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Abstract  

A new distribution with flexible hazard rate function is introduced which is called new modified Burr XII 

(NMBXII) distribution. The proposed distribution is derived from the T-X family technique and compounding 

the generalized Nadarajah–Haghighi (GNH) and gamma distributions. We highlighted the shapes of NMBXII 

density and failure rate functions. The density function of NMBXII model can take shapes such as J, reverse J, 

positively skewed and symmetrical.  The proposed model can produce almost all types of failure rates such as 

increasing, decreasing, increasing-decreasing, decreasing-increasing, bimodal, inverted bathtub and modified 

bathtub. To show the importance of the proposed distribution, we established various mathematical properties 

such as quantiles, moments, incomplete moments, inequality measures, residual life functions and reliability 

measures theoretically.  We have characterized the NMBXII distribution via two techniques. We addressed the 

maximum likelihood estimation technique for model parameters. The precision of the MLEs is estimated via a 

simulation study. We have considered three real data sets for applications to demonstrate the potentiality and 
utility of the NMBXII model. Then, we have established empirically that the proposed model is suitable for tax 

revenue, time periods between successive earthquakes and flood discharges applications. Finally, various model 

selection criteria, the goodness of fit statistics and graphical tools were used to examine the adequacy of the 

NMBXII distribution.   
 

Key Words: Moments; Reliability; Characterizations; Maximum Likelihood Estimation. 
 

 

1. Introduction 

In recent decades, many continuous distributions have been introduced in statistical literature. These distributions, 

however, are not flexible enough to be suitable for the data sets from survival analysis, life testing, reliability, 
finance, environmental sciences, biometry, hydrology, ecology and geology. Hence, the applications of the 

generalized models to these fields are clear requisite. Generalization of a distribution is the only way to increase the 

applicability of the parent distribution. The generalizations are derived either by inserting a shape parameter or by 

transforming into the parent distribution. So, the generalized distributions will be more suitable than the competing 

model and sub-models. 

 

Burr (1942) suggested 12 types of distributions as Burr family to fit cumulative frequency functions on frequency 

data. Burr distribution type -XII (BXII) distribution has wide applications in modeling insurance data in finance and 

Business and failure time data in reliability, survival analysis and acceptance sampling plans, since the empirical 
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approaches to real data are often non-monotone hazard rate function (hrf) such as three-parameter Burr XII (BXII) 

three-parameter BXII (Okasha and Matter; 2015). 

The probability density function (pdf) of BXII has unimodal or decreasing shaped as well as monotone hrf. 

However, these properties are inadequate; since the empirical approaches to real data are often non-monotone hrf 

shapes such as inverted bathtub hazard rate, bathtub, and various shaped specifically in the lifetime applications. 
Thus, various modified, extended and generalized forms of BXII distribution with extra shape and scale parameters 

are available in the literature such as BXII (Takahasi; 1965), extended three-parameter BXII (Shao et al.; 2004), six-

parameter generalized BXII (Olapade; 2008), beta BXII (Paranaíba et al.; 2011), extended BXII (Usta; 2013), 

Kumaraswamy BXII (Paranaíba et al.; 2013), BXII geometric (Korkmaz and Erişoğlu, 2014), BXII power series 

(Silva and Cordeiro; 2015), three-parameter BXII Distribution (Thupeng; 2016), BXII-Poisson (Muhammad; 2016), 

extensions of the BXII (Cadena; 2017),  new extended BXII (Ghosh and  Bourguignon; 2017), BXII (Kumar; 2017),  

BXII modified Weibull (Mdlongwa et al.; 2017), BXII (Kayal et al.;2017),  five-parameter BXII (Mead and Afify; 

2017), new BXII distribution (Yari and Tondpour; 2017), four-parameter BXII (Afify et al.; 2018), BXII system of 

densities (Cordeiro et al.;2018), Odd Lindley BXII (Abouelmagd et al., 2018 and Korkmaz et al., 2018),  BXII 

(Gunasekera;2018), Modified log BXII (Bhatti et al.;2018), BXII (Chiang et al.;2018), BXII (Chen and Singh;2018) 

and BXII (Keighley et al.;2018). 

