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Abstract 

The Burr Type XII distribution is commonly used in reliability analysis, survival analysis, and actuarial science to 

model the time-to-failure of a system or component. It is also used in finance to model the distribution of portfolio 

returns and in hydrology to model the frequency of extreme events.   In this work, a new generalization of Burr type 

XII model is introduced and studied. The genesis of the new model is based on the family of Cordeiro et al. (2016). 

The new model generalizes at least eight important sub-models. The new density can be unimodal, symmetric and 
left skewed. Some useful properties related to the new model are derived. The Clayton Copula-based construction 

is used to generate many bivariate and multivariate type distributions. Graphically, we performed the simulation 

experiments to assess of the finite sample behavior of the estimations. 

 

Keywords: Burr XII Distribution; Symmetric Density; Copula; Kaplan-Meier; Maximum Likelihood; Simulation; 
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1.Introduction 

The Burr Type XII distribution is a probability distribution used in statistics to model continuous random variables. It 

is also known as the Singh-Maddala distribution or the generalized log-logistic distribution. The Burr Type XII 

distribution is commonly used in reliability analysis, survival analysis, and actuarial science to model the time-to-

failure of a system or component. It is also used in finance to model the distribution of portfolio returns and in 

hydrology to model the frequency of extreme events. Burr (1942) introduced a new system of probability density 

function (PDF) (see Elderton, (1953) and Elderton and Johnson (1969)). This system is obtained by considering 

cumulative distribution functions (CDFs) which satisfying a certain differential equation. A special attention has been 

paid to one of these new models, namely, the Burr type XII distribution (for more details see Burr (1942), Burr (1968), 

Burr (1973), and Tadikamalla (1980)). The survival function (SF) of the two-parameter BXII distribution is given by  

𝑆𝓪,𝓫(𝓌) = 1 − 𝐻𝓪,𝓫(𝓌) = (𝓌
𝓪 + 1)−𝓫|𝓌≥0,                                                (1) 

where  𝐻𝓪,𝓫(𝓌)  refer to CDF of the BXII distribution. The PDF corresponding to (1) can be written as  

𝒽𝓪,𝓫(𝓌) = 𝓪𝓫𝓌𝓪−1(𝓌𝓪 + 1)−𝓫−1|𝓌≥0,                                                       (2) 

where both 𝓪 and 𝓫 are shape parameters. For 𝓪 = 1, the BXII model reduces to the Lomax (Lox) or Pareto type II 

(PaII) model. For  𝓫 = 1,  the BXII model reduces to the log-logistic (LL) model. When  𝓫 → ∞  the BXII model 

reduces the two-parameter Weibull model, for  𝓫 → ∞  the BXII model reduces the one-parameter Weibull model. 
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For more details about the BXII model and its relations with other related models, namely: PaII (or Lox), LL, 

compound Weibull, gamma (Ga) and Weibull exponential (WE) distributions. 

 

The Burr Type XII distribution is a probability distribution that is often used to model various phenomena in many 

fields, including finance, insurance, engineering, and reliability. This distribution is also known as the Singh-Maddala 
distribution, and it is a flexible distribution that can model a wide range of shapes, including symmetric and skewed 

distributions. The Burr Type XII distribution can be used to model the distribution of insurance claims, which can 

help insurers estimate the amount of money they need to set aside to cover potential losses. It is also used to model 

the distribution of asset returns in finance. The Burr Type XII distribution is often used to model the lifetime of 

mechanical and electronic components in engineering and reliability studies. It can help engineers estimate the failure 

rate and reliability of these components, which can be useful in designing and maintaining equipment. The Burr Type 

XII distribution can be used to model the distribution of response times to marketing campaigns, such as the time it 

takes for customers to make a purchase after receiving a promotional offer. The Burr Type XII distribution can be 

used to model the distribution of extreme values in environmental studies, such as the maximum rainfall or the 

maximum wind speed in a particular area. Overall, the Burr Type XII distribution is a versatile distribution that can 

be used in many different fields to model a wide range of phenomena. 

 
In order to properly model and evaluate real-world data that cannot be fully represented by existing distributions, a 

new probability distribution may be required. New distributions are created for a variety of reasons, including as 

addressing certain data traits or characteristics, enhancing the precision of simulations or forecasts, or offering more 

adaptable modelling alternatives. New distributions can also result in improvements in statistical theory and its use. 

When current distributions fall short of accurately describing the properties of real-world data, a new probability 

distribution may be required. This may occur when the data exhibits distinct traits or properties that cannot be 

explained by pre-existing distributions, such as asymmetry, heavy tails, or multi-modality. To provide a better match 

to the data and boost the precision of statistical analysis, forecasts, or simulations under these circumstances, a new 

distribution may be created. Depending on the particular application or issue being solved, a new distribution's motive 

can change. To represent the distribution of financial returns or exceptional occurrences, for instance, new 

distributions may be created in the field of finance. To model the distribution of gene expression levels in biology, 
new distributions may be created. New distributions may be created in engineering to simulate the distribution of 

material strength or fatigue life. The goal of creating a new distribution is ultimately to offer a more precise and 

adaptable tool for modelling and analyzing data, which can result in a better comprehension of the underlying 

mechanisms and improved decision-making. To determine whether a new distribution can accurately characterize the 

data and forecast the future, it is crucial to thoroughly assess its attributes and compare them to those of existing 

distributions. Depending on the individual situation and the type of data being examined, we may or may not require 

a new probability distribution. Existing distributions could be sufficient for modelling and analysis in some 

circumstances. To develop better forecasts or simulations or to offer more versatile modelling possibilities, it 

occasionally becomes necessary to create a new distribution in order to properly describe the data's properties. 

Consequently, it is important to assess each situation's need for a new probability distribution. Cordeiro et al. (2016) 

investigated a new flexible class of continuous distributions called the generalized odd log-logistic-G (GOLL-G) 

family with only two extra shape parameters. In the work, we introduce a new version of the BXII model using the 

GOLL-G family called the generalized odd log-logistic BXII (GOLLBXII). For an arbitrary baseline CDF  𝐻𝜉(𝓌) , 

the CDF of the GOLL-G family is given by 

𝐹𝜉(𝓌) =
𝐻𝜉(𝓌)𝛼𝛽

𝐻𝜉(𝓌)𝛼𝛽+[1−𝐻𝜉(𝓌)𝛽]
𝛼,                                                                    (3) 

where 𝜉 is the parameter vector of the base line model and 𝐻𝜉(𝓌)  represents the CDF of the base line model. For 

𝛽 = 1 we get the OLL-G family (Gleaton and Lynch (2006)). For  𝛼 = 1  we get the proportional reversed hazard 

rate G (PRHR-G) family (Gupta and Gupta (2007)). The CDF of the GOLLBXII is given by 

 

𝐹𝛹(𝓌) =
[1−(𝓌𝓪+1)−𝓫]

𝛼𝛽

[1−(𝓌𝓪+1)−𝓫]
𝛼𝛽
+{1−[1−(𝓌𝓪+1)−𝓫]

𝛽
}
𝛼,                                                         (4) 
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where  𝛹 = 𝛼, 𝛽, 𝓪,𝓫.  The PDF corresponding to (4) is given by 

𝑓𝛹(𝓌) = 𝛼𝛽𝓪𝓫𝓌𝓪−1(𝓌𝓪 + 1)−𝓫−1[1 − (𝓌𝓪 + 1)−𝓫]
𝛼𝛽−1

{1 − [1 − (𝓌𝓪 + 1)−𝓫]
𝛽
}
𝛼−1

 

× ([1 − (𝓌𝓪 + 1)−𝓫]
𝛼𝛽
+ {1 − [1 − (𝓌𝓪 + 1)−𝓫]

𝛽
}
𝛼

)
−2

.                                       (5) 

The hazard rate function (HRF) for the GOLLBXII model can be obtained from  𝒽𝛹(𝓌) = 𝑓𝛹(𝓌)/[1 − 𝐹𝛹(𝓌)].  

