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1. Introduction 

Weighted distributions (WDs)are handled in studies associated with reliability, biomedicine, meta-analysis, 

econometrics, survival analysis, renewal processes, physics, ecology and branching processes which are found 

in Zelen and Feinleib (1969), Patil and Ord (1976), Patil and Rao (1978), Gupta and Keating (1986), Oluyede 

(1999) and references therein. In fact, these distributions arise in practice when observations from a sample are 

recorded with unequal probabilities. 

Suppose that T is a nonnegative random variable with the probability density function (pdf) fw (t). The pdf 

of the weighted random variable T is defined by: 

 
   

,          >0,
( ( ))

w

t g t
f t t

E T




  (1) 

where  t  is a nonnegative weight function and ( ( )) 0.E T   Different choices of  t  give different WDs, 

that is, for   , 0,st t s    the pdf in (1) is called as WD of order s. Also, for s=1 or s = 2, the pdf (1) is called 

as the length-biased (size-biased) and the area-biased distributions, respectively. 

The Lomax (Lo) distribution is an important model in lifetime analysis. It has been widely applied in a 

variety of contexts; analysis of income and wealth data (Harris (1968)), modelling business failure data 

(Atkinson and Harrison (1978)) and, biological sciences (Holland et al. (2006)), model firm size and queuing 
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problems (Corbellini et al. (2010)) and reliability modelling and life testing (Hassan and Al-Ghamdi (2009) and 

Hassan et al. (2016)).  

In recent times, many generalizations and extensions of the Lo distribution have been provided by many 

authors, including exponentiated Lo distribution (Abdul-Moniem and Abdel-Hameed (2012)), beta Lo 

distribution, Kumaraswamy Lo distribution and McDonald Lo distribution (Lemonte and Cordeiro (2013)), 

gamma-Lo distribution (Cordeiro et al. (2013)), Weibull Lo (WLo) distribution (Tahir et al. (2015)). Gumbel-

Lo distribution (Tahir et al. (2016)), power Lo distribution (Rady et al. (2016)), exponentiated Lomax geometric 

distribution (Hassan and Abdelghafar (2017)), power Lo Poisson distribution (Hassan and Nassr (2018)), 

exponentiated Weibull-Lo distribution (Hassan and Abd-Allah (2018)), inverse power Lo distribution (Hassan 

and Abd-Allah (2019)), inverse exponentiated Lo distribution (Hassan and Mohamed (2019a)), Weibull inverse 

Lo distribution (Hassan and Mohamed (2019b)), type II half logistic Lo distribution (Hassan et al. (2020a), 

Zubair Lomax (Bantan et al. (2020)) and truncated power Lomax (Hassan et al. (2020b) among others.  
The power Lo (PLo) distribution has been proposed by Rady et al. (2016) as a new extension of the Lo 

distribution with an extra shape parameter. The pdf of the PLo distribution with shape parameters a, b and scale 

parameter c is defined by 
1 1( ) ( ) ; , , , 0.a b b ag t abc t c t t a b c      (2) 

The cumulative distribution function (cdf) of the PLo distribution is as follows:  

( ) 1 ( ) .a b aG t c c y     (3) 

The s
th 

moment corresponding to (2) is given by 

 ( ),1 ( ) ,

s s

b b
s sac a s b s b ac D       (4) 

where  ( ),1 ( ) , 1,2,3,...sD a s b s b s      and B(.,.) is the beta function.  

In view of the importance of the PLo distribution as well as the idea of the WD, we introduce a weighted 

version of the PLo distribution called the weighted PLo (WPLo) distribution. The WPLo distribution can (i) be 

viewed as an alternate model to some new extended forms of the Lo and generalized exponential distributions. 

(ii) hold both inverted bathtub and decreasing hazard rate and (iii) have wider applications in some areas. We 

discuss the estimation of the population parameter via maximum likelihood (ML) and maximum product 

spacing (MPS) methods in the case of complete and type II censoring (TIIC) samples. Application to real data 

for its length biased version is considered. 

The rest of the article is organized as follows. The weighted version for PLo distribution is described in 

Section 2. Section 3 gives moments and related measures, entropy measure and stochastic ordering for WPLo 

distribution. Section 4 deals with the point and approximate confidence interval (CI) of the model parameters 

based on the ML and MPS procedures. A simulation study is presented in Section 5. Real data illustration is 

described in Section 6 for studying the application of the length biased PLo (LBPLo) distribution. In the end, 

concluding remarks are implemented. 

 

2. Weighted Power Lomax Distribution  

Here, we obtain the WPLo distribution by considering the weight function   ,st t   and using (2) by 

substituting them in (1), as appear in the following definition  

Definition 1: A nonnegative continuous random variable, T, is said to follow the WPLo distribution with 

parameters a, b, c and s if its pdf is of the form: 

  1 1 1( ) ,          , , , >0,  =1,2,...

s
a

s b b ab
w sf t bc D t c t t a b c s


       (5) 

where a and b are shape parameters and  ( ),1 ( ) , 1,2,3,...sD a s b s b s      A random variable with pdf 

(5) will be denoted by T ~ (a, b, c, s).  The associated cdf of the WPLo distribution is given by: 

   1 ( ),1 ( ), ( ) ,          , , , >0,  =1,2,...b b
w sF t D a s b s b t c t t a b c s     (6) 

where  
( )

( ) 1 1 ( ) 1

0

( b) ,1 ( ), ( ) (1 ) ,

b bt c t

b b a s b s ba s s b t c t y y dy



         is the incomplete beta function. 

