0.5643 

λ 0.5 0.0093 0.0082 -0.0849 0.0090 

𝜎2 1 0.0475 0.1107 - - 

80% 

𝛽0 1.0 0.0209 0.0260 -0.0456 0.0234 

𝛽1 -2.4 -0.0303 0.0530 0.0138 0.0486 

γ 0.5 0.0152 0.0587 -0.2207 0.0751 

k 2.0 0.0411 0.0579 -0.7463 0.5624 

λ 0.5 0.0129 0.0108 -0.0856 0.0095 

𝜎2 1 0.0524 0.1443 - - 
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Table 1 (continued): Estimated bias and mean squared error (MSE) of regression parameters based on simulated data 

in the competing risks cure frailty model 

𝜎2 

cure 

 rate for 
X=1 

parameter 

true 

value 

competing risks cure 

frailty model 
competing risks cure model 

bias MSE bias MSE 

1.5 

20% 

𝛽0 -0.9 -0.0197 0.0222 -0.0681 0.0259 

𝛽1 2.0 0.0301 0.0554 -0.0249 0.0394 

γ 0.5 0.0136 0.0769 -0.2772 0.1161 

k 2.0 0.0325 0.0696 -0.8460 0.7206 

λ 0.5 0.0374 0.0180 -0.1072 0.0142 

𝜎2 1.5 0.0299 0.3053 - - 

50% 

𝛽0 1.0 -0.0013 0.0370 -0.1493 0.0420 

𝛽1 -1.0 -0.0089 0.0470 0.0602 0.0399 

γ 0.5 -0.0045 0.0613 -0.2717 0.0963 

k 2.0 0.0310 0.0565 0.8520 0.7289 

λ 0.5 0.0453 0.0142 -0.1080 0.0133 

𝜎2 1.5 0.0186 0.2742 - - 

80% 

𝛽0 1.0 0.0123 0.0431 -0.1488 0.0446 

𝛽1 -2.4 -0.0331 0.0663 0.0793 0.0577 

γ 0.5 0.0199 0.0850 -0.2616 0.0999 

k 2.0 0.0431 0.0832 -0.8502 0.7268 

λ 0.5 0.0309 0.0239 -0.1103 0.0144 

𝜎2 1.5 0.0861 0.4357 - - 

 

4. If a patient is cured, then the overall failure time is �̃�𝑖 = 200, else the overall time is the value of �̃�𝑖 in step 

(4). 

5. The overall observed time for patient 𝑖 is 𝑇𝑖 = min(�̃�𝑖 , 𝐶𝑖). 
6. After generating overall failure times, the relative cause-specific hazards are constant in the intervals: (0,1], 

(1,2], and (2,∞) such that the favoring cause 2 over cause 1 was π1(t)=0.50, 0.30, 0.20  in the intervals. In 

other words, based on the equation (12), the values of cause-specific relative hazards can be specified by the 

following equations: 

 

𝜋1(𝑡) =
exp (0.01 × 1(0,1](𝑡) − 0.85 × 1(1,2](𝑡) − 1.39 × 1(2,16](𝑡))

1 + exp (0.01 × 1(0,1](𝑡) − 0.85 × 1(1,2](𝑡) − 1.39 × 1(2,16](𝑡))
 

𝜋2(𝑡) = 1 − 𝜋1(𝑡). 

The parameter values for incidence were specified as (𝛽0, 𝛽1) ∈ {(−0.9 ,2), (1, −1), (1, −2.4)}, leading to three 

scenarios with various amounts of cure proportions, 25, 50 and 80% for 𝑋 = 1, respectively. The parameter values 

for latency were specified as 𝛾 = 0.5, 𝜆 = 0.5, 𝑘 = 2, 𝜎2 ∈ {0.5,1,1.5}, leading to three scenarios with various 

heterogeneity amounts. Since the parameters in relative cause-specific hazard were independently estimated from 

other parameters and we used the standard software (glm function in R) to estimate these parameters, we did not 

include these parameters in the simulation. We fitted a competing risks-cure-frailty model and a competing risks-cure 

model to the simulated data. In the competing risks-cure-frailty model, the incidence and latency components of the 

model were assumed to have the same form as the correct model. In the competing risks-cure model, the incidence 

part and the relative cause-specific hazard had the same form as the correct model, but for the conditional (on 𝑌 = 1) 

total hazard, we employed a Weibull model (without frailty term). 
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Table 2: Estimated bias and root mean squared error (RMSE) of CIF (for cause 2) based on simulated data in the 