This study focuses on the following motivations: (i) to generate distributions with symmetrical, left-skewed, right-

skewed, J and reverse-J shaped as well as high kurtosis; (ii) to have monotone and non-monotone failure rate 

function; (iii) to study numerically descriptive measures for the NMBXII distribution based on parameter values; 

(iv) to derive mathematical properties such as random number generator, sub-models, ordinary moments, incomplete 

moments, inequality measures, residual life functions, reliability measures and characterizations; (v) to estimate the 

precision of the maximum likelihood estimators via a simulation study; (vi) to reveal the potentiality and utility of 

the NMBXII model; (vii) to work as the preeminent substitute model to other existing models to discover and model 

the real data in economics (tax revenue’s data), geology (time periods between successive earthquakes) and 

hydrology (flood discharges); and life testing analysis and new fileds of research; (viii) to deliver better fits model 

than the existing models; and (ix) to infer empirically from goodness of fit statistics (GOFs) and graphical tools. 

The content of the article is structured as follows: In Section 2, the NMBXII model is derived on the basis of (i) T-X 
technique and (ii) compounding the generalized Nadarajah–Haghighi (GNH) and gamma distributions. We study 

basic structural properties, random number generator and sub-models for the NMBXII model. We highlight the 

nature of the density and failure rate functions. Section 3 presents certain mathematical properties such as the 

ordinary moments, incomplete moments, inequality measures, residual and reverse residual life function, stress-

strength reliability and multicomponent stress-strength reliability measures. Section 4 characterizes the NMBXII 

distribution via (i) conditional expectation and (ii) truncated moment. Section 5, addresses the MLE (maximum 

likelihood estimation) for the NMBXII model. In Section 6, we evaluate the precision of the MLEs via a simulation 

study. In Section 7, three real data sets for applications are considered to illustrate the potentiality and utility of the 

NMBXII model. We test the competency of the NMBXII distribution using various model selection criteria, 

goodness of fit statistics (GOFs) and graphical tools. The concluding remarks are given in Section 8. 

2. The NMBXII Distribution  

In this section, the NMBXII distribution is derived from (i) T-X family technique and (ii) compounding the 

generalized Nadarajah–Haghighi (GNH) and gamma distributions. We present the basic structural properties. Then, 

we highlight the nature of the density and failure rate functions. 

2.1 T-X Family Technique  

The cumulative distribution function (cdf) of the Burr XII (BXII) distribution is   

 ( )( ; , ) 1 1 , 0, 0, 0G x x x
   

−

= − +       (1)  
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The odds ratio for the BXII random variable (r.v.) X is  

( )
( )

( )
( )

1 1( ; , )
( , , ) 1 1

1 ( ; , ) 1

xG x
W G x x

G x x






 
 

 

−

−

− +
= = = + −

− +

. (2)  

To obtain a wider family of distributions, Alzaatreh et al. (2016) derived the cdf for the T-X family as follows:  

( )
( );

( ) ,                 ,
W G

a

x

F r t dtx x
  

=                                           (3)
 

where ( )r t   is the pdf of the r.v. T, where  ,  bT a  for    < b  a−    , ( );W G x     is a function of the 

baseline cdf of a r.v.  X, subject to the vector parameter  and satisfying  

 i) ( )  ,  b;W G ax     ,  

ii) ( );W G x    is differentiable and monotonically non-decreasing and  

iii) ( )lim ;
x

xW G a
→−

=    and ( );lim
x

G bx 
→

=   .  

For the T-X family of distributions, the pdf of X is given by 

( ) ( ) ( ) ,           ; ;        f W G r xW G
x

x x x 
 

=         
.     (4) 

We derive the NMBXII distribution via the T-X family technique by setting  

( ) ( )
1

1 1 , 0, , , 0r t t t t


      
− −

−= +    and ( ) ( ); 1 1W G x x
  + −

 
=   . Then, the cdf of the NMBXII 

distribution is  

( ) ( )1 1 1 1 , 0F x x x


 



−

  = − + + −     
,   (5) 

where , , , , 0       are parameters. The pdf corresponding to (5) is given by 

( ) ( ) ( ) ( )
1

1
1

1 1 1 1 1 1 1 , 0.f x x x x x x


        

− −
−

−
−     = + + − + + −         

 (6) 

In future, a r.v. with pdf (6) is denoted by X~ NMBXII
 
( ), , , , .       The NMBXII model is also well-known 

as modified Burr XII Burr XII (MBXII-BXII) distribution. 

2.1 Compounding Generalized Nadarajah–Haghighi (GNH) and Gamma Distributions 

Here, we derive the NMBXII distribution through compounding generalized Nadarajah–Haghighi (GNH) and 

gamma distributions. 

Lemma (i). If , , ,Y     ~GNH( , , ,    ) i.e. ( ), , ,g y     and ,   ~gamma ( ); ,   ,i.e. 

