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Abstract  

 

Semi-Markov processes can be considered as a generalization of both Markov and renewal processes. One of the 

principal characteristics of these processes is that in opposition to Markov models, they represent systems whose 

evolution is dependent not only on their last visited state but on the elapsed time since this state. Semi-Markov 

processes are replacing the exponential distribution of time intervals with an optional distribution. In this paper, we 

give a statistical approach to test the semi-Markov hypothesis. Moreover, we describe a Monte Carlo algorithm 

able to simulate the trajectories of the semi-Markov chain. This simulation method is used to test the semi-Markov 

model by comparing and analyzing the results with empirical data. We introduce the database of Network traffic 

which is employed for applying the Monte Carlo algorithm. The statistical characteristics of real and synthetic data 

from the models are compared. The comparison between the semi-Markov and the Markov models is done by 

computing the Autocorrelation functions and the probability density functions of the Network traffic real and 

simulated data as well. All the comparisons admit that the Markovian hypothesis is rejected in favor of the more 

general semi Markov one. Finally, the interval transition probabilities which show the future predictions of the 

Network traffic are given. 

 
 

Key Words: Semi-Markov processes, Monte Carlo simulation, Synthetic time series, Hypothesis test, Network 

Traffic. 
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1. Introduction  

   Semi-Markov processes (SMPs) are a broad class of stochastic processes that overgeneralize the Markov and 

renewal processes at the same time. These processes have been introduced independently of each other by (Levy, 

1954)  and (Smith, 1955). The (SMPs) are a very important and powerful tool for capturing the main features and 

specifying the long run behavior of the data. The waiting time distribution functions in the states of these processes 

do not have any restrictions and can be of any type, and this characteristic is against the Markov chain assumption in 

which the waiting times in a state before making a transition to another state are geometrically distributed. Therefore, 

the (SMPs) have become progressively important in statistical modeling and have been applied successfully in a wide 

range of fields such as  reliability (Malefaki, 2014), geophysics (Pertsinidou, 2017), queuing theory (Peschansky, 

2015), finance (D'Amico, 2018) , wireless systems (Vishnevski, 2017), etc. See (Georgiadis, 2015), (Devolder, 
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P.,Janssen,J. and R. Manca, 2015)  for studying the semi-Markov process(SMP) in details. The advantage of the (SMP) 

in comparison with the Markov model is additionally confirmed by employing a statistical test of a hypothesis. As an 

application, we apply the (SMP) to the Network traffic time series. Traffic analysis is a fruitful and wide research area. 

Realizing the characteristics of traffic generated by new applications and flowing in current networks permits us to 

design new architectures and to improve their performance effectively. Predicting Network traffic plays an important 

role in many fields such as adaptive applications, network management, congestion control, and traffic engineering. 

The Network traffic was forecasted by different mathematical models such as follows. (Dainotti,A.,Pescape,A., 

Rossi,P.S.,Palmieri,F. ,Ventre,G.l, 2008) suggested a Hidden Markov Model for Internet traffic sources at the packet 

level, jointly analyzing Inter Packet time and size. (Marnerides, A.K.,Pezaros, D.P., Hutchison,D., 2018) focused on 

the validation of the statistical characteristics of stationarity, Gaussianity and linearity of the packet interarrival time 

processes by 3rd order statistics. (Katris, 2015) modeled the Network traffic by the time series and Neural Network 

approaches. (Adeyemi,O.J., Popoola,S.I., Atayero, A.A., Afolayan,D.G., Ariyo, M., Adetiba,E., 2018) investigated 

the Internet traffic data based on regression Analysis and the Analysis of Variance(ANOVA). 