Some special sub-models can be obtained from (5) as follows

   

 

i. For, s =1 in (5), we get LBPLo distribution as a new model. 

ii. For, s =2 in (5), we get area biased PLo (ABPLo) distribution as a new model. 

iii. For, s =1, b=1 in (5), we get length biased Lo (LBLo) distribution (Ahmad et al. (2016)).  

iv. For, s =2, b=1 in (5), we get area biased Lo (ABLo) distribution as a new model. 
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The survival function (sf) of the WPLo distribution is then, 

   11 ( ),1 ( ), ( ) .b b
w sF t D a s b s b t c t      

The hazard rate function (hrf) is  

 
 

1 1 1

1

( )
.

1 ( ) ,1 ( ) , ( )

s
a

s b b ab
s

w b b
s

bc D t c t
h t

D a s b s b t c t


    






   
 

Fig.1, Fig.2 and Fig.3 show the pdfs and hrfs for WPLo distribution for some choices values of a, b, c and s. 

  

(i) (ii) 

Fig. 1: (i) The pdf plots and (ii) The hrf plots of the LBPLo distribution 

 

 

(iii) (iv) 

Fig. 2: (iii) The pdf plots and (iv) The hrf plots of the ABPLo distribution 

  

(v) (vi) 

Fig. 3: (v) The pdf plots and (vi) The hrf plots of the WPLo distribution  
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From the above figures, we conclude that the pdf of the WPLo distribution and their particular cases (LBPLo 

and ABPLo) can take different shapes according to some values of a, b, c and s. Also, their hrf can be 

increasing; decreasing, reversed J-shaped, and up-side down shapes 

3. Main Properties  

In this section, some structural properties of the WPLo distribution are discussed. 

3.1 Moments and Associated Measures 

The moments of a random variable are necessary in statistical analysis, especially in applied works. The r
th

 

moment, ,r  for r =1,2,… of the WPLo distribution is obtained directly by using the pdf (5), hence, we have 

1 1, , ,  =1,2,...

r

b
r s

r s r s
c D B a ab s r r

b b
      
       

  
 

Similarly, the r
th

 central moment of a given random variable T, can be defined as  

1 1

0

( ) ( 1) ( ) .

r
r i i

r r i

i

r
E T

i
    



 
       

 
  

The coefficient of skewness (SK) and coefficient of kurtosis (KU) are defined by  

3

3
2

2

,SK




  4

2
2

.KU



  

Thus, numerical values of the 1, variance ( 2 ), coefficient of variation (CV), SK and KU of the WPLo 

distribution for some certain values of parameters are listed in Table 1.  

Table 1: Some moments measures of the WPLo distribution 

Parameters '
1μ  2

σ  CV SK KU 

a=2, b=3, c=2, s=1 1.260 0.382 0.490 2.362 24.949 

a=3, b=3, c=2, s=2 1.172 0.213 0.394 1.411 8.562 

a=4, b=3, c=0.5, s=1 0.556 0.043 0.373 0.771 4.484 

a=4, b=3, c=0.5, s=2 0.633 0.049 0.351 0.899 5.084 

a=3, b=4, c=0.5, s=1 0.68 0.043 0.306 0.645 4.351 

a=5, b=6, c=3, s=3 0.974 0.029 0.174 0.051 3.242 

a=6, b=5, c=3, s=3 0.949 0.035 0.197 0.110 3.197 

a=7, b=3, c=2, s=3 0.858 0.062 0.290 0.510 3.633 

Table 1 shows that the LBPLo and ABPLo distributions are positively skewed and leptokurtic for selected 

values of parameters. 

Further, a simple formula for the p
th

 incomplete moment of T, say
 

( ) ( ),p
p y E T T y    is obtained as follows:  

1( ) 1, , ,  =1,2,...,

p b

b
p s b

p s p s y
y c D a p

b b c y
 

    
    

   
 

where  .,., ( )b by c y   is the incomplete beta function. For p =1, we get the first incomplete moment. The 

essential applications of the first incomplete moment are the Lorenz and Bonferroni curves. 

   

3.2 Residual and Reversed Life Functions  

The residual life plays vital role in many situations like life testing and reliability theory. The m
th

 moment of the 

residual life (RL) is defined by: 

1
( ) [( ) ] ( ) ( ) .

( )

m m
m

x

x E T x T x t x f t dt
F x





      

Employing the binomial expansion and pdf; fw(t), then ( )m x  can be written as follows: 

 
 1

1 1

0

1
( ) ( ) .

( )

sm
a a

m j j s b bb
m s

w j x

m
x x bc D t c t dt

jF x



  

    



 
   

 
   
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 So, after simplification the m
th

 moment of the RL of the WPLo distribution is obtained as follows: 

1

0

1
( ) ( ) 1, , . 

( )

jm
m j b

m s b
w j

m j s j s c
x x c D a

jF x b b c x
  



        
         

     
  

where   .,., ( )bc c x   is the incomplete beta function

 

and ( )wF x is the sf of the WPLo distribution. For m 

=1, we get the mean RL of the WPLo distribution which represents the expected additional life length for a unit 

which is alive at age x. 