The creation of novel probability distributions is driven by a number of factors, including: 
I. Existing distributions may occasionally fall short of accurately describing the features of real-world data. 

Creating new distributions can aid in improving the data's representation and insight. 

II. To discuss particular aspects or properties of data.  

III. To address particular aspects of the data, such as skewness, heavy tails, or multimodality, new 

distributions may be created. 

IV. To increase simulation or prediction accuracy: In some circumstances, new distributions can offer more 

precision for projecting outcomes or simulating scenarios. 

V. To offer more adaptable modelling choices: The complexity of the data being investigated can be better 

captured by new distributions' more flexible modelling possibilities. 

VI. To advance statistical theory and applications: The development of new distributions can lead to 

advancements in statistical theory and have practical applications in various fields. 

 
Many branches of mathematics, such as probability theory and statistics, depend on asymptotic features. The behavior 

of a mathematical function or a series of numbers when the input grows arbitrarily large or tiny is generally described 

by asymptotic characteristics. The asymptotic characteristics of statistical estimators and test statistics are of relevance 

in probability theory and statistics. Because they enable us to use huge sample sizes to draw conclusions from statistics, 

asymptotic characteristics are crucial. When the sample size grows, asymptotic results offer useful information about 

how a statistical estimator or test statistic behaves, and this knowledge can be utilized to derive significant statistical 

properties and draw conclusions about the population. Let  𝜀 = 𝒾𝓃𝑓 {𝓌|[𝐻𝓪,𝓫(𝓌)>0]} , the asymptotics of the CDF, 

PDF and HRF as  𝓌 → 𝜀  are given by 

𝐹𝛹(𝓌)|𝓌→𝜀 ∼ [1 − (𝓌
𝓪 + 1)−𝓫]

𝛼𝛽
 , 

𝑓𝛹(𝓌)|𝓌→𝜀 ∼ 𝛼𝛽𝓪𝓫𝓌
𝓪−1(𝓌𝓪 + 1)−𝓫−1[1 − (𝓌𝓪 + 1)−𝓫]

𝛼𝛽−1
 

and 

𝒽𝛹(𝓌)|𝓌→𝜀 ∼ 𝛼𝛽𝓪𝓫𝓌
𝓪−1(𝓌𝓪 + 1)−𝓫−1{1 − (𝓌𝓪 + 1)−𝓫}

𝛼𝛽−1
 . 

The asymptotics of CDF, PDF and HRF as  𝓌 → ∞  are given by 

1 − 𝐹𝛹(𝓌)|𝓌→∞ ∼ 𝛽𝛼(𝓌𝓪 + 1)−𝛼𝓫 ,  𝑓𝛹(𝓌)|𝓌→∞ ∼ 𝛼𝛽
𝛼𝓪𝓫𝓌𝓪−1(𝓌𝓪 + 1)−𝛼𝓫−1 

and 

𝒽𝛹(𝓌)|𝓌→∞ ∼ 𝛼𝓪𝓫𝓌
𝓪−1(𝓌𝓪 + 1)−1. 

Asymptotic features are significant in statistics because they enable the use of large sample sizes for statistical 

inference. They offer insightful data on how statistical estimators and test statistics behave as sample sizes grow, and 

this data can be utilized to deduce significant statistical properties and draw conclusions about the population. As the 

sample size increases significantly, the distribution of statistical estimators and test statistics is approximated using 

asymptotic theory. This makes it possible to approximate the statistic's exact distribution, which would otherwise be 

challenging to determine. Based on generalized binomial expansions and after some algebraic processes, the PDF in 
(6) can be rewritten as 
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𝑓𝛹(𝓌) = ∑∞𝒽=0 𝐶[𝒽]𝒽[𝓪,𝓫(1+𝒽)](𝓌),                                                        (6) 

where 

𝐶[𝒽] = 𝛼𝛽 ∑ ∑(−1)𝑗+𝜅+𝑙+𝒽

𝑞

𝜅=0

∞

𝑑,𝑗,𝑞=0

(
−2
𝑑
) (
−𝛼(𝑑 + 1)

𝑗
) (
𝛼𝛽(𝑑 + 1) + 𝛽𝑗 − 1

𝑞
) (
𝑞
𝜅
) (
1 + 𝜅
𝒽

), 

and  𝒽[𝓪,𝓫(1+𝒽)](𝓌)  is the PDF of the BXII model with parameters  𝓪, 𝓫(1 +𝒽)  where 

𝒽[𝓪,𝓫(1+𝒽)](𝓌) = 𝓪𝓫(1 +𝒽)𝓌𝓪−1(𝓌𝓪 + 1)−𝓫(1+𝒽)−1 

So, the PDF of the GOLLBXII model can be expressed as a linear mixture of the BXII PDF. Via integrating (6), the 

CDF of the GOLLBXII model is  

𝐹𝛹(𝓌) = ∑∞𝒽=0 𝐶[𝒽]𝐻[𝓪,𝓫(1+𝒽)](𝓌),                                                         (7) 

where 𝐻[𝓪,𝓫(1+𝒽)](𝓌) = (𝓌𝓪 + 1)−𝓫(1+𝒽) is the CDF of the BXII model with parameters  𝓪,   𝓫(1 +𝒽). Let  𝑊  

be a random variable (rv) having the BXII distribution (2) with parameters  𝓪1,𝓪2 . For  𝓃 < 𝓪1𝓪2 , the  𝑟th  ordinary 

and incomplete moments of  𝑊  are, respectively, given by  𝜇𝓃
′ = 𝓪2𝐵 (𝓪2 −

𝓃

𝓪1
,
𝓪1+𝓃

𝓪1
) and 𝐼𝓃(𝑡) =

𝓪2𝐵 (𝑡
𝓪1; 𝓪2 −

𝓃

𝓪1
,
𝓪1+𝓃

𝓪1
), where  

𝐵(𝓪1, 𝓪2) = ∫ 𝓌𝓪1−1
∞

0

(1 +𝓌)−(𝓪1+𝓪2)𝑑𝓌 

and  

𝐵(𝑧; 𝓪1, 𝓪2) = ∫ 𝓌𝓪1−1
𝑧

0

(1 +𝓌)−(𝓪1+𝓪2)𝑑𝓌 

are the beta and the incomplete beta functions of the second type, respectively. Table 1 provides some sub-models of 

the GOLLBXII model. Figure 1 give some plots for the new PDF and its corresponding HRF. It is noted from Figure 

1(a) that the new PDF can be unimodal, symmetric and left skewed. From Figure 1(b) we note the that new HRF can 

be upside down shaped. 

  
(a) (b) 

Figure 1: Some plots for the new PDF and its corresponding HRF. 

Due to Figure 1, the new can be considered as a heavy-tail model, probability distributions with "heavier" tails than 

the normal distribution are described to as heavy-tailed probability-based distributions; this suggests that they have a 
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larger likelihood of discovering extreme values (outliers). In contrast, there is a minimal likelihood of detecting 

extreme values in light-tailed distributions, such the normal distribution. heavy-tailed distributions are important in 

many fields, including finance, economics, physics, and engineering, as they provide a more accurate representation 

of real-world phenomena where extreme events are more common than expected under a normal distribution.  

 

Table 1: Sub-models of the GOLLBXII model. 

N. 𝛼 𝛽 𝓪 𝓫 Reduced model 

1 𝛼 𝛽 1 𝓫 GOLLLx 

2 𝛼 𝛽 𝓪 1 GOLL-LL 

3 𝛼 1 𝓪 𝓫 OLL-BrXII 

4 𝛼 1 1 𝓫 OLL-Lx 

5 𝛼 1 𝓪 1 OLL-LL 

6 1 𝛽 𝓪 𝓫 PRHR-BXII 

7 1 𝛽 1 𝓫 PRHR-Lx 

8 1 𝛽 𝓪 1 PRHR-LL 

2.Properties 

Understanding probability distributions requires an understanding of mathematical properties. Mathematical functions 

called probability distributions describe the likelihood of various outcomes of a random variable. They are employed 

in a variety of fields, including as finance, physics, engineering, and many more, and play a significant role in statistics 

and probability theory. 

