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Abstract
A maximum likelihood estimator (MLE), a consistent asymptotically normal (CAN) estimator and
asymptotic confidence limits for the expected number of customers in the system for a sequential
two station, single server system with Poisson input and exponential service, where no queue is
allowed in front of station 1 and atmost one customer is allowed to wait between the stations and
with blocking are obtained.

Keywords: CAN estimator- expected number of customers in the system -
maximum likelihood estimator - multivariate central limit theorem-Slutsky
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1.Introduction

Most of the studies on several queueing models are confined to only obtaining
expressions for transient or stationary (steady state) solutions and do not
consider the associated statistical inference problems. Parametric estimation,
Interval estimation and Bayesian estimation are some of the statistical tools to
understand any random phenomena using stochastic models. Analysis of
queueing systems in this direction has not received due attention in the past.
Whenever the systems are fully observable in terms of their random components
such as inter-arrival and service times, standard parametric techniques of
statistical theory are quite appropriate. Bhat (2003) has provided an overview of
methods available for estimation, when the information is restricted to the
number of customers in the system at some discrete points in time. Bhat (2003)
has also described how maximum likelihood estimation is applied directly to the
underlying Markov chain in the queue length process in M/G/1 and GI/M/1
queues. Table 1 indicates the present state of work of queueing systems,
wherein the asymptotic confidence limits for measures of system performance
such as (i) SL , the expected number of customers in the system, (ii) QW , the
mean waiting time in the queue and (iii) SW , the mean waiting time in the system
and so on are obtained.
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Table1: Present state of work of Queueing systems

Serial
number System Description Authors

Confidence
limits

obtained for

1 M/M/1/ and M/M/1/N Yadavalli et. al (2004) QW

2 M/M/c/ and M/M/c/N Yadavalli et. al (2006) QW

3

Tandem queue with
blocking and

dependent structure for
service times

Chandrasekhar et.al
(2006) SS W,L

4 Tandem queue with
blocking

Chandrasekhar et.al
(2008) SW

5
Two station and three
station tandem queues

with blocking

Chandrasekhar et.al
(2009) ap,LS

Generally speaking, the queueing models assume that each service channel
consists of only one station. Situations do exist, where each service channel may
consist of several stations in series. Here, a customer must pass through
successively all the stations before completing his service. Such situations are
known as queues in series or tandem queues. The following are some examples
of tandem queues:
a) In a manufacturing process, units must pass through a series of service

channels (work stations), where each service channel performs a given
task or job.

b) In a university registration process, each registrant must pass through a
series of counters such as advisor, department chairman (Head of the
Department), cashier etc.

c) In a clinical physical examination procedure, a patient goes through a
series of stages such as lab tests, ECG, chest X-ray etc.

In all these model structures, it is not only sufficient to know how many persons
are there in the system but also where they are.

An attempt is made in this paper to study in detail a sequential two station single
server system with Poisson input and exponential service, where no queue is
allowed in front of station 1 and atmost one customer is allowed to wait between
the stations. A MLE, CAN estimator and asymptotic confidence limits for the
expected number of customers in the system are obtained. The system
description and assumptions are given in the next section.
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2.System description and assumptions
Consider a simplified one channel queueing system consisting of two
servicestationsas below:

Fig 1: System configuration.

A customer arriving for service must go through station 1 and station 2 before
completing his service. The assumptions of the model are as follows:

I. Arrivals occur according to Poisson distribution with mean rate λ for
service at station1.

II. Service times at each station are exponentially distributed with the same
service rate 

III. No queue is allowed in front of station 1 and atmost one customer is
allowed to wait between station 1 and station 2.

IV. Each station is either free or busy.
V. Station 1 is said to be blocked, if the customer in station 1 completes his

service beforestation 2 becomes free and there is a customer waiting
between the stations.

3. Analysis of the system
Let the symbols 0, 1 and b represent free, busy and blocked states of a station.
Let )(),( tYtX and )(tZ respectively denote the state of station 1, the number of
customers waiting between station 1 and station 2 and the state of station 2 at
time t. The vector process   0,)(),(),()(  ttZtYtXtV with state space

              1,1,,1,1,1,1,0,1,0,0,1,1,1,0,1,0,0,0,0,0 bE  (3.1)
denotes the state of the system at time t. Since the interarrival and service times
are exponential, it follows that the process )(tV is a Markov Process with the
infinitesimal generatorQ given by Q

(0,0,0) (1,0,0) (0,0,1) (1,0,1) (0,1,1) (b,1,1) (1,1,1)