The 𝑛th
 moment of the reversed RL, say ( ) [( ) ],n

n x E T x T x     for x > 0 and n = 1, 2,... uniquely determines 

𝐹(t ). Therefore, the n
th

 moment of the reversed RL of T is defined by 

0

1
( ) ( ) ( ) .  

( )

x

n
n x t x f t dt

F x
    

Using pdf (5), the 𝑛th
 moment of the reversed RL of the WPLo distribution is as follows 

1

0

1
( ) ( ) 1, , .

( )

jn b
n j b

n s b
w j

n j s j s x
x x c D a

jF x b b c x
  



     
            

  

For n =1, we get the mean waiting time also called the mean reversed RL function which represent the waiting 

time elapsed since the failure of an item on condition that this failure had occurred in (0,x). 

3.3 Quantile function  

The q
th

 quantile; tq (also called the percentile of order q) of the WPLo distribution can be obtained from (6) as 

follows 

 1( ) ( ),1 ( ), ( ) 0. b b
q sF t D a s b s b t c t q       (7) 

It is a complex equation so by using iteration technique as a Newton-Raphson we obtain the quartiles. Further, 

from (7), the values of tq for q~ uniform (0, 1) provides the random values generated from the WPLo 

distribution. 

3.4 Rényi Entropy 

For a certain random phenomenon under study, it is important to quantify the uncertainty associated with the 

random variable of interest. One of the most famous measures used to quantify the variability of random 

variable is the Rényi entropy. It is defined for 0 and   1,    as follows 

1
( ) log ( ) .

1
E T f t dt









 

 
Using pdf (5), the Rényi entropy of the WPLo distribution can be written as follows 

( )
( 1) ( 1)

0

1
( ) log ( ) .

1

s
a

s b b ab
sE T b c D t c t dt


   







     
   

After simplification, the Rényi entropy of the WPLo distribution is given by 

1

11 ( 1) 1 ( 1) 1
( ) log , ( 1) .

1

b
s

s b s b
E T b c D a

b b



 


 




 
 

  

 
         

      
     

 

3.5 Stochastic ordering 

Shaked and Shanthikumar (2007) mentioned that, for independent random variables T and W with cdfs FT and 

FW respectively, T is said to be smaller than W if the following ordering holds; 

 Stochastic order(T sr W)   if  FT (t  (   FW (t  ( for all t. 

 Likelihood ratio order (T lr W)  if    T Wf t f t  is decreasing in t. 

 Hazard rate order (T hr W)  if hT (t  (   hW (t  ( for all t. 

 Mean residual life order (X mrl Y) if mT (t  (   mW (t  ( for all t. 

We have the following chain of implications among the various partial orderings discussed above: 
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lr hr mrl

sr

T W T W T W

T W

    





 

Theorem 1: Let T ∼ WPLo distribution (a1, b1, c1, s1) and W ∼ WPLo distribution (a2, b2, c2, s2) If, 

1 2 1 2 1 2, ,a a b b c c   , and 1 2 ,s s then T lr W,
 
T hr W,

 
T mrl W,

 
and T sr W. 

Proof  

It is sufficient to show    T Wf t f t  is a decreasing function of t; therefore, 

 

 

   1 2

1 2

1 1
1 1 2 21 1 2 2

1 2

                                   

1 1( 1) ( 1)
log .

b b
T

b b
W

f t s b s ba b t a b td

dt f t t tc t c t

     
   

 

       

 

Now if 1 2 1 2 1 2, ,a a b b c c   , and 1 2 ,s s then
 

 
log 0

T

W

f td

dt f t
 , which implies that W is stochastically 

greater than T with respect to likelihood ratio order i.e., T lr  W. Similarly, we can conclude for T hr  W, T 

mrl  W, and T sr  W. 

4. Parameter Estimation  

This section provides the ML and MPS estimators of the population parameters for WPLo distribution via 

complete and TIIC. Further, the asymptotic CI for model parameters is given.  

4.1. ML Estimators 

The ML population parameter estimators for the WPLo distribution are derived in case of TIIC and complete 

samples. Let T1, T2,..., Tn be independent and identically WPLo distribution random variables representing the 

lifetimes of n independent units. In TIIC case, only the first prefixed k  ( )k n  failures, say T(1), T(2),…, T(k) are 

observed. These failures correspond to the first k  order statistics of the random sample T1, T2,..., Tn.  The log-

likelihood function, denoted by ln , for the WPLo distribution based on TIIC, is obtained as follows: 

     

 

1

1

1

ln ln ln ( 1) ln ( ) ln (1 ) ( ) ln ln ( 1) ln( )

( 1) ln( ) ( ) ( , , , ) ,

k

i

i

k
b
i

i

s s sC k a k a k k a c k b s b t
b b b

a c t n k a b c s





               

     



  

where 1

!
,

!

n
C

n k



   1( , , , ) ln 1 ( ),1 ( ), ( ) ,b b

sa b c s D a s b s b t c t       and for simplicity we write ti 

instead of t (i) . The partial derivatives with respect to a, b, c and s are obtained as follows 