  The possibility to have synthetic data of Network traffic is a strong instrument for traffic engineering plans such as 

traffic classification, link capacity, and anomaly detection. There are many models for the generation of synthetic data 

such as Autoregressive models (Kavasseri, 2009), Neural Network models (Guoa, Z., Zhaob, W., Luc, H.,Wang, J., 

2012). Markov chains were frequently applied to generate synthetic data (Nfaoui,H.,Essiarab, H., Sayigh,A.A.M., 

2004), (Hocaoglua,F., Gerekb, O., Kurbanb,M., 2010). We applied the semi-Markov chain which can perform better 

than the Markov models by generating synthetic time series data more precisely. Moreover, the Monte Carlo method 

is a stochastic simulation technique based on pseudo-random numbers which allow us to forecast the system's 

behavior. The combination of this method with the semi-Markov model can yield precise results. This modified 

method based on the semi-Markov simulation method was applied by (Masala, 2014) and (D'Amico,G. ,Manca, R. 

,Corini, C., Petroni, F.,Prattico, F., 2016) for wind speed forecasting and by (D'Amico,G. ,Petroni,F., 2011)  for stock 

price changes. 

This paper is organized as follows. In section 2 we illustrate the theoretical aspects of the semi-Markov model. Section 

3 describes the application of the model applied to a real data set by testing the semi-Markov hypothesis, simulating 

with the Monte Carlo method and calculating the Autocorrelation functions and probability density functions of the 

network traffic. Moreover, the Network traffic forecasting is given with the semi-Markov model. At last, in section 4 

we give some concluding remarks. 

 

2. Semi markov process 

We define a discrete-time semi-Markov process in this section. Let (Ω, ℱ, (ℱ𝑛)𝑛∈𝑁,P) be a complete filtered 

probability space and let E={1,2,…,m} be a finite space. A sequence of random variables 𝐽 = (𝐽𝑛)𝑛∈𝑁∗ , where 𝐽𝑛: Ω →
𝐸 is called time-homogenous Markov chain if  

𝑃(𝐽𝑛+1=𝑗|𝐽0 = 𝑖0, … , 𝐽𝑛 = 𝑖) = 𝑃(𝐽𝑛+1=𝑗|𝐽𝑛 = 𝑖) = 𝑝𝑖𝑗    ∀𝑖, 𝑗 ∈ 𝐸, ∀𝑛 ∈ 𝑁  (1) 

 

The stochastic matrix 𝑃 = (𝑝𝑖𝑗)𝑖,𝑗∈𝐸 is called a Markov transition probability. 

Suppose 𝑋 = (𝑋𝑛)𝑛∈𝑁 be a sequence of positive random variables with values in N. Define 𝑇 = (𝑇𝑛)𝑛∈𝑁∗ as arrival 

times as: 

𝑇𝑛 = 𝑋0 + 𝑋1 + ⋯ + 𝑋𝑛−1 = 𝑇𝑛−1 + 𝑋𝑛−1  ∀𝑛 ≥ 1        (2) 

 

which shows the successive instants when a specific event occurs. Moreover, 𝑇0 ∈ 𝑍 is the initial time. The (𝑋𝑛)𝑛∈𝑁 

are called waiting times which indicate the times between occurrences of two consecutive events. A random sequence 

T such that the waiting times which indicate the times 𝑋 = (𝑋𝑛)𝑛∈𝑁∗ form an iid sequence, and 𝑇0 = 0 𝑎. 𝑠., and 𝑇𝑛 is 

called a renewal chain and the random variables 𝑇𝑛 , 𝑛 ≥ 0 are called renewal times. The increasing random sequence 

𝑁 = (𝑁(𝑡))𝑡∈𝑁∗ defined by  

𝑁(𝑡) = max{𝑛 ∈ 𝑁|𝑇𝑛 ≤ 𝑡}            (3) 

 

is the counting process associated with the renewal chain T which shows the number of events occurred. 