(0,0,0)   0 0 0 0 0
(1,0,0) 0   0 0 0 0
(0,0,1)  0 )(    0 0 0
(1,0,1) 0  0 2  0 0 (3.2)
(0,1,1) 0 0 0 0  0 
(b,1,1) 0 0 0 0   0
(1,1,1) 0 0 0  0  2
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Let      EkjikjitVtpijk  ),,(,,)(Pr represent the probability that the system
is in state ),,( kji at time ‘t’ with the initial condition   10000 p . From the
infinitesimal generator given in (3.2), we have the following system of differential
– difference equations:

     tptp
dt
tdp

001000
000   (3.3)

       tptptp
dt
tdp

101100000
100   (3.4)

       tptp
dt
tdp

001100
001   (3.5)

      )(2 111101001
101 tptptp
dt
tdp

  (3.6)

      )(11011101
011 tptptp
dt
tdp

b  (3.7)

     tptp
dt
tdp

b
b

11111
11   (3.8)

     tptp
dt
tdp

111011
111 2  (3.9)

3.1 Transient Solution

The system of equations (3.3) – (3.9) along with the equation  
 





Ekji
ijk tp

,,
1 can

be solved using Laplace transforms. Let )(sLi be the Laplace transform of )(tpi .
By taking a)0,0,0( , b)0,0,1( , c)1,0,0( , d)1,0,1( , e)1,1,0( , fb )1,1,( and

g)1,1,1( and taking Laplace transform on both the sides of (3.3) – (3.9) and
solving for )(sLi using  

 





Ekji
ijk tp

,,
1, we get
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By taking inverse Laplace transform on both sides of (3.10) – (3.15), we get
expressions for )(tpijk . It may be noted that

21 , and 3 are the roots of 0)2()53()4( 2223   sss ;

21, and 3 are the roots of 0)23()3( 2223   sss ;

321 ,,  and 4 are the roots of
0)235()57()42( 2232222234   ssss ;

321 ,,  and 4 are the roots of
0)46()58()5( 3322234   ssss .

3.2 Steady State Solution
Since we wish to study the stationary behaviour of the system, let   .lim ijkijk

t
ptp 



Let  11111101100011001000 ,,,,,, bpppppppp  be the stationary distribution
corresponding to the Markov Process )(tV . Allowing t on both the sides of

(3.3) – (3.9), noting that 0
)(

lim 
 dt

tdpijk
t

and solving for ijkp , we obtain the steady

state probabilities as follows:

 22

2

000 243 



p (3.16)

 22100 243
)(






p (3.17)

 22001 243 



p (3.18)

  1111122

2

101 243
ppp b 





 (3.19)

 22011 243
2





p (3.20)
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3.3 Expected number of customers in the system
The expected number of customers in the system is given by







0n

ns npL )(3)(2)( 11111011101100001 pppppp b 

 22

22

243
)68(







 (3.21)

In the next section, we obtain maximum likelihood and consistent asymptotically
normal estimators for the expected number of customers in the system.

4. MLE and CAN estimator for the expected number of customers in the
system

4.1 ML estimator
Let nXXX ,...,, 21 and nYYY ,...,, 21 be random samples of size n, each drawn from
exponential interarrival time and exponential service time populations with the

parameters  and  respectively. It is clear that  

1

XE and  

1

YE , where

X and Y are the sample means of interarrival times and service times

respectively. It can be shown that X and Y are the MLEs of

1 and


1

respectively.

Let


 1
1  and


 1
2  . Clearly, the expected number of customers in the system

given in (3.21) reduces to

 2221
2
1

2
221

2
1

342
)86(







sL (4.1)

and hence the MLE of Ls is given by

 22

22

342

)86(ˆ
YYXX

YYXXLs



 (4.2)

It may be noted that sL̂ given in (4.2) is a real valued function in X and Y ,
which is also differentiable. Consider the following application of multivariate
central limit theorem (Radhakrishna Rao, 1974).

4.2 Application of Multivariate Central Limit Theorem

Suppose ,...T,T,T 321
 are independent and identically distributed k -dimensional

random variables such that   1,2,3,...n,T,...,T,T,TT kn3n2n1nn  having the first



Statistical Inference for a Two Station Tandem Queue with Atmost One Customer to Wait ……

Pak.j.stat.oper.res. Vol.VIII No.2 2012pp185-194 191

and second order moments   μTE n  and   nTvar . Define the sequence of

random variables   1,2,3,...n,T,...,T,T,TT kn3n2n1nn  where

k.1,2,3,...,i,
n

T
T

n

1j
ij

in 



Then,     0,NμTn
k

d
n , as n .

4.3CAN Estimator
By applying the multivariate central limit theorem given in section 4.2, it readily
follows that

       0,Nθ,θY,Xn 2
d

21 as n .