 

Ordinary moment 

Moments and incomplete moments are significant because they can reveal details about the characteristics of a 

probability distribution. They can be used to determine the mean, variance, skewness, and kurtosis of a distribution, 

among other statistical measures. Moments and incomplete moments are also employed in the development and 

evaluation of statistical models. Moments are used in physics to characterize the geographical and temporal 

distributions of particles, as well as in finance to simulate stock price changes and determine risk factors. The  𝓃th  

ordinary moment of  𝓌  is given by   

𝜇𝓃
′ = 𝐸(𝑊𝓃) = ∑

∞

𝒽=0

𝐶[𝒽]∫
∞

0

𝓌𝓃 𝒽[𝓪,𝓫(1+𝒽)](𝓌)𝑑𝓌. 

or  

𝜇𝓃
′ = 𝐸(𝑊𝓃) = ∑∞𝒽=0 𝐶[𝒽]𝓫(1 +𝒽)𝐵 (𝓫(1 +𝒽) −

𝓃

𝓪
,
𝓪+𝓃

𝓪
) |(𝓃<𝓪𝓫(1+𝒽)).               (8) 

Setting 𝓃 = 1  in (8), we have the mean of  𝑊 . The 𝑠𝑡𝒽 central moment and cumulants (𝜅𝑠) of  𝑊  are easily to be 

derived. The effects of the parameters  𝛼, 𝛽,𝓪 and 𝓫 for the GOLLBXII model on the mean ( 𝜇1
′  ), variance (V(𝑊)), 

skewness (S(𝑊)) and kurtosis (K(𝑊)) are listed in Table 2. The effects of the parameters  𝓪  and  𝓫  for the standard 

BXII model on the  𝜇1
′  , V(𝑊), S(𝑊)  and K(𝑊) are listed in Table 3. A useful comment has been added below. 

 

Table 2: Numerical results for μ₁′, V(W), S(W), K(W) for the GOLLBXII model. 

𝛼 𝛽 𝓪 𝓫 𝜇1
′  V(𝑊) S(𝑊) K(𝑊) 

1.95 2 1.5 1.5 1.302554 0.43853 3.681042 95.18866 

2    1.295751 0.40702 3.471017 72.59238 

5    1.190338 0.04465 0.947154 6.448482 

10    1.175915 0.01058 0.455053 4.701262 

20    1.172331 0.00261 0.225332 4.321984 

30    1.171668 0.00116 0.161642 3.855605 

40    1.171436 0.00065 0.114757 4.122217 

100    1.171185 0.00010 0.044932 4.204267 

200    1.171150 2.59×10⁻⁵ 0.022595 4.170502 

5 0.05 3 3 0.011348 0.0002338 5.076655 52.9221 

 0.10   0.077045 0.0019812 1.614169 8.21755 
 0.50   0.466824 0.0045673 0.230032 4.07226 

 1   0.639627 0.0038438 0.217046 4.16290 
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 5   0.994109 0.0029583 0.326761 4.33864 

 50   1.471921 0.0031319 0.4315871 4.52236 

 100   1.622678 0.0033858 0.4494145 4.55841 

 200   1.780042 0.0037238 0.463127 4.587191 

 500   2.000840 0.0043072 0.4765337 4.616258 
 1000   2.179385 0.0048623 0.4840242 4.632928 

10 10 0.1 5 0.0437372 0.0012948 26.46451 3011661 

  0.5  0.5184903 0.0040130 0.642670 5.20959 

  1  0.7187439 0.0018975 0.335235 4.44217 

  5  0.9358105 0.0001278 0.102164 4.19487 

  50  0.9933281 5.380×10⁻⁵ -131.7976 17848.4 

  75  0.9955293 5.324×10⁻⁵ -134.7817 18388.7 

2 1.5 2.5 1 1.318956 0.2296088 2.653981 32.90810 

   5 0.552977 0.0146199 0.495451 4.107098 

   10 0.408876 0.0071186 0.343220 3.745968 

   20 0.210700 0.0017257 0.228867 3.544562 

   50 0.159300 0.0009754 0.214978 3.523984 
   100 0.159303 0.0009754 0.214979 3.523984 

   150 0.135346 0.0007014 0.210368 3.517327 

   200 0.120587 0.0005558 0.208066 3.514019 

   500 0.083525 0.0002657 0.203928 -181.8733 

   750 0.071009 0.0001919 0.203010 24.35556 

   1000 0.063285 0.0001524 0.202550 310.5896 

 

 

Table 3: Numerical results for μ₁′, V(W), S(W), K(W) for the BXII model. 

𝓪 𝓫 𝜇1
′  V(𝑊) S(𝑊) K(𝑊) 

0.5 10 0.0277778 0.0071648 18.60987 2139.368 

1  0.1111111 0.0154321 2.811057 17.82857 

5  0.5864861 0.0196053 -0.1148575 2.927999 
10  0.7599368 0.0089821 -0.5187003 3.462077 

15  0.8312523 0.0049489 -0.6735949 3.837231 

30  0.9108827 0.0015449 -0.8436482 4.367737 

50  0.9453193 0.0006092 -0.9169383 4.637870 

100  0.9721914 0.0001632 -0.9741929 4.866479 

5 1 1.0689590 0.1786323 2.4852760 29.55619 

 5 0.6824240 0.0289950 0.0401489 3.070043 

 10 0.5864861 0.0196052 -0.1148575 2.927999 

 20 0.5074029 0.0140696 -0.1862726 2.894430 

 50 0.4208969 0.0094457 -0.2273829 2.883834 

 100 0.3659695 0.0070836 -0.2408126 2.881726 

 150 0.3373279 0.0060021 -0.2452596 2.881174 
 200 0.3184032 0.0053403 -0.2474775 2.880926 

 500 0.264992 0.0036900 -0.2514607 2.880525 

 1000 0.2306612 0.0027936 -0.2527858 2.880246 

 2000 0.2007902 0.002116076 -0.2534511 2.880363 

 10000 0.1455217 0.001111123 -0.2539773 2.880306 

 50000 0.1054701 0.000583630 -0.2540836 2.880286 

 100000 0.0918169 0.000442305 -0.254098 2.880301 

 

Form Tables 2 and we note that: 

1-The new additional shape parameters  𝛼  and  𝛽  has an effect on  𝜇1
′  , V (𝑊) , S (𝑊)  and K (𝑊).  

2-For the GOLLBXII model, S (𝑊)  can range in the interval ( − 134.7817, 26.46451). However, for the BXII model, 

S (𝑊)  can range in the interval (− 0.974193, 18.60987). 

3-For the GOLLBXII model, K (𝑊)  can range in the interval ( − 181.8733, 3011661). However, for the BXII model, 

K (𝑊)  can range in the interval (2.880286, 2139.368). 