The function 𝑄 = (𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁∗) which is a matrix-valued function is a discrete-time cumulated semi-

Markov kernel if: 

●𝑄𝑖𝑗(0) = 0, ∀𝑖, 𝑗 ∈ 𝐸; 

●𝑄𝑖𝑗(𝑡) ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁∗; 

●(lim
𝑡→∞

𝑄𝑖𝑗(𝑡) )𝑖,𝑗∈𝐸 is a Markov transition probability. 
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The function 𝑞 = (𝑞𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁∗) which is a matrix-valued function is a discrete-time semi-Markov kernel 

if: 

●𝑞𝑖𝑗(0) = 0, ∀𝑖, 𝑗 ∈ 𝐸; 

●𝑞𝑖𝑗(𝑡) ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁∗; 

●(∑ 𝑞𝑖𝑗(𝑡)∞
𝑡=1  )𝑖,𝑗∈𝐸 is a Markov transition probability. 

 

We assumed that (𝐽, 𝑇) = (𝐽𝑛 , 𝑇𝑛)𝑛∈𝑁∗ is a Markov renewal process if it satisfies 

 

𝑃(𝐽𝑛+1=𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝜎(𝐽ℎ, 𝑇ℎ), 0 ≤ ℎ ≤ 𝑛) = 𝑃(𝐽𝑛+1=𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝐽𝑛 = 𝑖),   
                                                                                                   ∀𝑛 ∈ 𝑁,   𝑖, 𝑗 ∈ 𝐸         (4) 

 

where (𝜎(𝐽ℎ, 𝑇ℎ), ℎ ≤ 𝑛) indicates the set of past values of the Markov renewal process (𝐽, 𝑇). The associated semi-

Markov kernel q is defined by 

 

𝑞𝑖𝑗(𝑡) = 𝑃(𝐽𝑛+1=𝑗, 𝑇𝑛+1 − 𝑇𝑛 = 𝑡|𝐽𝑛 = 𝑖)     (5) 

 

The cumulated semi-Markov kernel associated with the Markov renewal chain (𝐽, 𝑇) is as follows: 

Qij(t) = P(Jn+1=j, Xn ≤ t|Jn = i) = ∑ qij(k)

t

k=0

           (6) 

It can be realized that 

 

pij =  P(Jn+1=j|Jn = i)=lim
t→∞

Qij(t) 

=∑ qij(t)∞
t=0     ∀i, j ∈ E      (7) 

 

The cumulative conditional and unconditional distributions of 𝑋𝑛 are defined as follows, respectively: 

Gij(t) = P(Xn ≤ T|Jn = i, Jn+1=j) = {

Qij(t)

pij
if pij ≠ 0

1 if  pij = 0
      (8) 

Hi(t) = P(Xn ≤ T|Jn = i) = ∑ Qij(t)

j∈E

      (9) 

∀𝑛 ∈ 𝑁, 𝑖 ∈ 𝐸.  The 𝐺𝑖𝑗(. ) Presents the waiting time distribution function in the state i given that, with the next 

transition, the process will be in the state j. The sojourn time distribution 𝐺𝑖𝑗(. ) can be any distribution function which 

is superiority to a Markov model. 

Now it is feasible to define the homogenous semi-Markov chain Z(t) associated with the Markov renewal chain (𝐽, 𝑇) 

as  

Z(t) = 𝐽𝑁(𝑡), ∀𝑡 ∈ 𝑁     (10) 

 

Then, Z(t) represents the position of the embedded Markov chain at time t. The transition probability of the semi-

Markov chain Z is the matrix-valued function defined as: 

 

∅𝑖𝑗(𝑡) = 𝑃(Z(t) = 𝑗|Z(0) = 𝑖, 𝑇𝑁(0) = 0)   ∀𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁∗     (11) 

 

Moreover, the transition probability can express recursively as a function of the semi-Markov kernel as: 

Φ𝑖𝑗(𝑡) = 𝛿𝑖𝑗[1 − 𝐻𝑖(𝑡)] + ∑ ∑ 𝑞𝑖𝑙(𝜏)Φ𝑙𝑗(𝑡 − 𝜏)    ∀𝑖, 𝑗 ∈ 𝐸, 𝑡 ∈ 𝑁        (12)

𝑡

𝜏=1𝑙𝜖𝐸

 

where 𝛿𝑖𝑗 is the Kronecker symbol. 