competing risks cure frailty model 

𝜎2 
cure 

 rate 
time 

cure with a frailty Model cure without a Frailty Model 

bias RMSE bias RMSE 

0.5 

20% 

0.25 0.0000 0.0045 0.0105 0.0117 

1.00 0.0002 0.0229 -0.0098 0.0236 

2.00 0.0013 0.0259 -0.0083 0.0273 

5.00 0.0012 0.0261 -0.0038 0.0261 

10.00 0.0013 0.0261 -0.0047 0.0262 

50% 

0.25 0.0000 0.0045 0.0072 0.0080 

1.00 0.0003 0.0164 -0.0063 0.0167 

2.00 0.0002 0.0194 -0.0063 0.0202 

5.00 0.0002 0.0196 -0.0033 0.0197 

10.00 0.0010 0.0197 -0.0039 0.0198 

80% 

0.25 0.0000 0.0014 0.0105 0.0117 

1.00 0.0004 0.0090 -0.0021 0.0087 

2.00 0.0003 0.0114 -0.0021 0.0113 

5.00 0.0002 0.0119 -0.0009 0.0117 

10.00 0.0003 0.0119 -0.0011 0.0117 

1 

20% 

0.25 0.0002 0.0050 0.0107 0.0119 

1.00 0.0018 0.0232 -0.0133 0.0245 

2.00 0.0011 0.0253 -0.0171 0.0300 

5.00 0.0010 0.0254 -0.0073 0.0262 

10.00 0.0010 0.0256 -0.0097 0.0268 

50% 

0.25 0.0000 0.0030 0.0103 0.0110 

1.00 0.0003 0.0154 -0.0100 0.0170 

2.00 0.0001 0.0175 -0.0124 0.0210 

5.00 -0.0002 0.0181 -0.0058 0.0187 

10.00 -0.0002 0.0183 -0.0073 0.0192 

80% 

0.25 0.0000 0.0015 0.0040 0.0045 

1.00 -0.0004 0.0085 -0.0043 0.0086 

2.00 -0.0005 0.0106 -0.0052 0.0111 

5.00 -0.0006 0.0114 -0.0027 0.0113 

10.00 -0.0006 0.0116 -0.0033 0.0116 

1.5 

20% 

0.25 0.0009 0.0053 0.0111 0.0123 

1.00 0.0040 0.0235 -0.0118 0.0204 

2.00 0.0034 0.0257 -0.0148 0.0250 

5.00 0.0024 0.0257 -0.0070 0.0222 

10.00 0.0019 0.0260 -0.0085 0.0227 

50% 

0.25 0.0005 0.0032 0.0108 0.0114 

1.00 0.0024 0.0148 -0.0110 0.0171 

2.00 0.0021 0.0169 -0.0138 0.0212 

5.00 0.0013 0.0173 -0.0066 0.0184 

10.00 0.0009 0.0176 -0.0083 0.0191 

80% 

0.25 0.0000 0.0016 0.0042 0.0047 

1.00 -0.0002 0.0082 -0.0046 0.0085 

2.00 -0.0004 0.0099 -0.0056 0.0109 

5.00 -0.0006 0.0107 -0.0029 0.0109 

10.00 -0.0008 0.0109 -0.0036 0.0113 

 

After estimating the regression parameters, the cumulative incidences of 𝑗 = 2 for the susceptible patient 𝑖 with 𝑍 =
1 and 𝑋 = 1 were estimated at time points {0.25, 1, 2, 5,10}. The bias and MSE of the regression parameters as well 
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as the bias and root of MSE (RMSE) of the CIFs were reported under various heterogeneity and cured fractions. We 

ran each scenario 1000 times. The results of the simulation study showed the efficiency of the competing risks-cure-

frailty model. To check the subject with more precision, we present the simulation results based on different 

heterogeneity and cured fraction values. 

6.1. Low heterogeneity 

In the low level of heterogeneity (𝜎2 = 0.5 ) and various levels of cured fraction, the bias and MSEs of regression 

parameters (𝛾) in the latency component for competing risks cure-frailty model were less than the model without 

frailty term. Further, the bias of the regression parameter in the incidence part (𝛽1) for the model without frailty term 

was a little less than the competing risks–cure-frailty model, although its MSE was almost the same (Table 1). The 

biases and RMSEs of CIFs in the competing risks-cure-frailty model were less than the model without frailty term in 

all of the time points, but the difference decreased in the last follow-up times (Table 2).  