Pak.j.stat.oper.res.  Vol.19  No. 1 2023 pp 77-101  DOI: http://dx.doi.org/10.18187/pjsor.v19i1.3377 

 

 
A Generalization of Burr Type XII Distribution with Properties, Copula and Modeling Symmetric and Skewed Real Data Set 83 

 

 

Moment generating function 

In probability theory and statistics, the moment generating function (MGF) is a crucial mathematical operation. It 
offers a potent tool for examining the characteristics of probability distributions and drawing conclusions from 

statistics. The expected value of an exponential function of a random variable is the definition of the moment 

generating function, which is used to determine the distribution's moments. The moment generating function is 

significant because it can reveal details about the characteristics of a probability distribution. The distribution's 

moments, including the mean, variance, skewness, and kurtosis, can be determined specifically using the moment 

generating function. The characteristic function and other significant statistical measures can also be derived from the 

moment generating function. The MGF of  𝑊,  say  𝑀𝑊(𝑡) = 𝐸[𝑒𝑥𝑝(𝑡𝑊)] , can be firstly obtained from (6) as 

𝑀𝑊(𝑡) = ∑

∞

𝒽=0

𝐶[𝒽]𝑀[𝓪,𝓫(1+𝒽)](𝑡), 

where  𝑀[𝓪,𝓫(1+𝒽)](𝑡)  is the MGF of the BXII distribution with parameters 𝓪 and  𝓫(1 +𝒽) .  Next, consider the 

Meijer G (Mj-G) function (see Gradshteyn and Ryzhik (2000)) which is defined by 

𝐺𝑝,𝑞
𝓂1,𝓃 (𝓌|

𝓪1, 𝓪2, . . . , 𝓪𝑝
𝓫1, 𝓫2. . . , 𝓫𝑞

) =
1

2𝜋𝒾
∫
𝐼[𝐺]

∏𝓂1
ℏ=1 𝛤(𝓫ℏ + 𝑡)∏

𝓃
ℏ=1 𝛤(1 − 𝓪ℏ − 𝑡)

∏𝑝
ℏ=𝓃+1 𝛤(𝓪ℏ + 𝑡)∏

𝑝
ℏ=𝓂1+1

𝛤(1 −𝓫ℏ − 𝑡)
𝓌−𝑡𝑑𝑡, 

where  𝒾 = (−1)
1

2  is the complex unit and  𝐼[𝐺]  denotes an integration path. According to Prudnikov et al. (1986) and 

Prudnikov et al. (1992), the Mj-G function contains many integrals with elementary and special functions as particular 

cases. Assume that  𝓪   =𝓂1/𝓂2 , where  𝓂1  and  𝓂2  are positive integers. We have the following result  

𝐼 (𝑝, 𝜇,
𝓂1

𝓂2

, 𝑣) |0
∞ = ∫

∞

0

𝑒−𝑝𝓌𝓌𝜇

(1 +𝓌
𝓂1
𝓫 )

−𝑣 𝑑𝓌 = 𝐾(𝑝,𝜇,𝓂1,𝑣)
𝐺𝓂2+𝓂1,𝓂2

𝓂2,𝓂2+𝓂1 , 

where 

𝐺𝓂2+𝓂1,𝓂2

𝓂2,𝓂2+𝓂1 = 𝐺𝓂2+𝓂1,𝓂2

𝓂2,𝓂2+𝓂1 ((
𝓂1

𝑝
)
𝓂1

|
𝛥(𝓂1, −𝜇), 𝛥(𝓂2, 1 + 𝑣)

𝛥(𝓂2, 0)
), 

  

𝐾(𝑝,𝜇,𝓂1,𝑣)
=

𝓂2
−𝑣𝑝−(𝜇+1)𝓂1

𝜇+
1
2

𝛤(−𝑣)(2𝜋)
𝓂1−1
2 𝑝𝜇+1

|(𝜇>−1 and 𝑝>0) 

and  

𝛥(𝜔1 , 𝜔2) =
𝜔1
𝜔2
,
𝜔1 + 1

𝜔2
,
𝜔1 + 2

𝜔2
, . . . ,

𝜔1 + 𝜔2
𝜔2

. 

Then, we can write 

𝑀(𝑡) = 𝓂1 𝐼 (−𝑡,
𝓂1

𝓂2

− 1,
𝓂1

𝓂2

, −𝓂2 − 1) |(𝑡<0). 

Hence, the MGF of  𝑊  can be expressed as 
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𝑀𝑊(𝑡) = 𝒽 ∑

∞

𝒽=0

𝐶[𝒽]𝐼 (−𝑡,
𝒽

𝓫(1 +𝒽)
− 1,

𝒽

𝓫(1 +𝒽)
, −[1 +𝓫(1 + 𝒽)]). 

 

Incomplete Moments 

The  𝑠𝑡𝒽  incomplete moment, say  𝐼𝑠(𝑡) , of the GOLLBXII distribution is given by  𝐼𝑠(𝑡) = ∫
𝑡

0
𝓌 𝑠𝑓(𝓌)𝑑𝓌. 

From equation (7), we have 

𝐼𝑠(𝑡) = ∑

∞

𝒽=0

𝐶[𝒽]∫
𝑡

0

𝓌 𝑠𝒽[𝓪,𝓫(1+𝒽)](𝓌)𝑑𝓌, 

and using the lower incomplete gamma function, we obtain   

𝐼𝑠(𝑡) = ∑

∞

𝒽=0

𝐶[𝒽]𝓫(1 +𝒽)𝐵 (𝑡
𝓪; 𝓫(1 + 𝒽) −

𝑠

𝓪
,
𝓪 + 𝑠

𝓪
). 

 The first incomplete moment (FIM) of  𝑊, denoted by  𝐼1(𝑡),  is simply determined from the above equation by 

setting 𝑠 = 1 . The FIM has many economical applications related to the Lorenz and Bonferroni curves. When a 

machine or component is going to break down can be foreseen using the residual life function. Maintenance staff can 

predict when to replace or perform maintenance on a machine by tracking its state and computing its residual life 
function. Analysis of product warranties can be done using the residual life function. The function allows 

manufacturers to predict the likelihood that their devices will break during the warranty period and modify the 

guaranteed conditions as necessary. In medical research, survival data can be analyzed using the residual life function. 

It can be used, for instance, to calculate the likelihood that a patient will live a specific amount of time following a 

diagnostic or medical procedure. 

 

Residual and reversed residual life functions 

The complement of the residual life function is the reversed residual life function, commonly referred to as the 

exceedance probability function. Given that an object has so far survived, it describes the likelihood that it will fail 

before a specific time. The residual life function, often referred to as the remaining life function, is a function that is 

used in dependability theory to characterize the likelihood that a product will fail after a specific amount of time has 

passed, assuming that it has lasted up to that point. The conditional survival probability, assuming the object has 

already survived up to a particular point, can be defined as the residual life function. The  𝓃th  moment of the residual 

life (RL), denoted by  𝓂𝓃(𝑡) = 𝐸[(𝑊 − 𝑡)𝓃]|(𝑊>𝑡, 𝓃=1,2,… ). The  𝓃th  moment of the residual life of  𝑊  is given by  

𝓂𝓃(𝑡) =
∫
∞

𝑡
(𝑊 − 𝑡)𝓃𝑓𝛹(𝓌)𝑑𝓌

1− 𝐹𝛹(𝑡)
. 

Then, we can write   

𝓂𝓃(𝑡) =
1

1 − 𝐹𝛹(𝑡)
∑

𝓃

𝒾=0

∑

∞

𝒽=0

𝐶[𝒽]
∗ 𝓫(1 +𝒽)𝐵 (𝑡𝛼;𝓫(1 + 𝒽) −

𝓃

𝓪
,
𝓪 + 𝓃

𝓪
), 

where 𝐶[𝒽]
∗ = 𝐶[𝒽]

(−1)𝓃−𝒾𝓃!𝑡𝓃−𝒾

𝒾!𝛤(𝓃−𝒾+1)
. The  𝓃th  moment reversed residual life  

𝑀𝓃(𝑡) = 𝐸[(𝑡 −𝑊)
𝓃]|( 𝑡>0,𝓌≤𝑡 and 𝓃=1,2,… ) 

 Then,  𝑀𝓃(𝑡)  is defined by  

𝑀𝓃(𝑡) =
∫
𝑡

0
(𝑡 −𝑊)𝓃𝑓𝛹(𝓌)𝑑𝓌

𝐹𝛹(𝑡)
. 

The  𝓃th  moment of the reversed residual life of  𝑊   

𝑀𝓃(𝑡) =
1

𝐹𝛹(𝑡)
∑

𝓃

𝒾=0

∑

∞

𝒽=0

𝐶[𝒽]
∗∗ 𝓫(1 +𝒽)𝐵 (𝑡𝛼; 𝓫(1 + 𝒽) −

𝓃

𝓪
,
𝓪 +𝓃

𝓪
), 

where 𝐶[𝒽]
∗∗ = 𝐶[𝒽]

(−1)𝒾𝓃!