The transition probability is stated as a sum of two expressions. The first one is the probability of having no transition 

up to k while the second one denotes the probability to have at least one transition. The evolution of the semi-Markov 

chain is completely defined by this result and once the semi-Markov kernel is known it helps us to solve numerically 

the process. 
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(SMPs) are a very appropriate method to illustrate phenomena that exhibit a duration effect which shows the time 

system spent in a state influence its transition probabilities. An example of a semi-Markov trajectory is shown in Fig. 

1. The sojourn and transition times are depicted in this figure. Moreover, the evolution of a semi-Markov chain from 

an initial state can be examined by the corresponding transition probability. 

 
 

Figure1: A semi-Markov trajectory is revealed as a function of time 

 

3.Application to real data 

 

3.1. TEST 

The semi-Markov hypothesis is tested by utilizing a statistical test suggested by (Silvestrov, 2004) and developed in 

this paper. The waiting time distribution for Markov models is the geometric distribution and other distributions for 

the sojourn times demonstrate that the Markov modeling is improper. In this case, the model can be regarded as semi-

Markovian. The probability distribution function of the sojourn time in state i before making a transition to state j has 

been denoted by 𝐺𝑖𝑗(. ). Define the corresponding probability mass function by  

 

𝑔𝑖𝑗(𝑡) = 𝑃(𝑇𝑛+1 − 𝑇𝑛 = 𝑡|𝐽𝑛 = 𝑖, 𝐽𝑛+1=𝑗) 

                      = {
𝐺𝑖𝑗(𝑡) − 𝐺𝑖𝑗(𝑡 − 1) 𝑖𝑓 𝑡 > 1

1 𝑖𝑓  𝑡 = 1
     (13) 

Under the geometrical hypothesis, equality 𝑔𝑖𝑗(1) (1 − 𝑔𝑖𝑗(1)) − 𝑔𝑖𝑗(2) =0 must hold and so a sufficiently strong 

deviation from this equality has to be represented as evidence against a Markovian hypothesis in favor of the semi-

Markov model. 

The test statistics is as follows: 

𝑆̂𝑖𝑗 =
√𝑁(𝑖, 𝑗)(𝑔̂𝑖𝑗(1) (1 − 𝑔̂𝑖𝑗(1)) − 𝑔𝑖𝑗(2))

√𝑔̂𝑖𝑗(1) (1 − 𝑔̂𝑖𝑗(1))
2

(2 − 𝑔̂𝑖𝑗(1))

            (14) 

 

where 𝑁(𝑖, 𝑗) indicates the number of transitions from the state i to state j observed in the sample and 𝑔̂𝑖𝑗(𝑥) is the 

empirical estimator of the probability 𝑔𝑖𝑗(𝑥) which is given by the ratio between the number of transitions from i to j 

occurring exactly after x units of time and 𝑁(𝑖, 𝑗). This statistics, under the "geometrical" hypothesis 𝐻0 (or Markovian 

hypothesis), has approximately the standard normal distribution. Applying the results given in (Stenberg,F., Manca, 

R. and Silvestrov, D., 2006), the corresponding proof can be accomplished. In the case, when 𝑆̂𝑖𝑗  is the value of this 

statistics achieved from sample data, one can compute the quantity 2(1 − 𝐹(|𝑆̂𝑖𝑗|)), where F(s) is the standard normal 

distribution. If this value is small, this would be evidence to reject the hypothesis that the distribution 𝑏𝑖 is geometrical, 

i.e., it would be evidence to the benefit of "semi-Markov" hypothesis. 