The dispersion matrix    ijσ is given by   2
2

2
1 θ,θdiag .

Again from Radhakrishna Rao (1974),

We have    





 



nasθσ0,NLLn 2d
ss , where  21 θ,θθ  and

  ii

22

1i i

s2 σ
θ
L

θσ 













 =  
 42

221
2
1

22
221

2
1

2
2

2
1

342

71348







 (4.3)

Hence, by applying the definition of CAN estimator, it can be seen that


sL is a
CAN estimator of sL . There are several methods for generating CAN estimators
of which the Method of moments and the Method of Maximum likelihood are
commonly used to generate such estimators (Sinha, 1986).

5. Confidence interval for the expected number ofcustomers in the system

Let )θ(σ 2


be the estimator of  θσ 2 obtained by replacing θ by a consistent

estimator θ̂ namely  .Y,Xθ̂  Let )θ(σσ 22


 . Since  θσ 2 is a continuous

function of

2σ, is a consistent estimator of  θσ 2 . In other words,

  .nasθσσ 2P2 

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By Slutsky theorem ,0b,
b
X

Y
X

bYX,X d

n

nP
n

d
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
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












 


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








 






Where
2

k  is obtained from normal tables. Hence, a  %α1100  asymptotic

confidence interval for sL is given by .
n
σ̂kL

2
s 


(5.1)

6. Numerical illustration

Table 2 and Table 3 give the 95% confidence limits for the expected number of
customers in the system by generating samples of sizes n = 200 and n = 400 for
various values of  = 0.5, 1.0, …, 3.0 and  = 2.0,2.5,…,4.0 from exponential

distributions with means

1 and


1 respectively.

Table 2: Confidence limits for expected number of customers in the
system (n = 200)

μ

λ 2.0 2.5 3.0 3.5 4.0

0.5 (0.8991,1.0569) (0.7990,0.9253) (0.7821,0.9026) (0.7491,0.8576) (0.6851,0.7686)

1.0 (1.1303,1.3391) (1.1081,1.3133) (0.9694,1.1458) (0.9190,1.0824) (0.8877,1.0422)

1.5 (1.4781,1.7120) (1.3498,1.5811) (1.2393,1.4622) (1.1775,1.3932) (1.1051,1.3098)

2.0 (1.6039,1.8333) (1.3922,1.6252) (1.2812,1.5081) (1.2092,1.4289) (1.1648,1.3788)

2.5 (1.6465,1.8734) (1.4916,1.7254) (1.4003,1.6335) (1.3669,1.5990) (1.1796,1.3956)

3.0 (1.7800,1.9937) (1.6139,1.8430) (1.5324,1.7653) (1.3764,1.6089) (1.3246,1.5545)
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Table 3: Confidence limits for expected number of customers in the
system (n = 400)

μ

λ 2.0 2.5 3.0 3.5 4.0

0.5 (0.8930,0.9988) (0.8123,0.9004) (0.7567,0.8313) (0.7368,0.8063) (0.70461,0.7657)

1.0 (1.2225,1.3762) (1.1542,1.3012) (1.0624,1.1977) (0.9724,1.0932) (0.9094,1.0185)

1.5 (1.3361,1.4976) (1.2729,1.4307) (1.1510,1.2976) (1.1152,1.2575) (1.0316,1.1622)

2.0 (1.5490,1.7140) (1.4572,1.6225) (1.2998,1.4594) (1.2063,1.3586) (1.1440,1.2897)

2.5 (1.6493,1.8113) (1.5499,1.7149) (1.4088,1.5731) (1.3426,1.5045) (1.2221,1.3758)

3.0 (1.8519,1.9992) (1.6324,1.7951) (1.5989,1.7627) (1.5149,1.6803) (1.4126,1.5770)

It can be seen from the above tables that as the interarrival rate  increases (for
fixed value of service rate  ), the confidence interval for the expected number of
customers in the system also increases. This means that for a fixed service rate,
more the interarrival rate, more the expected number of customers in the
system.Similarly, as the service rate  increases (for fixed value of interarrival
rate ), the confidence interval for the expected number of customers in the
system decreases. This means that for a fixed interarrival rate, more the service
rate, less the expected number of customers in the system.

7. Conclusion
Asymptotic confidence interval for the expected number of customers in the
system is studied. The expressions for transient probabilities and steady state
probabilities are obtained. The results are shown numerically by generating
samples of sizes 200 and 400 from exponential distributions for various values of
 and  . It justifies that, for a fixed service rate, as the interarrival rate
increases, the expected number of customers in the system increases. Also, for
a fixed interarrival rate, as the service rate increases, the expected number of
customers in the system decreases.
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