𝒾!(𝓃−𝒾)!
. Reliability engineering frequently examines the dependability of complicated systems using 

the reversed residual life function. Given that a system component has already been in operation for a while, it can be 

used to estimate the likelihood that it will fail before a particular time. In risk management, the reversed residual life 
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function can be used to calculate the likelihood that an event will occur within a specific time period. This can be used 

to evaluate the risk involved in a specific investment or activity. In quality control, the reversed residual life function 

can be used to calculate the likelihood that a fault will manifest itself within a given time frame. This can be used to 

establish quality control requirements and confirm that the items meet those requirements. 

3. Copula 

Copula is an important statistical concept used in modeling bivariate or multivariate data. It is a function that links the 

marginal distributions of two or more variables to their joint distribution. The use of copulas has become increasingly 

popular in recent years due to their flexibility and ability to model complex dependence structures between variables. 

Here are some of the key importance and usage of copulas in statistics and bivariate data modeling. Copulas are used 

to model dependence between variables, which is an important concept in many areas of statistics and data science. 

Copulas allow us to model the joint distribution of variables while retaining the marginal distributions of each variable, 

making it easier to capture complex dependencies between variables that cannot be captured by simple correlation 

measures. Copulas are used in finance to model the dependence structure between asset returns. This is important in 

portfolio optimization, where the aim is to construct a portfolio of assets that maximizes returns while minimizing 

risk. By using copulas to model the dependence between assets, we can better estimate the risk of a portfolio and 

construct more efficient portfolios. Copulas are also used in risk management, where they can be used to estimate the 

risk of extreme events, such as market crashes or natural disasters. By modeling the dependence structure between 

variables, copulas can provide a more accurate estimate of the probability of such events occurring, which is important 

for risk management and insurance. Copulas are also used for data generation, which is useful in situations where data 

is scarce or expensive to collect. By modeling the dependence structure between variables using a copula, we can 

simulate new data sets that have similar dependence structures as the original data, allowing us to generate new data 

for analysis and testing. In summary, copulas are an important statistical concept used in modeling bivariate or 

multivariate data. They are used to model dependence between variables, which is important in many areas of statistics 

and data science, including portfolio optimization, risk management, and data generation. By using copulas, we can 

capture complex dependencies between variables and make more accurate estimates of risk and other important 

parameters. 

Bivariate GOLLBXII type distribution via Morgenstern family 

 

First, we start with CDF for Morgenstern family of two random variables  𝑊1   and  𝑊2   which can be written as  

𝐹𝜆(𝓌1 ,𝓌2)|(|𝜆|≤1) = 𝐹1(𝓌1)𝐹2(𝓌2){1 + 𝜆[1 − 𝐹1(𝓌1)][1 − 𝐹2(𝓌2)]}, 

setting 

 

𝐹𝛹1(𝓌1) =
[1 − (1 +𝓌1

𝓪1)
−𝓫1

]
𝛼1𝛽1

[1 − (1 +𝓌1
𝓪1)

−𝓫1]
𝛼1𝛽1

+ {1 − [1 − (1 +𝓌1
𝓪1)

−𝓫1]
𝛽1
}
𝛼1 , 

where  𝛹1 = (𝛼1, 𝛽1 , 𝓪1, 𝓫1)  and 

𝐹𝛹2(𝓌2) =
[1 − (1 +𝓌2

𝓪2)
−𝓫2

]
𝛼2𝛽2

[1 − (1 +𝓌2
𝓪2)

−𝓫2
]
𝛼2𝛽2

+ {1 − [1 − (1 +𝓌2
𝓪2)

−𝓫2
]
𝛽2
}
𝛼2 , 

 

where  𝛹2 = (𝛼2, 𝛽2, 𝓪2, 𝓫2)  then we have a 9-dimension parameter model as  

𝐹(𝓌1 ,𝓌2) =
[1 − (1 +𝓌1

𝓪1)
−𝓫1

]
𝛼1𝛽1

[1 − (1 +𝓌1
𝓪1)

−𝓫1
]
𝛼1𝛽1

+ {1 − [1 − (1 +𝓌1
𝓪1)

−𝓫1
]
𝛽1
}
𝛼1 

×
[1 − (1 +𝓌2

𝓪2)
−𝓫2

]
𝛼2𝛽2

[1 − (1 +𝓌2
𝓪2)

−𝓫2]
𝛼2𝛽2

+ {1 − [1 − (1 +𝓌2
𝓪2)

−𝓫2]
𝛽2
}
𝛼2 
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×

{
 
 
 
 

 
 
 
 

1 + 𝜆

(

 
 
 
 
 
 

{
 

 

1 −
[1 − (1 +𝓌1

𝓪1)
−𝓫1

]
𝛼1𝛽1

[1 − (1 +𝓌1
𝓪1)

−𝓫1
]
𝛼1𝛽1

+ {1 − [1 − (1 +𝓌1
𝓪1)

−𝓫1
]
𝛽1
}
𝛼1

}
 

 

×

{
 

 

1 −
[1 − (1 +𝓌2

𝓪2)
−𝓫2]

𝛼2𝛽2

[1 − (1 +𝓌2
𝓪2)

−𝓫2]
𝛼2𝛽2

+ {1 − [1 − (1 +𝓌2
𝓪2)

−𝓫2]
𝛽2
}
𝛼2

}
 

 

)

 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

. 

 

Bivariate GOLLBXII type distribution via clayton copula 

The bivariate extension via Clayton Copula can be considered as a weighted version of the Clayton copula, which is 

of the form 

𝐶(𝑢, 𝑣) = [𝑢−(𝜙1+𝜙2) + 𝑣−(𝜙1+𝜙2) − 1]
−

1
𝜙1+𝜙2 . 

This is indeed a valid copula. Next, let us assume that 𝑊 ∼ GOLLBXII(𝛼1, 𝛽1, 𝓪1, 𝓫1)  and  𝑌 ∼ 

GOLLBXII(𝛼2, 𝛽2, 𝓪2, 𝓫2). Then, setting  

𝑢 = 𝑢𝛹1(𝓌) =
[1 − (1 +𝓌𝓪1)−𝓫1]

𝛼1𝛽1

[1 − (1 +𝓌𝓪1)−𝓫1]𝛼1𝛽1 + {1 − [1 − (1 +𝓌𝓪1)−𝓫1]𝛽1}𝛼1
 

and  

𝑣 = 𝑣𝛹2(𝑦) =
[1 − (1 + 𝑦𝓪2)−𝓫2]

𝛼2𝛽2

[1 − (1 + 𝑦𝓪2)−𝓫2]𝛼2𝛽2 + {1 − [1 − (1 + 𝑦𝓪2)−𝓫2]𝛽2}𝛼2
, 

the associated CDF bivariate GOLLBXII type distribution will be 

 

𝐶(𝑥, 𝑦) =

(

 
 
 
 {

[1 − (1 +𝓌𝓪1)−𝓫1]
𝛼1𝛽1

[1 − (1 +𝓌𝓪1)−𝓫1]𝛼1𝛽1 + {1 − [1 − (1 +𝓌𝓪1)−𝓫1]𝛽1}𝛼1
}

−(𝜙1+𝜙2)

+{
[1 − (1 + 𝑦𝓪2)−𝓫2]

𝛼2𝛽2

[1 − (1 + 𝑦𝓪2)−𝓫2]𝛼2𝛽2 + {1 − [1 − (1 + 𝑦𝓪2)−𝓫2]𝛽2}𝛼2
}

−(𝜙1+𝜙2)

−1 )

 
 
 
 

−
1

𝜙1+𝜙2

. 

Note: Depending on the specific baseline CDF, one may construct various bivariate GOLLBXII type model in which  

(𝜙1 +𝜙2) ≥ 0.  
 