We employed this method to our data to perform tests at a significance level of 90%. The data used in this analysis 

come from the records at the University of Napoli "Federico II" Italy which are indicating the packet rate of traffic 

traces related to inbound traffic of the UNINA Network. This data trace was collected in the year 2004 from the real 

networks captured using Plab. The data were collected by a Traffic group whose focus is on Network Monitoring and 

measurements and their aim is measuring and evaluating both operational and experimental systems/Networks to 

obtain knowledge and models for Network behaviors. The packet rate was sampled with a period of 2 seconds and the 

trace lasts 2 hours. These data have been employed for studies on volume-based anomaly detection and are associated 

with time intervals during which no anomalies were observed on the UNINA Network by the NOC operators. Because 

we have three states as follows: 
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  𝑆1: 8727 ≤ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑎𝑡𝑒 < 11521 

                     𝑆2: 11521 ≤ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑎𝑡𝑒 < 14315          (15) 

   𝑆3: 14315 ≤ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑎𝑡𝑒 < 17109 
 

We estimated 3(3-1) waiting time distribution functions and for each of them, we calculated the value of the test 

statistics (14). The geometric hypothesis is rejected for 3 of 6 distributions. Quantity 2(1 − 𝐹(|𝑆̂𝑖𝑗|)) gives the value 

0, 0, 0.1 for statistics 𝑆̂12, 𝑆̂21 𝑎𝑛𝑑 𝑆̂13, respectively. According to the remarks above, these values can be interpreted 

as strong evidence to the benefit of the semi-Markov hypothesis. In table 1, we reveal the results of the test applied to 

the waiting time distribution functions for some states which admit the semi-Markov hypothesis. 

 

Table 1. Results of the test 

State State Score Decision 

i=1 j=2 3.72 𝐻0 rejected 

i=2 j=1 3.76 𝐻0 rejected 

i=1 j=3 1.55 𝐻0 rejected 

 

3.2 MONTE CARLO SIMULATION 

In this section, the synthetic time series of the same length as the real one has produced using Monte Carlo simulation. 

The Monte Carlo algorithm involves repeated random sampling to enumerate successive visited states of the random 

variables {𝐽0, 𝐽1, … } up to the horizon time T. The main distinction between Markov and semi-Markov models is that 

in the second case, the jump times {𝑇0, 𝑇1, … } between successive transitions are regarded as a random variable. The 

Monte Carlo algorithm for the semi-Markov model which used to simulate the trajectory in the time interval [0,T] is 

as follows: 

1.Set n=0, 𝐽0 = 𝑖, 𝑇0 = 0, horizon time=T; 

2. Sample J from 𝑃̂𝐽𝑛
and set 𝐽𝑛+1 = 𝐽(𝑤); 

3.Sample W from 𝐺̂𝐽𝑛,𝐽𝑛+1
 and set 𝑇𝑛+1=𝑇𝑛+W(w); 

4. If 𝑇𝑛+1 ≥ 𝑇 stop, else set 𝑋𝑛 = 𝑇𝑛+1 − 𝑇𝑛 and n=n+1 and go to (2). 

We exhibit in figure 2 the real and simulated trajectories of packet rate data. 

 

 

Figure 2: Comparison of the time series of packet rate from real and simulated data. 

 

3.3 MODEL VALIDATION 

  We compute the Autocorrelation Function  (ACF) of real and synthetic data both with semi-Markov and Markov 

models using the Monte Carlo simulation to evaluate the ability of the model to reproduce statistical properties of real 

packet rate data. 

If Z indicates the packet rate, the time-lagged(𝝉) autocorrelation of packet rate is defined as  

 

∑(𝜏)= 
𝐶𝑜𝑣(𝑍(𝑡+𝜏),𝑍(𝑡))

𝑉𝑎𝑟(𝑍(𝑡))
          (16) 
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The time lag 𝜏 was made to run from 1 second up to 100 seconds. In order to compare results for ∑(𝜏) each simulated 

time series was generated with a similar length as the real data. From figure 3 it can be concluded that the semi-

Markov model reproduces better the autocorrelation present in real data than the Markov model. Moreover, this figure 

confirms the test results of section 3.1 in which we concluded that the Markov hypothesis is rejected in favor of the 

semi-Markov model for the packet rate of the traffic network. 