1

ln ( ) ( , , , )
( 1) ( ) ln ln( ) ,

k
b
i

i

n k a b c ssk a k a k c c t
ba a



  
         

 
  (8) 

2 2 2
1 1

( 1) lnln ( ) ( , , , )
(1 ) ( ) ln ln( ) ,

( )

k k b
i i

i b
ii i

a t tks ks ks k n k a b c ss sa c t
b bb b bb b b c t 

  
          

 
 

 

(9) 

1

ln 1 ( ) ( , , , )
( ) ( 1) ,

k

b
ii

k n k a b c ssa a
bc c cc t

  
    

 
  (10) 

and,  

1

ln ( ) ( , , , )
( ) (1 ) ln ln( ) ,

k

i

i

k k k n k a b c ss sa c t
b bs b b b s



  
        

 
  (11) 

where (e) (e) (e)   

 

is the digamma function. The ML estimators of the unknown parameters of the WPLo 

distribution can be obtained by solving the following non-linear equations: ln 0, ln 0,a b     

ln 0,and ln 0.c s     
 

Unfortunately these equations cannot be solved analytically, so numerical 
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technique is employed. Additionally, the ML estimators of parameters are obtained by solving the non-linear 

Equations (8)-(11) for k = n in case of complete sample. 

4.2 Maximum Product Spacing Estimator 

The MPS technique was presented by Cheng and Amin (1979) and independently notable with Ranneby (1984) 

as an alternative method to ML estimation technique for continuous distributions. The product spacing’s under 

the considered TIIC scheme can be written as  

  
1

( ) ( 1) ( )

1

( , , , ) ( ( 1 ( ,

k
n k

i i k

i

D a b c s F x F x F x








    
(12) 

where F(x(0)) ≡ 0 and F(x(k+1)) ≡ 1. The MPS estimators can be obtained from maximizing ( , , , )D a b c s with 

respect to a, b, c and s subject to the constraint ab > s. Further, under complete sample, the MPS estimates are 

obtained by maximizing (12) for k = n. 

4.3 Approximate Confidence Interval  

It is known that under regularity condition that the asymptotic distribution of ML estimators of elements of 

unknown parameters a, b, c and s is given by 
1ˆˆ ˆ ˆ( ),( ),( ),( ) (0, ( , , , )),a a b b c c s s N I a b c s      

where I
-1

(a, b, c, s) is the variance covariance  matrix of population parameters; a, b, c and s. The elements of 

Fisher information matrix are obtained for complete and TIIC scheme. Therefore, the two-sided approximate  

100 percent limits for the ML estimators of population parameters for a, b, c and s are obtained, respectively, as 

follows: 

2 2

ˆ ˆ ˆ ˆvar( ), var( ),a aL a Z a U a Z a    
2 2

ˆ ˆ ˆ ˆvar( ), var( ),b bL b Z b U b Z b    

 

2 2

ˆ ˆ ˆ ˆvar( ), var( ),c cL c Z c U c Z c     and,

 
2 2

ˆ ˆ ˆ ˆvar( ), var( ),s sL s Z s U s Z s    

 

 

where Z is the 100(1 )%
2

th  standard normal percentile and var(.)’s denote the diagonal elements of variance 

covariance matrix  corresponding to the model parameters. 

5. Simulation Study 

Here, we give up with a numerical study to assess the attitude of the ML and MPS estimates of the WPLo 

distribution and their length biased version based on complete sample and TIIC scheme. The algorithm used 

here is done via R package and the steps are summarized as follows: 

 1000 random sample of sizes n = 50, 100 and 200 are generated from the WPLo distribution by solving 

numerically Equation (7) under complete and TIIC.  

 The number of failure items; k, based on TIIC are selected as 60%, 80% and 100% (complete sample). 

 Exact values of parameters are chosen as; Case 1 = (a = 2.5, b = 1.5, c = 0.75, s = 1), Case 2 = (a = 2.5, 

b = 1.5, c = 0.75, s =2), Case 3 = (a = 3, b = 0.9, c=3, s=1) and Case 4=(a = 3, b = 2, c = 0.5, s = 3). 

 The ML estimates of the model parameters are obtained by solving the non-linear Equations (8)-(11). 

based on complete (k=n) and TIIC scheme. Also, the MPS estimates of the population parameters are 

obtained by maximizing Equation (12) with respect to a, b, c and s. 

 The average length (AL) of CIs with confidence level 0.95 for all samples sizes and the corresponding 

coverage probability (CP) are computed.  

 The absolute bias (AB), mean square errors (MSE), AL and CP at  = 0.05 of all estimates are 

calculated. 

 The numerical outcomes of the simulated data are listed in Tables 2, 3, 4 and 5.  