Multivariate GOLLBXII type distribution via Clayton copula 

A straightforward  𝑑 -dimensional extension from the above will be 

 

𝐻(𝑥1, 𝑥2,⋯ , 𝑥𝑑) =

[
 
 
 
 
 

∑𝑑𝒾=1

(

  
 [1−(1+𝓌𝒾

𝓪𝒾)
−𝓫𝒾

]

𝛼𝒾𝛽𝒾

{[1−(1+𝓌𝒾
𝓪1)

−𝓫𝒾]
𝛼𝒾𝛽𝒾

+{1−[1−(1+𝓌𝒾
𝓪𝒾)

−𝓫𝒾
]

𝛽𝒾
}

𝛼𝒾

}

)

  
 

−(𝜙1+𝜙2)

+ 1 − 𝑑

]
 
 
 
 
 
−1/(𝜙1+𝜙2)

. 

4.Estimation 

4.1 Maximum likelihood method 

Suppose that ( 𝓌1 ,⋯ ,𝓌𝓃)  is a random sample (rs) from the GOLLBXII  model. The log-likelihood function ( ℓ𝓃(𝛹) 
) for  𝛹  is given by 

 

ℓ𝓃(𝛹) = 𝓃 𝑙𝑜𝑔(𝛼𝛽𝓪𝓫) + (𝓪 − 1)∑

𝓃

𝒾=1

𝑙𝑜𝑔𝓌𝒾 − (𝓫 + 1)∑

𝓃

𝒾=1

𝑙𝑜𝑔 ϒ𝒾 

+(𝛼𝛽 − 1)∑

𝓃

𝒾=1

𝑙𝑜𝑔(1 − ϒ𝒾
−𝓫) + (𝛼 − 1)∑

𝓃

𝒾=1

𝑙𝑜𝑔 [1 − (1 − ϒ𝒾
−𝓫)

𝛽
] 
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−2∑

𝓃

𝒾=1

𝑙𝑜𝑔 {(1 − ϒ𝒾
−𝓫)

𝛼𝛽
+ [1 − (1 − ϒ𝒾

−𝓫)
𝛽
]
𝛼

} 

where  ϒ𝒾 = (𝓌𝒾
𝓪 + 1).  The above  ℓ𝓃(𝛹)  can be maximized by numerical methods via many programs such as 

SAS (PROC NLMIXED) or R (optim) or Ox program (via sub-routine MaxBFGS). The components of the score 

vector  

𝐼(𝛹) =
𝜕ℓ

𝜕𝛹
= (

𝜕ℓ𝓃(𝛹)

𝜕𝛼
,
𝜕ℓ𝓃(𝛹)

𝜕𝛽
,
𝜕ℓ𝓃(𝛹)

𝜕𝓪
,
𝜕ℓ𝓃(𝛹)

𝜕𝓫
)
𝑇

can be easily derived. 

4.2 Simulations 

Simulation studies are an essential tool in statistical analysis for several reasons: 

I. Assessing the validity of statistical methods: Simulation studies allow statisticians to evaluate the 

performance of different statistical methods by generating data under specific conditions and testing the 

accuracy of the methods in estimating the true parameters. This provides a means of assessing the 

validity of the methods and their suitability for different types of data. 

II. Testing hypotheses: Simulation studies can be used to test hypotheses by generating data that reflect the 

null or alternative hypothesis and comparing the results obtained from the simulated data with the 

observed data. This allows researchers to determine the statistical significance of their findings and 

assess the power of their tests. 
III. Sample size determination: Simulation studies can be used to determine the appropriate sample size 

required for a study. By generating data with different sample sizes and assessing the performance of 

different statistical methods, researchers can determine the sample size that will yield the most accurate 

and reliable results. 

IV. Sensitivity analysis: Simulation studies can be used to assess the sensitivity of statistical methods to 

different assumptions and parameters. This helps researchers to identify potential biases and assess the 

robustness of their results. 

V. Teaching and learning: Simulation studies can be used as a teaching tool to help students understand 

statistical concepts and methods. By generating data and manipulating different parameters, students can 

develop an intuitive understanding of statistical concepts and gain hands-on experience with statistical 

software. Overall, simulation studies play a crucial role in statistical analysis by providing a means of 

evaluating the performance of statistical methods, testing hypotheses, determining sample sizes, 
assessing the sensitivity of methods, and facilitating learning and teaching.  

 

There are several types of simulation studies that can be conducted in statistical analysis, including: 

I. Monte Carlo simulation: Monte Carlo simulation involves generating random samples from a population 

and analyzing the properties of the samples using statistical methods. This type of simulation is often 

used to estimate the properties of complex systems or models. 

II. Bootstrap simulation: Bootstrap simulation involves generating many samples by resampling from a 

single sample, with replacement. This technique is often used to estimate the variability of a statistic or 

to construct confidence intervals. 

III. Permutation testing: Permutation testing involves permuting the data in order to test hypotheses about 

the population. This technique is often used when the assumptions underlying traditional statistical tests 
are not met. 

IV. Sensitivity analysis: Sensitivity analysis involves systematically varying one or more parameters in a 

statistical model or simulation to assess the impact on the results. This type of simulation is often used 

to assess the robustness of statistical methods. 

V. Power analysis: Power analysis involves simulating data with known effect sizes to determine the 

probability of detecting a significant effect. This technique is often used in sample size determination 

and to plan statistical studies. 

VI. Agent-based simulation: Agent-based simulation involves modeling the behavior of individuals or 

agents in a system and analyzing the emergent properties of the system. This type of simulation is often 

used in social sciences, economics, and ecology. Overall, simulation studies are a powerful tool in 

statistical analysis, and the choice of simulation method will depend on the research question, the type 

of data, and the statistical methods being used.  
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Graphically, we can perform the simulation experiments to assess of the finite sample behavior of the MLEs. The 

assessment was based on the following algorithm: 

• Use  

𝓌𝑢 =
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• to generate 1000 samples of size  𝓃  from the GOLLBXII distribution. 

• Compute the MLEs for the 1000 samples. 

• Compute the SEs of the MLEs for the 1000 samples. 

• the standard errors (SEs) were computed by inverting the observed information matrix. 

• compute the biases and mean squared errors given for 𝒽 = 𝛼, 𝛽, 𝓪,𝓫 . We repeated these steps for  𝓃 =
50,100,… ,500  with  𝛼 = 1,  𝛽 = 1,  𝓪 = 1,  𝓫 = 1  so computing biases (𝐵𝒽(𝓃)), mean squared errors ( 𝑀𝑆𝐸𝑠)  
(𝑀𝑆𝐸𝒽(𝓃))  for  𝛼, 𝛽,𝓪,𝓫  and  𝓃 = 50,100,… ,500. 

 

Figure 2 (left panel) shows how the four biases vary with respect to  𝓃 . Figure 2 (right panel) shows how the 

four MSEs vary with respect to  𝓃 . The broken lines in Figure 2 corresponds to the biases being  0 . From Figure 

2, the biases for each parameter decrease to zero as  𝓃 → ∞ , the MSEs for each parameter decrease to zero as  

𝓃 → ∞ . 
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Figure 2: Biases and MSEs for ; ; a; b and n = 50; 100; : : : ; 500 for the new model. 

 

5.Three applications for comparing models 

A probability distribution's adaptability relates to its capacity to represent many kinds of data structures and patterns. 