 

 
 

Figure 3: Autocorrelation function of real, semi-Markov and Markov data 

 

 

3.4 PROBABILITY DENSITY FUNCTION 

  From examining the test hypothesis and the autocorrelation function we concluded that the semi-Markov model 

should be selected to generate synthetic trajectories of packet rate of traffic trace. In this subsection, we compare the 

probability density function (pdf) of real and both semi-Markov and Markov synthetic data with respect to 3 states to 

find the best model. Figure 4 indicates the comparison of the pdfs of the three trajectories. From this figure, it can be 

inferred that the semi-Markov model is accepted for the real data in comparison with the Markov one. The semi-

Markov fitting is very good and there is very little space for improvement. 

 

 
Figure 4: The probability density function for real, semi-Markov and Markov synthetic data. 

3.5 SEMI-MARKOV PREDICTIONS 

  We found out that the semi-Markov model should be chosen to generate synthetic packet rate traffic data. Therefore, 

we can forecast the future behavior of the Network traffic performance with a period of 2 seconds by this model and 

the Monte Carlo simulation. The transition probability matrix was obtained as: 

𝑃 = [
0 0.9444 0.0556

0.9859 0 0.0141
0.4000 0.6000 0

] 

It can be concluded that the packet rate which is in   𝑆1 or   𝑆3 desired to visit  𝑆2 and the packet rate in  𝑆2 wanted to 

visit  𝑆1. In figure 5, we show the interval transition probability matrices of the semi-Markov model which calculated 

with equation (12). The various matrices are plotted by varying the time t. 
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Figure 5: Interval transition probability matrix of the semi-Markov model varying the time. 

 

It can be inferred that after one unit time which is 2 seconds the packet rate which is in 𝑆1 or 𝑆3 tends to visit 𝑆2 with 

probability 0.1324 and 0.6667, respectively and the packet rate which is in  𝑆2 will be desired to visit  𝑆3 with 

probability 1. Supposing that the last packet rate is in 𝑆1, the probabilities of the next network traffic occurrence after 

10 unit times with packet rate in  𝑆2 and  𝑆3 are 0.47 and 0.75, respectively. These interval transition probabilities 

indicate the probabilities of the occurrences of the high network traffic after another high traffic with the different 

packet rates in 𝑆1,  𝑆2 and  𝑆3 after the next 1 to 50 unit times. All in all, the semi-Markov model gives realistic 

forecasted values. By estimating the interval transition probabilities, we can indicate the transitions between states of 

the system with respect to time. 

 

4.Conclusions 

  The semi-Markov processes still have the Markovian hypothesis but in a more flexible way. The main feature of 

these processes is the opportunity of reproducing the duration effect of the regarded random event. This is made 

achievable by recognizing sojourn times in the states of the process that are arbitrarily distributed, including non-

memoryless distributions. In this paper, we introduced the statistics for testing the hypothesis of being the semi-

Markovian. We employed the network traffic data for showing the capability of this test. The simple interpretation 

and mathematical tractability are the main advantages of the semi-Markov model. According to the obtained results, 

there was strong evidence of the benefit of the semi-Markov hypothesis against the Markov hypothesis. Moreover, 

the synthetic time series of the same length as the real one has produced by means of Monte Carlo simulation. This 

stochastic simulation technique authorizes us to make forecasting about the system's behavior. The calculations of the 
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autocorrelation functions admitted the hypothesis test results in which the semi-Markov model is accepted in 

comparison with the Markov model. Moreover, we compared the probability density function of real and both semi-

Markov and Markov synthetic data with respect to 3 states to find the best model.  This comparison confirmed the 

semi-Markov model as well. Finally, the transition probability matrix and the interval transition probabilities with 

respect to different times were calculated which show the predictions of the future network traffic. Monitoring Internet 

traffic provides input for developing new protocols, algorithms, and systems for the current and future internet, with 

a particular focus on network management and security. 
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