 

Table 2: AB, MSE, AL and CP of ML and MPS estimates under complete and TIIC in Case 1 

= 2.5, = 1.5, = 0.75, = 1a b c s  

n k 
 

ML MPS 

AB MSE AL CP AB MSE AL CP 

50 
1 

a 0.0722 0.3158 0.5546 95.4 0.0952 0.2829 0.5509 97.5 

b 0.2156 0.2459 1.1565 93.7 0.0226 0.1254 1.3857 96.1 

c 0.2115 0.1042 0.4331 95.1 0.2268 0.1401 0.4320 94.7 

0.8 a 0.6764 0.4902 0.7083 94.9 0.1045 0.4836 0.75619 96.5 
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= 2.5, = 1.5, = 0.75, = 1a b c s  

n k 
 

ML MPS 

AB MSE AL CP AB MSE AL CP 

b 0.9111 1.0028 1.6301 94.9 0.1473 0.2662 1.9392 95.6 

c 0.3260 0.1258 0.5476 95.4 0.3141 0.4834 0.5433 94.7 

0.6 

a 0.8293 1.1887 0.7954 95.0 0.1075 0.7800 0.7438 95.9 

b 1.1595 2.8566 2.1870 95.2 0.1640 0.3350 2.1770 95.0 

c 0.6233 0.3909 0.6924 94.9 0.2613 0.4970 0.7179 95.1 

100 

1 

a 0.0336 0.3637 0.1237 96.7 0.0439 0.3461 0.3657 98.0 

b 0.1561 0.7564 1.1025 95.6 0.0414 0.0744 1.0577 95.3 

c 0.2061 0.1036 0.3046 96.1 0.1742 0.0922 0.3709 94.0 

0.8 

a 0.6294 0.4126 0.5030 95.0 0.2154 0.3559 0.5809 98.5 

b 0.8567 0.8180 1.1376 95.3 0.1467 0.1554 1.4349 95.5 

c 0.3251 0.1136 0.3492 95.2 0.2680 0.1323 0.2967 94.4 

0.6 

a 1.0538 1.1186 0.3534 95.6 0.2603 0.6139 0.3899 98.4 

b 1.5176 2.4548 1.5281 94.9 0.2033 0.2494 1.78917 95.0 

c 0.6241 0.3904 0.4166 94.5 0.2631 0.2908 0.5846 94.3 

200 

1 

a 0.1903 0.3541 0.3094 94.7 0.0204 0.2296 0.3131 94.8 

b 0.1094 0.0615 0.7150 95.0 0.0032 0.0268 0.6424 94.4 

c 0.1121 0.0913 0.2454 95.0 0.0646 0.0625 0.3947 95.7 

0.8 

a 0.6078 0.3768 0.3368 94.9 0.0621 0.2598 0.4984 94.5 

b 0.8298 0.7257 0.7557 94.3 0.0354 0.0375 0.7466 94.6 

c 0.3172 0.1048 0.2535 95.0 0.0875 0.0659 0.2946 94.6 

0.6 

a 0.8060 1.0127 0.4707 95.5 0.0771 0.2845 0.65714 93.5 

b 1.5134 2.3774 1.1574 95.5 0.0378 0.0484 0.8502 95.7 

c 0.6247 0.3091 0.3058 97.4 0.0782 0.0715 0.2359 95.4 

 

Table 3: AB, MSE, AL and CP of ML and MPS estimates under complete and TIIC in Case 2 

= 2.5, = 1.5, = 0.75, = 2a b c s  

n k 

 

ML MPS 

Bias MSE AL CP AB MSE AL CP 

50 

1 

a 0.4906 0.3901 3.7000 95.9 0.0555 0.3403 2.4814 95.9 

b 0.1226 0.0818 2.7563 95.0 0.0862 0.0718 1.6102 93.9 

c 0.4860 0.2578 1.5760 95.6 0.1791 0.1515 1.3723 95.6 

0.8 

a 0.5763 0.4107 2.9457 94.2 0.2311 0.4092 2.5978 98.2 

b 0.1371 0.0850 2.2317 94.3 0.2376 0.1353 2.1352 93.8 

c 0.6107 0.3751 1.3952 94.7 0.1688 0.1532 1.3851 95.5 

0.6 

a 0.2875 0.5018 2.1985 94.2 0.2151 0.5043 2.4171 96.6 

b 0.2943 0.1635 2.3300 95.7 0.2242 0.1359 2.1792 94.7 

c 0.6832 0.4671 1.9395 94.4 0.1479 0.1628 1.4723 95.6 

100 

1 

a 0.8246 0.3648 3.8582 97.0 0.0866 0.3453 2.2794 95.5 

b 0.0986 0.0439 1.6195 94.7 0.0058 0.0561 0.9694 96.0 

c 0.5263 0.2971 1.5556 96.5 0.0679 0.0548 0.8787 96.3 

0.8 

a 0.5385 0.3849 3.1094 94.1 0.0346 0.3917 2.1138 94.3 

b 0.1005 0.0504 1.1457 94.1 0.0566 0.0851 1.1224 96.5 

c 0.6080 0.3508 0.8943 96.2 0.0709 0.0563 0.8878 95.6 

0.6 

a 0.2813 0.0834 1.8945 95.8 0.0406 0.4522 1.8394 94.1 

b 0.2365 0.0649 1.1536 95.5 0.0460 0.1672 1.0005 96.2 

c 0.6834 0.4167 0.9922 93.8 0.0764 0.0692 0.9876 95.4 

200 

1 

a 0.5113 0.3571 2.6922 96.2 0.0564 0.2468 1.9358 96.2 

b 0.2746 0.0289 1.4950 95.3 0.0024 0.1346 0.8431 95.9 

c 0.4882 0.2479 1.3836 96.3 0.0389 0.0264 0.6187 95.5 

0.8 

a 0.5569 0.3713 1.9995 93.0 0.0072 0.2528 1.9321 95.5 

b 0.0912 0.0308 0.8927 94.0 0.0354 0.0527 0.8899 96.3 

c 0.5141 0.2784 0.6914 94.8 0.0401 0.0258 0.6096 94.8 

0.6 
a 0.2099 0.4698 1.6791 93.0 0.0097 0.3825 1.6750 94.1 

b 0.2075 0.0556 0.8745 93.9 0.0274 0.1483 0.8556 96.8 
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= 2.5, = 1.5, = 0.75, = 2a b c s  

n k 

 