6.2. Moderate heterogeneity 

In the moderate heterogeneity (𝜎2 = 1) and the low level of cured fraction, the biases and MSEs of regression 

parameters in the latency and incidence parts of the competing risks-cure-frailty model were less than the model 

without frailty. However, in the moderate and high levels of cured fraction, the biases and MSEs of the parameters in 

the incidence part of the competing risks-cure-frailty model were a little more than the model without frailty (Table 
1). The biases and MSEs of regression parameters in the latency part of the competing risks-cure-frailty model were 

smaller compared to the model without frailty (Table 1). Comparison of the biases and RMSEs of CIFs in the 

competing risks-cure-frailty model and the model without frailty term indicated that the model with frailty term was 

more efficient than the model without frailty term in all of the time points. However, the differences were more evident 

in the early time of follow-up (Table 2).   

6.3. High heterogeneity 

In the high heterogeneity (𝜎2 = 1.5) and all levels of cured fraction, the biases and MSEs of competing risks-cure-

frailty model were less than the model without frailty term (Table 1). The biases and RMSEs of CIFs in the competing 

risks-cure-frailty model were less than the model without frailty term in all of the time points, and the difference was 

more evident in the early time of follow-up (Table 2). 

 

7. Analysis of breast cancer data 

The data resource of this paper was part of a historical cohort study that included 550 breast cancer patients who had 

been referred to Qaem or Omid hospitals of Mashhad University of Medical Sciences from 2001 to 2007 and followed 

up till March 2017 (Ghavami et al., 2017). The inclusion criteria of the study were being female and had received 

therapy through Breast Conservation Surgery (BCS) or Modified Radical Mastectomy (MRM) surgical methods. 

Metastatic breast cancer patients were excluded from the study. According to the conditions, all patients received 

adjuvant therapies, including radiotherapy, chemotherapy, and hormone therapy. The start time of the study was the 

date of operation and the end time was the loco-regional relapse or distant metastasis or the last confirmed date of 

breast cancer disease-free status. The endpoint of interest was the time from operation to loco-regional relapse (cause 

1) in the presence of a competing cause, that is, distant metastasis (cause 2). Additionally, some prognostic medical 

factors, including hormone receptor status, tumor size, and lymph node status (the number and location of lymph 

nodes with cancer), were gathered. The tumor size and lymph node status were reported based on the American Joint 

Committee on Cancer classification (Cancer, 2002). 

 

 

 

 



Pak.j.stat.oper.res.  Vol.17  No. 3 2021 pp 591-605  DOI: http://dx.doi.org/10.18187/pjsor.v17i3.3397 

 

 
A competing risks cure frailty model: An application to relapse-free survival of breast cancer patients 600 

 

Table 3: Prognostic factors of patients 

Characteristics Count (%) 

Hormone Receptor  

      negative 200 (36.4) 

      positive 350 (63.6) 

Tumor stage  

      T1 69 (12.5) 

      T2 319 (58.0) 

      T3 131 (23.8) 

      T4 31 (5.6) 
N stage  

      N0 204 (37.1) 

      N1 192 (34.9) 

      N2 109 (19.8) 

      N3 45 (8.2) 
 

 

Figure1: The Kaplan-Meier disease-free survival for Iranian breast cancer patients. 

These prognostic factors are reported in Table 3. The maximum follow-up time was 15.6 years. Out of 550 patients, 

171 individuals (30.9%) experienced loco-regional or distant metastasis. In the Kaplan-Meier plot of disease-free 

survival, the curve reaches a plateau after ten years, indicating the presence of cured fraction (Figure 1). Also, the 

central assumptions of cure models, that is sufficient follow-up time and the presence of cured fraction, were tested 

and confirmed by Maller and Zhou methods (Maller and Zhou, 1996). Owing to the properties of the data, the presence 

of cured fraction and competing risk (distant metastasis), and for evaluation of heterogeneity due to unobserved 

covariates, we used the introduced model in section 2.2, and a similar model without frailty term. We fitted these 

models without selecting variables; the results of fitting these models are presented in Table 4. 
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Table 4: Comparison of the results of analysis the Iranian breast cancer data by competing risks cure model and 