The normal distribution, the Poisson distribution, the exponential distribution, and the gamma distribution are a few 

of the frequently used probability distributions. Each of these distributions has distinct qualities and advantages that 

make it appropriate for representing kinds of data. In order to assess whether a new probability distribution is 

appropriate for the task at hand when investigating its flexibility, it is crucial to take into account the characteristics 
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of the data being modelled and to compare the new distribution to other widely used distributions. A distribution's 

adaptability can also be increased by mixing different distributions in a mixture model or by modelling non-typical 

data patterns with transformations. A symmetrical distribution that works well for modelling data with a bell-shaped 

pattern is the normal distribution, for instance. The Poisson distribution, on the other hand, is used to model data that 

shows the number of events that occur over a specified period of time or place. For the purpose of modelling data that 

illustrates the interval between events in a Poisson process, the exponential distribution is used. To illustrate the 

flexibility of the GOLLBXII model, we provide three applications. Data set I called the data of breaking stress which 

consists of 100 observations and given by Nichols and Padgett (2006). Data set II called survival times in days of 72 

guinea pigs infected with virulent tubercle bacilli, originally observed and reported by Bjerkedal, T. (1960). Data set 

III called taxes revenue data in 1000 million Egyptian  pounds given in Altun et al. (2018 a, b). Many useful data sets 

which can be modeled under the new model are available in Elsayed and Yousof, H. M. (2019a, 2019b, 2020 and 

2021), Salah et al. (2022) and Elgohari and Yousof (2020a, 2020b, 2020c and 2021). 

 

For all data sets, we compare the GOLLBXII distribution, with BXII , Marshall-Olkin BXII  (MOBXII ), Topp-Leone 

BXII  (TLBXII ), Zografos-Balakrishnan BXII  (ZBTBXII ), five parameters beta-BXII  (FPBTBXII ), BTBXII , 

Beta-exponentiated-BXII  (BEBXII ), Five Parameters Kumaraswamy-BXII  (FKwmBXII ) and KwmBXII  

distributions. All competitive models are given in Yousof et al. (2017), Yousof et al. (2018 a, b), Alizadeh et al. (2018), 

Korkmaz et al. (2018 a, b), Altun et al. (2018 a, b), Alizadeh et al. (2019) and Yousof et al. (2019 a, b). We consider 

the well-known G-O-F statistics: the Akaike Information Criterion  (𝐶[AI]) , Bayesian Information Criterion  (𝐶[Bayes]), 

Hannan-Quinn Information Criterion  (𝐶[HQ]) , Consistent Akaike Information Criterion  (𝐶[CA]).  

 

Tables 4, 5, 6 give the MLEs, standard errors (SEs), confidence interval (CL) for the data set I, II, III respectively 

and give also the  𝐶[AI] ,  𝐶[Bayes] ,  𝐶[HQ]  and  𝐶[CA]  values for the data set I, II, III respectively. Figure 3 gives the 

box plots. Figure 4 gives the Quantile-Quantile plots. Based on Figure 3 and Figure 4, it is seen that the three data sets 

have extreme values. Extreme value datasets often occur in many fields such as meteorology, hydrology, finance, and 
engineering. Modeling these datasets using probability distributions can help us understand and quantify the behavior 

of extreme events and make predictions for future extreme events. Here are three common probability distributions 

used to model extreme value datasets زThe Generalized Extreme Value (GEV) Distribution: The GEV distribution is 

often used to model the maximum or minimum values in a dataset. It has three parameters: location, scale, and shape. 

The GEV distribution can be used to model data from a wide range of fields, including meteorology, finance, and 

engineering.  When modeling extreme value datasets, it is important to choose the appropriate distribution that fits the 

data well. This can be done by using statistical tests and visualizations to compare the data to the distribution. Once a 

suitable distribution is found, it can be used to make predictions for future extreme events and assess the risk associated 

with these events. Figures 5, 6, 7 give the TTT plot, P-P plot, E.P.D.F, E.C.D.F, E.H.R.F and Kaplan-Meier survival 

plots for the data set I, II, III respectively. Based on the values in Tables 4, 5, 6 and Figures 5, 6, 7 the GOLLBXII  

model has the best fits as compared to BXII  other models in the three applications with small values for  𝐶[AI] ,  

𝐶[Bayes],  𝐶[HQ]  and  𝐶[CA]. 
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Figure 3: Box plots. 



Pak.j.stat.oper.res.  Vol.19  No. 1 2023 pp 77-101  DOI: http://dx.doi.org/10.18187/pjsor.v19i1.3377 

 

 
A Generalization of Burr Type XII Distribution with Properties, Copula and Modeling Symmetric and Skewed Real Data Set 92 

 

 
Figure 4: Q-Q plots. 
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Table 4: MLEs, SEs, 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA for the data set I. 

Model  𝛼̂,𝛽̂,𝓪̂,𝓫̂, 𝛾 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA 

BXII  ---, ---, 5.9413, 0.1874, ---  382.96, 388.16, 383.10, 385.10 

 ---, ---, (1.2792), (0.0441), ---  

 ---, ---, (3.431,8.452), (0.101,0.270), ---  

MOBXII ---, ---, 1.1922,4.8343,838.734 305.9 313.60, 306.02, 308.97 

 ---, ---, (0.9523), (4.8960),(229.342)  

 ---, ---, (0, 3.060), (0,14.431),(389.221,1288.23)  

TLBXII ---, ---, 1.3501,1.0612,13.7282 323.54, 331.40, 323.78, 326.72 

 ---, ---, (0.3781), (0.3842) ,(8.403)  

 ---, ---, (0.613, 2.090), (0.310,1.801) ,(0, 30.191)  

KwmBXII 48.105 ,79.514 ,0.352 ,2.738, --- 303.78, 314.23, 304.20, 308.02 

 (19.344),(58.182) ,(0.0981) ,(1.0771) ,---  

 (10.17,86.03), (0,193.54) ,(0.15,0.54), (0.60,4.86),---  

BTBXII 359.683 ,260.097 ,0.175 ,1.123, --- 305.65, 316.16, 306.26, 309.86 

 (57.943),(132.223),(0.015),(0.244),---  

 (246,473.5), (0.95,519.5), (0.14,0.23), (0.65,1.66), ---  

BEBXII 0.3813, 11.9493, 0.9371, 33.406, 1.7057  305.83, 318.85, 306.46, 311.29 

 (0.0781), (4.6351), (0.268), (6.288), (0.47815)  

 (0.2,0.55), (2.8,22), (0.4,1.8), (20,46), (0.81,2.69)  

FKwmBXII 0.54243,4.2231, 5.316, 0.415, 4.1526  305.52, 318.55, 306.44, 310.84 

 (0.135), (1.881), (2.320), (0.4971), (1.9951)  

 (0.2, 0.9), (0.5,7.99),  (0.91,9), (0, 1.8), (0.2,8.8)  

ZBTBXII 123.13, ---,0.3682, 139.2471, --- 302.98, 310.79, 303.24, 306.15 

 (243.2), ---, (0.342), (318.55), ---  

 (0, 599), ---, (0, 1.05), (0, 763.6),---  

GOLLBXII 10.778, 4.923 0.181, 2.605, --- 301.11, 310.53, 301.53, 305.33 

 11.251, 5.237, 0.227, 1.509, ---  

 (0, 33), (0, 5.2), (0, 0.227), (0, 5.6), ---  

 

Table 5: MLEs, SEs, 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA for the data set II. 