ML MPS 

Bias MSE AL CP AB MSE AL CP 

c 0.6838 0.3676 0.6797 94.7 0.0429 0.0310 0.6698 95.8 

Table 4: AB, MSE, AL and CP of ML and MPS estimates under complete and TIIC in Case 3 

= 3, = 0.9, = 3, = 1a b c s  

n k  
ML MPS 

AB MSE AL CP AB MSE AL CP 

50 

1 

a 0.2628 0.4976 2.5676 93 0.1678 0.1472 1.3533 95.1 

b 0.0240 0.0507 0.8777 94.4 0.0457 0.0190 0.5097 95.7 

c 0.3197 0.6879 3.0014 97.3 0.3038 0.3948 2.1569 93.1 

0.8 

a 0.5731 0.5417 2.6675 95.2 0.2382 0.3485 2.3105 94.2 

b 0.4636 0.2928 2.0944 95.6 0.0790 0.0227 0.5894 96 

c 0.5052 1.3781 4.1559 97.8 0.3122 1.2196 4.1545 95 

0.6 

a 1.2169 1.5360 2.9412 95.8 0.0185 0.3486 2.9344 94.2 

b 0.9362 1.0561 2.6623 95.7 0.0062 0.0313 0.6931 95.3 

c 1.5916 3.1306 4.4317 95.9 0.2740 1.8039 4.3483 94.5 

100 

1 

a 0.2100 0.4613 2.4070 94.9 0.1221 0.0810 1.0083 94.7 

b 0.0217 0.0190 0.5336 96 0.0268 0.0086 0.3492 95.4 

c 0.3783 0.5083 2.3699 96.1 0.1956 0.2126 1.6374 93 

0.8 

a 0.5167 0.4705 2.8180 94.4 0.2263 0.2150 1.8155 94.9 

b 0.4261 0.2148 0.7147 95.4 0.0331 0.0133 0.4517 96.7 

c 0.6349 0.7983 4.4652 95.7 0.2642 0.8387 3.4390 94.7 

0.6 

a 1.1786 2.4171 2.9561 94.90 0.3536 0.2167 1.8707 94.30 

b 0.8709 0.8462 1.1620 95.20 0.0409 0.0205 0.5604 94.80 

c 1.7117 3.1252 4.7325 95.00 0.3199 0.8961 3.4942 94.90 

200 

1 

a 0.3543 0.2405 1.3299 94.04 0.0747 0.0382 0.7079 95.72 

b 0.0312 0.0076 0.3188 94.57 0.0130 0.0041 0.2448 95.30 

c 0.4241 0.2800 1.2411 94.88 0.1264 0.1063 1.1788 94.25 

0.8 

a 0.5073 0.2971 0.7819 94.20 0.0288 0.1875 1.6945 94.80 

b 0.4218 0.2080 0.6810 95.20 0.0225 0.0116 0.4226 96.60 

c 0.6349 0.7544 4.3247 96.30 0.2458 0.7522 3.2620 94.50 

0.6 

a 1.1719 1.3991 2.8285 94.00 0.0426 0.1890 1.7006 94.00 

b 0.8604 0.8192 1.1018 94.70 0.0262 0.0177 0.5210 95.30 

c 1.7167 3.1209 3.6346 95.20 0.2731 0.7302 3.2756 94.80 

 

Table 5: AB, MSE, AL and CP of ML and MPS estimates under complete and TIIC in Case 4 

= 3, = 2, = 0.5, = 3a b c s  

n k 
 

ML MPS 

AB MSE AL CP AB MSE AL CP 

50 

1 

a 0.2068 0.0679 2.7121 95.5 0.1499 0.0503 1.7183 97.5 

b 0.0527 0.2058 1.7673 95.4 0.1599 0.2037 1.3003 94.0 

c 0.2001 0.1157 2.8500 94.3 0.0635 0.1086 1.2681 95.4 

s 0.1412 0.1069 5.1009 96.0 0.2146 0.0975 3.2931 95.6 

0.8 

a 0.2503 0.0816 3.5403 96.9 0.2126 0.0760 2.9112 97.3 

b 0.4026 0.2854 1.3773 94.9 0.3161 0.2720 1.0887 95.3 

c 0.3788 0.1446 1.1298 93.7 0.0792 0.0876 1.1186 95.4 

s 0.1522 0.1112 3.1635 94.6 0.0419 0.1539 2.8750 95.8 

0.6 

a 0.0590 0.9140 3.4013 93.3 0.2489 0.6006 2.8783 96.9 

b 0.5950 0.5000 3.4995 94.0 0.3484 0.6936 2.9667 95.3 

c 0.4460 0.1990 0.0604 94.6 0.0701 0.0878 0.0294 94.8 

s 0.2020 0.1070 1.0084 93.6 0.0973 0.4446 2.5872 95.6 

100 1 

a 0.7795 0.0697 2.3446 96.5 0.1595 0.0493 2.0764 95.7 

b 0.0661 0.0718 1.0182 96.7 0.1138 0.0685 1.5467 95.9 

c 0.1138 0.1239 1.8636 95.8 0.0285 0.0399 0.7750 95.9 

s 0.1410 0.0905 1.7579 97.0 0.1376 0.0838 2.3713 95.8 
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= 3, = 2, = 0.5, = 3a b c s  