( ),g     then integrating the effect of   with the help of  

( ) ( ) ( )
0

, , , , , , , , ,f y g y g d            


=  , we have Y~NMBXII ( ), , , , .        
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2.2 Basic Structural Properties  

For X~NMBXII ( ), , , , ,     the survival, hazard, reverse hazard and cumulative hazard functions, the Mills 

ratio and elasticity of X are given respectively by   

  ( ) ( )1 1 1 , 0,S x x x


 

−

  = + + −     
     (7)   

      ( ) ( ) ( ) ( )
1

1
1

1 1 1 1 1 1 1 ,h x x x x x
       

−
−

−
−     = + + − + + −        

            (8)

   

 

        

     

 

( ) ( )ln 1 1 1 1 ,
d

r x x
dx


 

− 
   = − + + −       

                      (9) 

               ( )( ) ln 1 1 1 , 0,H x x x





  = + + −     

  

        (10) 

 
( ) ( ) ( ) ( )

1
1

11
1 1 1 1 1 1 ,m x x x x x

      


− +
− +

− +     = + + − + + −        
   (11) 

and  

( ) ( )ln 1 1 1 1 .
ln

d
e x x

d x


 



− 
   = − + + −       

     (12) 

The quantile function of the NMBXII distribution is  

( )

1
1

1

1
1 1 1 1qx q




 




−

 
     = − − + −        
   

.       (13) 

The NMBXII r.v. generator is  

( )

1
1

1

1 1 1 1 1 ,X Z




 


−−

 
      = − − + −         
  

             (14) 

where the random variable Z has the uniform distribution on (0,1).  
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Table 1: Sub-Models of the NMBXII Distribution 

 

    
      NMBXII(MBXII-BXII) distribution 

    
1     NBXII(BXII-BXII) distribution 

    
  1 1 MBXII distribution 

    
1 1 1 BXII distribution 

  1 1 1 1 Lomax distribution 

1   
1 1 1 Log-logistic distribution 

    0 →  
1 1 Weibull distribution 

1   
1     Log-logistic-Power distribution 

    0 →  
    Weibull-BXII distribution 

  1 0 →  
  1 Nadarajah–Haghighi (NH) distribution 

    0 →  
  1 GNH distribution 

 

2.3 Shapes of  NMBXII Density and Hazard Rate Functions 

The following graphs show that shapes of NMBXII density are J, reverse J, left-skewed, right-skewed and 

symmetrical (Fig. 1). The NMBXII distribution has increasing, decreasing, increasing-decreasing, decreasing- 

increasing, bimodal, inverted bathtub and modified bathtub hazard rate function (Fig. 2). 

     
Fig. 1: Plots of pdf of NMBXII distribution             

   
    Fig. 2: Plots of hrf of NMBXII distribution       
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From Fig. 2, we see that new hrf has monotone hrf shapes as well as it has non monotone hrf shapes such as 

unimodal (upside-down bathtub) shaped, firstly bathtub then decreasing shaped and bi-modal (M) shaped. These 

properties are advantages of new model for data modeling. 

 

 

3. Linear representation 

In this subsection, we provide a useful linear representation for the density of  𝑋 , which can be used to derive some 

mathematical properties of the NMBXII model. The cdf (5) can be expressed as  

( )

( )

( )

1 1
( ) 1 1 .

1

A x

x
F x

x


 






−
−

 −

  − +  = − + 
 +   

          (15) 

First, we shall consider the three power series  

               ( ) ( )
0

1
1 1   ,

2
c c

 
 







+
−

=

−  
+ = − +   

   
                                   (16) 

            ( )
( )

( ) ( )1, 0
0

1 | ,
!

j

c
j

j
c c

j










−

 
=

 +
− =


                 (17) 

and the generalized binomial series given by  

( )
( ) ( )

( ) ( )

1

1 0 
0

1
1 | .

!

r

r

c and real non integer
r

c c
r r










−

  −
=

− 
− =

 −
                         (18) 

Applying (16) for  𝐴(𝑥)  in (15), we obtain  

( )

( )0

1 1 1
( ) 1   1 .