Model  𝛼̂,𝛽̂,𝓪̂,𝓫̂, 𝛾 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA 

BXII ---, ---, 3.1025, 0.4652, --- 209.66, 214.25, 209.78, 211.41 

 ---, ---, (0.537), (0.076), ---  

 ---, ---, (2.051,4.162), (0.301,0.623), ---  

MO BXII  ---, ---, 2.2591,1.5334, 6.763 209.75, 216.57, 210.10, 212.45 

 ---, ---, (0.861), (0.905), (4.585)  

 ---, ---, (0.51,3.958), (0,3.315), (0, 15.76)  

TL BXII ---, ---, 2.391,0.4581,1.7962 211.81, 218.62, 212.16, 214.53 

 ---, ---, (0.901), (0.2444), (0.9155)  

 ---, ---, (0.61,4.18), (0, 0.945), (0.001,3.60)  

KwmBXII  14.1054,7.4244, 0.5251, 2.2749, --- 208.77, 217.87, 209.38, 212.40 

 (10.81), (11.852), (0.280), (0.991), ---  

 (0, 35.3), (0.30.8), (0, 1.1), (0.31, 4.25), ---  

FPBTBXII 0.624, 0.5491,3.84, 1.383, 1.6651 206.83, 218.22, 207.73, 211.35 

 (0.543), (1.014), (2.782), (2.34), (0.44)  

 (0, 1.73), (0, 2.52), (0, 9.31), (0, 5.94), (0.7, 4.51)  

FKwmBXII 0.5573, 0.318, 3.998, 2.133, 1.4755 206.52, 217.91, 207.43, 211.22 

 (0.440), (0.3141), (2.083), (1.8331), (0.360)  

 (0, 1.44), (0, 0.95), (0, 3.13), (0, 5.71), (0.75, 2.25)  

GOLLBXII 6.506, 1.916, 0.319, 1.557, --- 205.72, 214.83, 206.32, 209.35 
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 12.963, 2.259, 0.781, 1.565, ---  

 (0, 32.5), (0, 6.5), (0, 4.5), (0, 4.8), ---  

 

 

 

Table 6: MLEs, SEs, 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA for the data set III. 

Model  𝛼̂,𝛽̂,𝓪̂,𝓫̂, 𝛾 𝐶AI ,  𝐶Bayes ,  𝐶HQ  and  𝐶CA 

BXII ---, ---, 5.617, 0.0724, --- 518.47, 522.61, 518.68, 520.10 

 ---, ---, (15.051), (0.1943), ---  

 ---, ---, (0, 35.14), (0, 0.451), ---  

MOBXII  ---, ---, 8.0171, 0.420, 70.360 387.23, 389.40, 387.67, 389.70 

 ---, ---, (22.080), (0.313), (63.833)  

 ---, ---, (0, 51.30), (0, 1.031), (0, 195.474)  

TLBXII ---, ---, 91.323, 0.0124, 141.0734 385.93, 392.20, 386.41, 388.41 

 ---, ---, (15.074), (0.0022), (70.0283)  

 ---, ---, (61.8,120.88) (0.007, 0.024) (3.80,278.35)  

KwmBXII  18.133, 6.87, 10.692, 0.0813, --- 385.60, 393.93, 386.33, 388.87 

 (3.6890), (1.036), (1.167), (0.0122), ---  

 (10.8,25.4), (4.81,8.9), (8.4,12.988), (0.06,0.105), ---  

BTBXII 26.7251, 9.7562, 27.3641, 0.0203, --- 385.57, 394.13, 386.34, 389.14 

 (9.46), (2.782), (12.353), (0.008), ---  

 (8.15,45.28), (4.3,15.23), (3.16,51.59), (0.005,0.037), --

- 

 

BEBXII 2.9242, 2.9111, 3.278, 12.488, 0.3713 387.05, 397.44, 388.18, 391.10 

 (0.565), (0.5491), (1.255), (6.9384), (0.7881)  

 (1.8,4.1), (1.8,3.9), (0.80,5.7), (0, 26.1), (0, 1.93)  

FP  30.4414, 0.585, 1.0891, 5.1666, 7.8621 386.75, 397.15, 387.90, 390.80 

 (91.75), (1.061), (1.024), (8.27), (15.04)  

 (0, 210.3), (0, 2.7), (0, 3.1), (0, 21.4), (0, 37.34)  

FKwmBXII 12.8781, 1.2255, 1.6653, 1.416, 3.734 386.97, 397.40, 388.10, 391.10 

 (3.44), (0.134), (0.0342), (0.09), (1.17)  

 (6,19.6), (0.8,1.5), (1.6,1.7), (1.3,1.58), (1.4,6.1)  

GOLLBXII 5.297, 1.205, 8.634, 0.040, --- 386.803, 395.11, 387.54, 390.05 

 0.000, 0.000, 0.000, (0.029) ---  

 ---, ---, ---, (0, 0.1), ---  
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Figure 5: Plots for data set I. 
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Figure 6: Plots for data set II. 
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Figure 7: Plots for data set III. 
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6. Conclusions, discussion and future points 

A new generalization of the Burr type XII model called the generalized odd log-logistic Burr type XII (GOLLBXII) 

model is introduced and studied. The genesis of the new Burr type XII model is derived based on the generalized odd 
log-logistic-G family. The new model generalizes at least eight important sub-models. Some useful properties related 

to the new model are derived. The new additional shape parameters 𝛼 and 𝛽 has an effect on mean, variance, skewness 

and kurtosis. For the GOLLBXII model, skewness can range in the interval (− 134.7817, 26.46451). However, for the 

BXII model, skewness can range in the interval (− 0.974193, 18.60987). For the GOLLBXII model, kurtosis can 

range in the interval (− 181.8733, 3011661). However, for the BXII model, kurtosis can range in the interval 

(2.880286, 2139.368). The Meijer G function is used to derive the moment generating function. The copula-based 

construction is used to generate many bivariate and multivariate type distributions. We used the maximum likelihood 

method in estimation process. Graphically, we performed the simulation experiments to assess of the finite sample 

behavior of the MLEs, the biases for each parameter decrease to zero as  𝓃 → ∞ , the MSEs for each parameter 

decrease to zero as 𝓃 → ∞ . Three numerical examples are given for comparing models. The GOLLBXII has an 

enough flexibility for modeling different real data sets. Future works may be allocated to study the new bivariate and 

multivariate type distributions.   

 

Introducing a new probability distribution is not difficult, but the real difficulty lies in presenting a new distribution 

that is flexible enough. The flexibility of probability distributions can be viewed from many aspects. One of these 

aspects, and the first of them, is the breadth of the density function and its inclusion of many forms that help in 

statistical modeling processes for different data. The second of these is the flexibility of the failure rate function of the 

new distribution. Also among these aspects is the ability of the new distribution to model real data. In order to assess 
whether a new probability distribution is suitable for the assignment at hand when examining its flexibility, it is crucial 

to take into account the characteristics of the data being modelled and to compare the new distribution to other widely 

used distributions. A distribution's adaptability can also be increased by mixing different distributions in a mixture 

model or by modeling non-typical data patterns with transformations. The new distribution has proven a high applied 

ability in statistical modeling operations through a range of applications on engineering and medical data. And the 

new distribution proved that it is the best among many other distributions closely related to it and competing with it. 

We do not claim that the new distribution is absolutely the best in the statistical literature. Because each statistical 

model has advantages and disadvantages, these advantages and disadvantages may relate to some issues, including 

the scope of application of the distribution and its flexibility in the estimation and modeling processes. It is intuitively 

known that there is no suitable statistical model for all types of data. Each statistical model has limitations and 

conditions when applied. 

 
Below we will add some future point along with their corresponding references for helping readers to expand this 

work: 

I. Stress-strength reliability model under the GOLLBXII distribution (see Rasekhi et al. (2020) and Saber 

et al. (2022a,b,c,d)). 

II. Nikulin-Rao-Robson goodness-of-fit test under the GOLLBXII distribution (see Goual and Yousof 

(2020) and Goual et al. (2019, 2020), Yadav et al. (2020, 2022)). 

III. Censored and uncensored validation under the Bagdonavičius–Nikulin goodness-of-fit test (Ibrahim et 

al. (2019), Aidi et al. (2021), Ibrahim et al. (2021a, 2022), Khalil et al. (2023), Mansour et al. (2020a.b) 

and Yousof (2022a,b,c)). 

IV. Assessing and analyzing actuarial risks using insurance and reinsurance data via the new GOLLBXII 

distribution (see Mohamed et al. (2022a,b,c), Emam et al. (2023a), Hamed et al. (2022) and Yousof et 
al. (2023)). 

V. Provide a new discrete distribution based on the new distribution (see Aboraya et al. (2020), Ibrahim et 

al. (2021b), Eliwa et al. (2022), Chesneau et al. (2022) Yousof (2021c), Emam et al. (2023a)). 
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