n k 
 

ML MPS 

AB MSE AL CP AB MSE AL CP 

0.8 

a 0.2601 0.0795 0.5201 97.1 0.2096 0.0638 1.2710 96.0 

b 0.3846 0.2149 1.0154 95.1 0.2325 0.2034 1.0921 94.7 

c 0.3777 0.1433 0.2975 95.3 0.0562 0.0410 0.1763 95.5 

s 0.1862 0.0974 0.9004 95.1 0.0871 0.3363 2.2487 95.6 

0.6 

a 0.0710 0.0920 0.3337 94.1 0.2313 0.0836 0.9165 94.3 

b 0.5560 0.3920 1.1224 94.8 0.2531 0.3866 2.2273 95.2 

c 0.4450 0.1980 0.0473 93.4 0.0528 0.1383 0.7395 95.8 

s 0.1650 0.0980 0.7905 94.6 0.1279 0.1024 1.8648 95.3 

200 

1 

a 0.7669 0.0754 1.5999 96.3 0.0793 0.0815 1.4889 95.5 

b 0.1500 0.0474 0.6188 94.8 0.0416 0.0471 1.0327 94.6 

c 0.0521 0.0989 1.2164 94.3 0.0123 0.0201 0.5534 95.2 

s 0.1362 0.0362 2.7944 96.3 0.1157 0.0321 1.7551 94.5 

0.8 

a 0.2729 0.0777 0.2209 96.1 0.1090 0.2027 1.7131 95.1 

b 0.3588 0.1567 0.6565 94.6 0.1099 0.1361 1.3812 94.9 

c 0.3763 0.1419 0.0680 94.9 0.0334 0.0194 0.5299 94.6 

s 0.1881 0.0535 0.5281 95.5 0.0366 0.1844 1.6779 95.8 

0.6 

a 0.0720 0.0900 0.2365 94.3 0.1074 0.2140 1.7650 94.4 

b 0.5660 0.3610 0.7910 95.1 0.1156 0.1581 1.4924 95.2 

c 0.4460 0.1825 0.0349 95.5 0.0258 0.0172 0.5050 95.2 

s 0.1720 0.0555 0.5661 95.2 0.0393 0.1618 1.5698 95.3 

From the numerical outcomes listed in Tables 25 we conclude the following 

 The MSE of the MPS estimates of a is less than the corresponding of the ML estimates based on 

complete and TIIC in all cases ( see for example Fig. 4 and Fig. 5). 

  
Fig. 4: MSE of the ML and MPS of a estimates when 

0.8k   at 50n   

Fig. 5: MSE of the ML and MPS of a estimates under 

complete sample at 50n   

 The MSE for MPS and ML estimates of c decreases as the value of k increases in Case 2 (ABPLo 

distribution) at 200.n  The MSE of the ML estimate of c is greater than the corresponding MSE of the 

MPS estimate of c (see Fig. 6).  

 Fig. 7 demonstrates that the CP for the MPS and ML estimates for a increases as the value of k 

increases. Also, the CP of the MPS estimates is greater than the corresponding CP of the ML estimate 

in Case 1 (LBPLo distribution) at 50n  .  

  

Fig. 6: MSE of the ML and MPS estimate of c at 

200n  in Case 2(ABPLo distribution) 

Fig. 7: The CP of a estimates at 50n  in Case 1 

(LBPLo distribution) 
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 Fig. 8 shows that the CP of the ML estimate of c increases as the value of k increases in Case 1 (LBPLo 

distribution) at 100n  . 

 The MSE for the ML estimate of b in Case 1 (LBPLo distribution) decreases as n increases. Also it 

shows that as the value of k increases, the MSE for the ML estimate of b decreases for all sample sizes 

(see Fig. 9). 

  

Fig. 8: The CP of c when 100n  in Case 1 

 (LBPLo distribution) 

Fig. 9: MSE for the ML estimate of b in Case 1 

(LBPLo distribution) 

 The MSE of the MPS estimate of a in Case 1 (LBPLo distribution) decreases as n increases. Also as the 

value of k increases, the MSE for the MPS estimate of a decreases for all n as shown in Fig. 10. 

  

Fig. 10: MSE for the MPS estimate of parameter a 

in Case 1 (LBPLo distribution) 

Fig. 11: CP for ML estimate of parameter c in Case 2 

(ABPLo distribution) 

 Fig. 11 illustrates that the CP for ML estimate of parameter c in Case 2 (ABPLo distribution) increases as n 

increases. Also it shows that as the value of k increases, the CP for the ML estimate of a increases for all n. 

 Generally, the MPS of all parameters are preferable than the corresponding ML estimates in almost most of 

the situations. As the censoring level; k and sample size increase the MSE and AL of all estimates decrease.  