competing risks cure frailty model 

variables competing risks cure model competing risks cure frailty model 

OR* | HR$ (95%CI) p-value OR* | HR$ (95%CI) p-value 

Incidence part     

Intercept (se) -2.38(0.28) <0.001 -2.32 (0.32) <0.001 

Hormone receptor     

negative  - -   

positive 1.11 (0.70, 1.77) 0.652 1.21 (0.73, 2.01) 0.460 

N stage     

N0 - - -  
N1 3.98 (2.10, 7.56 )  < 0.001 3.79 (1.95, 7.36) < 0.001 

N2|N3 13.29 (7.02, 25.19) < 0.001 13.81 (6.94, 27.49) < 0.001 

Tumor stage     

T1|T2 - - - - 

T3|T4 2.66 (1.66, 4.28) < 0.001 2.58 (1.55, 4.30) < 0.001 

Latency part     

Hormone receptor     

negative  - - - - 

positive 0.55 (0.38, 0.80) 0.002 0.28 (0.13, 0.60) 0.001 

N stage     

N0 - - - - 

N1 1.22 (0.56, 2.67) 0.611 2.05 (0.62, 6.84) 0.241 
N2|N3 2.28 (1.10, 4.71) 0.027 4.56 (1.44, 14.44) 0.010 

Tumor stage     

T1|T2 - - - - 

T3|T4 1.23 (0.84, 1.80) 0.286 2.32 (1.12, 4.83) 0.024 

Variance of frailty (se) - - 1.34 (0.63) 0.035 

Scale parameter (se) 0.10 (0.036) 0.007 0.05 (0.030) 0.083 

Shape parameter (se) 1.64 (0.105) < 0.001 2.49 (0.34) < 0.001 

Relative cause-specific 

hazard part 
Parameter estimation (se) p-value Parameter estimation (se) p-value 

Hormone receptor     

negative  - - - - 

positive -1.04 (0.38) 0.006 -1.04 (0.38) 0.006 

N stage     

N0 - - - - 
N1 -0.90 (0.62) 0.148 -0.90 (0.62) 0.148 

N2|N3 -1.25 (0.60) 0.038 -1.25 (0.60) 0.038 

Tumor stage     

T1|T2 - - - - 

T3|T4 0.01 (0.40) 0.979 0.01 (0.40) 0.979 

𝟏{𝑡 ∈ (0,1.54]} 1.27(0.64) 0.047 1.27(0.64) 0.047 

𝟏{𝑡 ∈ (1.54,2.5]} 0.55(0.65) 0.403 0.55(0.65) 0.403 

𝟏{𝑡 ∈ (2.5,4.07]} 0.26(0.57) 0.647 0.26(0.57) 0.647 

𝟏{𝑡 ∈ (4.07,16]} 0.51(0.64) 0.432 0.51(0.64) 0.432 

AIC 1385.258  1373.832  

* Odds Ratio            $ Hazards Ratio 

Based on a likelihood ratio test, the model with a frailty term was better than the model without frailty (χ2 = 13.43,

p < 0.001). Further, the Akaike information criterion (AIC) in the frailty model and the model without frailty were 

1373.83 and 1385.26, respectively, which confirmed that the frailty model was more suitable than the other. An 

interesting point in the compared results of these models is that the effect of tumor stage in the latency part was 

significant in the model with frailty but was not significant in the model without frailty (Table 4). According to the 



Pak.j.stat.oper.res.  Vol.17  No. 3 2021 pp 591-605  DOI: http://dx.doi.org/10.18187/pjsor.v17i3.3397 

 

 
A competing risks cure frailty model: An application to relapse-free survival of breast cancer patients 602 

 

competing risks cure-frailty model in the incidence part of the model, the N-stage and T-stage significantly affected 

being susceptible (uncured). However, the hormone receptor did not have any significant effect (Table 4). After 

estimating the parameters of the competing risks-cure-frailty model, the CIFs with bootstrapping confidence intervals 

were plotted for evaluating the cause-specific cumulative incidence of time to loco-regional relapse. For example, in 

Figure 2, we compared the cumulative incidence of time to loco-regional relapse with the cumulative incidence of 

time to distant relapse in patients with positive hormone receptors, tumor size more than 5 cm, and more than 4 lymph 

nodes metastases. Table 5 shows the estimated relative cause-specific hazard implied by the fitted model with 

associated standard errors for patients with tumor size more than 5 cm, more than 4 lymph nodes metastases, and 

positive hormone receptors. The dominating cause of failure was distant metastasis, and the probability of relapse in 

the first quartile was near twice the probability in other quartiles. 