 The CP is very close to the considered significance level for all sample size. 

6. Application to Real Data 

To demonstrate the adequacy of one special model of the WPLo distribution, namely; LBPLo distribution, is 

done using the beta Lomax (BLo) distribution, Weibull Lomax (WLo) distribution Kumaraswamy Lomax 

(KLo) distribution, exponentiated generalized Lomax (EGLo), gamma Lomax (GLo), log gamma Lomax 

(LGaLo), exponentiated Lomax (ELo) and generalized exponential (GE). The following criteria are utilized to 

detect the distribution with the best fit: negative log-likelihood (−LL) value, Akaike information criteria (AIC), 

Bayesian information criteria (BIC), consistent AIC (AICC), and Hannan and Quinn information criteria 

(HQIC).  

The first data relating to the strengths of 1.5 cm glass fibres which was obtained by workers at the UK National 

Physical Laboratory are used. The data have previously been used by Smith and Naylor (1987), Merovci et al. 

(2016), Oguntunde et al. (2017), Khaleel et al. (2018) and Oguntunde et al. (2018a); (2018b). The first 

observations are as follows:  

0.55 0.74 0.77 0.81 0.84 1.24 0.93 1.04 1.11 1.13 1.30 1.25

 1.27 1.28 1.29 1.48 1.36 1.39 1.42 1.48 1.51 1.49 1.49 1.50

 1.50 1.55 1.52 1.53 1.54 1.55 1.61 1.58 1.59 1.60 1.61 1.63

 1.61 1.61 1.62 1.62 1.67 1.64 1.66 1.66 1.66 1.70 1.68 1.68

 1.69 1.70 1.78 1.73 1.76 1.76 1.77 1.89 1.81 1.82 1.84 1.84

 2.00 2.01 2.24.  
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The second civil engineering data consisting of 85 hailing times observations Kotz and van Dorp (2004). The 

second observations are as follows  

4.79 4.75 5.40 4.70 6.50 5.30 6.00 5.90 4.80 6.70 6.00 4.95

 7.90 5.40 3.50 4.54 6.90 5.80 5.40 5.70 8.00 5.40 5.60 7.50

 7.00 4.60 3.20 3.90 5.90 3.40 5.20 5.90 4.40 5.20 7.40 5.70

 6.00 3.60 6.20 5.70 5.80 5.90 6.00 5.15 6.00 4.82 5.90 6.00

 7.30 7.10 4.73 5.90 3.60 6.30 7.00 5.10 6.00 6.60 4.40 6.80

 5.60 5.90 5.90 8.60 6.00 5.80 5.40 6.50 4.80 6.40 4.15 4.90

 6.50 8.20 7.00 8.50 5.90 4.40 5.80 4.30 5.10 5.90 4.70 3.50

 6.80. 

The performances of the LBPLo distribution with the other competing distributions are shown in Tables 6 and 7. 

Table 6: The performances of the LBPLo model with some competing distributions  

Model -LL AIC AICC BIC HQIC 

LBPLo 14.979 37.95 38.648 46.531 41.33 

Blo 24.017 56.0355 56.726 64.608 59.411 

KuLo 16.338 40.676 41.365 49.248 44.042 

EGLo 31.502 71.005 71.698 79.578 74.377 

GLo 26.99 59.98 60.387 66.409 62.509 

LgaLo 30.289 68.574 69.265 77.152 71.95 

Elo 31.456 68.912 69.316 75.345 71.441 

GE 31.384 66.766 66.967 71.054 68.458 

Table 7: The performances of the LBPLo model with some competing distributions 

Model -LL AIC AICC BIC HQIC 

LBPLo 130.5025 269.005 269.505 278.776 272.935 

Blo 133.3107 274.621 275.121 284.392 278.554 

KuLo 132.7561 273.512 274.012 283.232 277.442 

EGLo 146.6422 301.284 301.784 311.055 305.214 

GLo 138.3625 282.724 283.021 290.053 285.673 

LgaLo 159.2354 326.47 326.979 336.241 330.4 

Elo 137.4985 280.997 281.293 288.325 283.944 

GE 137.3389 278.677 278.824 283.563 280.642 

Finally, in order to assess whether the proposed model is appropriate for the above mentioned data, we display 

the visualization of the estimated pdfs in Figures 1213. As seen we suggest that the fit of the LBPLo model 

performs better than the other competitive distributions.  

  
Fig. 12: Estimated pdfs for the first data Fig. 13: Estimated pdfs for the second data 

7. Concludıng Remarks 

In this paper, we propose a new weighted distribution related to power Lomax model, named as weighted power 

Lomax distribution. The new model contains some new distributions besides it contains existing distribution. 

Main properties of the weighted power Lomax distribution are discussed. Based on complete and Type II 

censoring samples, the point and approximate confidence intervals of parameters are derived depend on 

maximum likelihood and maximum product spacing procedures. Due to the complicated forms of the non-linear 

equations, the Monte Carlo simulation study is done to assess the behaviour of the estimates for different sample 

sizes. Based on simulation study, we conclude that the maximum product spacing estimates are preferable than 

the maximum likelihood estimates in approximately most of the situations. Finally, for illustrative purpose, a 

real life data set is analyzed and compared with other lifetime distributions. 
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