Table 5:  Estimated piecewise constant relative cause-specific hazards of relapse and their standard errors for 

patients with the tumor size more than 5 cm, more than three lymph nodes metastases and positive hormone 

receptors. 

Time (0, 1.54] (1.54, 2.5] (2.5, 4.07] (4.07,16] 

Relapse 0.26(0.08) 0.15(0.06) 0.12(0.06) 0.14(0.07) 

 

Figure 2:  The estimated cumulative incidences of time to loco-regional relapse and time to distant relapse based 

on competing risks cure frailty model for patients with the tumor size more than 5 cm, more than three lymph nodes 

metastases and positive hormone receptors, with the 95% confidence intervals. 

 

 

8. Discussion 

Based on our search, no study has combined competing risks models with cure models and univariate frailty models; 

although few articles have been published regarding the combination of competing risks models with cure models 

(Choi, Huang, and Cormier, 2015; Eloranta et al., 2014; Nicolaie, Taylor, and Legrand, 2018). The competing risks-

cure-frailty model is suitable for conditions in which there is clinical evidence of a cured fraction (non-susceptible 

patients) in a cohort. Also, there is heterogeneity among susceptible patients, which causes some individuals to 
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experience failure faster than other patients with similar prognostic factors. Furthermore, the introduced model can 

estimate the cumulative incidence of time to a specific cause of failure in the presence of competing risks. Therefore, 

in the competing risks-cure-frailty model, besides the test of heterogeneity within susceptible patients, we can also 

infer about the effect of covariates on the chance of cure and the risk of failure, regardless of the cause of failure. In 

addition, we can set parameters on the relative position of each failure type among all failure types. An appealing 
technical characteristic of our model that has been adapted from the vertical modeling of competing risks is that the 

parameters of the two components in likelihood (14) can be estimated independently (Nicolaie, van Houwelingen, and 

Putter, 2015; Nicolaie, van Houwelingen and Putter, 2010). So, the standard packages such as glm in R can be used 

for relative cause-specific hazards. For maximizing the other part of the likelihood function (14), the optim function 

in R can be employed (R Team, 2008). In this study, we used individual frailty, but it is possible to extend this model 

by using shared frailty for recurrent events or cluster situations. Because vertical modeling can be naturally employed 

for complex competing risks data such as competing risks with the missing cause of failure, the competing risks-cure-

frailty model can be extended similarly for masked competing risks (Nicolaie, van Houwelingen, and Putter, 2015). 

In this study, we used a Weibull Gamma frailty model, but other parametric or semi-parametric models can be 

employed for different real data. Assessment of the real data of Iranian female breast cancer patients in this study 

showed the necessity to consider competing risk, cured fraction, and heterogeneity in modeling. The introduced 

competing risks-cure-frailty model covered these complex situations as well. Based on AIC, it was necessary to 
include a frailty term in the model. Compared to the study of Ghavami et al., 2017, we reported the results of both the 

competing risks cure model and competing risks cure frailty model to emphasize the importance of examining 

heterogeneity. We can see the effect of the tumor stage on the time of failure (loco-regional relapse or metastasis) in 

susceptible patients was not significant in the competing risks cure model while it is significant in the competing risks 

cure frailty model. It is closer to many studies that have demonstrated that the tumor stage is a prognostic factor for 

disease-free survival (Forse et al., 2013; Rondeau et al., 2013). In our study, the increased positive lymph nodes raised 

the hazard of failure for susceptible patients and decreased the chance of cure, which agrees with another study in 

Japan (Asano et al., 2013). An impressive result in our study was that the patients with positive hormone receptors 

had a significant effect on short-term disease-free survival but did not have any significant effect on long-term disease-

free survival. It is in accordance with medical findings in some studies that have shown that the hazard of recurrence 

in breast cancer patients with negative hormone receptor is more than patients with positive hormone receptor tumors 
in the first years after diagnosis, but this difference begins to lower after this time and finally disappears (Bentzon et 

al., 2008; Moffat, 2014). 

9. Conclusion 

In a survival study with competing risks and cured fraction, heterogeneity due to unobserved covariates between 
susceptible patients can destroy the estimates of parameters in the latency part of the cure model and the CIFs. In this 

complex situation, the competing risks-cure-frailty model introduced in this study can be recommended for assessing 

homogeneity in the susceptible population. This model can estimate the rate of cure and determine the prognostic 

factors that influence short-term and long-term survival. Additionally, the proposed model can estimate the cause-

specific cumulative incidences. 
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