21

x
F x

x

  











−
+

 −
=

    − + −      = − −        +       

  

Second, using the binomial expansion, the last equation can be expressed as  

( )

( )
( )

( ) 
( )

( )

0 0

1
1

2
( ) 1

1 1

1 1 1 .

i i

i
i

i

B x

F x

x

x
i









 

 











+

−



 − −
−

= =

− −
−

 
−  

 = −
 − +
  

 
−     − − +        
 



 

Third, applying (17) for  𝐵(𝑥)  in the last equation, we can write  

    
( ), ,

, 0 0

( ) 1   ( ),i j i j

j i

F x x


  





 − +

= =

= −                              (19) 

where  
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( ) ( )
( )

( ) 1 1
i j

i j
x x

 


 

− +
−

− +
  = − +
  

 

is the cdf of the exponentiated  BXII with parameters  𝛽, 𝜅, ( ) 0i j − +      and  

( ) ( )

( )
, ,

11
.

2 !

i

i

i j

i j

ij i










  

 
 



+

−

 
−  − + −        =      −      

 

 

 

Upon differentiating (19) and applying (18), we obtain  

( ), 1

0

( ) ( ),r r

r

f x g x
 




 +

=

=                                              (20) 

where  𝑔𝛽,𝜅(1+𝑟)(𝑥)  is the BXII density with parameters  𝛽,   𝜅(1 + 𝑟)  and  

( )

( ) ( )( )

( )( ) ( )( ) ( )

1

, , 1

, 0 0

1

!

.

1

|

r

r

i j j

j i

r r i j r

i j i j


 



 

    

+



+ 

= =

−
=

+  − + −

 − +  − +

 

Equation (20) reveals that the NMBXII density is a linear combination of BXII densities. So, some of its 

mathematical properties can be determined from those of the BXII distribution. 

3. Moments 

In this section, we derive theoretically ordinary moments, incomplete moments, inequality measures, residual and 

reverse residual life function, reliability measures and some other properties. 

3.1 Moments about the Origin 

The 𝑛th ordinary moment of  𝑋  is given by   

( )
'

, 1

0 0

( ) ( ) .n n

n r r

r

E X x g x dx
 

 


+
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= =                                    (21) 

or  

       ( ) ( ) ( )( )
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 +
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 
= = + + − + 

 
  

where ( ).,.B is the beta function. 

 

Setting  𝑛 = 1  in (21), we have the mean of  𝑋 . The  𝑠th central moment ( 𝑀𝑠 ) and cumulants ( 𝜅𝑠 ) of  𝑋 , are, 

respectively, given by  
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where  𝜅1 = 𝜇1
′  . 

 

Moment generating function 
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The moment generating function (MGF) of  𝑋 ,  say  𝑀𝑋(𝑡) = 𝐸[𝑒𝑥𝑝(𝑡𝑋)] , can be obtained from (20) as 

( ) ( ) ( ), 1

0

,X r r

r

M t M t
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

+

=

=  

where  𝑀𝛽,𝜅(1+𝑟)(𝑡)  is the MGF of the BXII distribution with parameters  𝛽  and  𝜅(1 + 𝑟).   Paranaíba et al. (2011) 

provided a simple representation for the MGF of the three-parameter BXII distribution. For  𝑡 < 0 , we can write  

( ) ( ) ( )
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0
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Next, we require the Meijer G-function defined by 
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where  𝑖 = √−1  is the complex unit and  𝐿  denotes an integration path (Gradshteyn and Ryzhik (2000)). The 

Meijer G-function contains, as particular cases, many integrals with elementary and special functions (Prudnikov et 

al. (1986)). We now assume that  𝛽   = 𝑚/𝜅 , where  𝑚  and  𝜅  are positive integers. This condition is not 

restrictive since every positive real number can be approximated by a rational number. We have the following result, 

which holds for m and k positive integers,  𝜇   > −1  and  𝑝 > 0  (Prudnikov et al. (1992)) 

   ( )0

0

, , , | exp 1

v
m

m
I p v px x x dx 









 
 

 
  = − + 
    
  

  

   

                                    ( )

( ) ( )

( )
,

,, , ,

, , , 1
| ,

,0

m
m

mp m v m

m vm
G

p

 

 

 


+

+

 −  + 
=   

 
 

where  

( )

( ) ( )

1

2

, , , 1
1

22

v

p m v m

m

v p










+
−

−
+

 =

 −

 

and 

 ( )
1 2

, , , ,..., .
    

 
   

+ + +
 =  

We can write (for  𝑡 < 0 ) 
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where ( ).,.,.,I is integral result due to Prudnikov et al. (1992). 

Hence, the MGF of  𝑋  can be expressed as 
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3.2 Incomplete Moments 

The 𝑠th incomplete moment, say  𝜙𝑠(𝑡) , of the NMBXII distribution is given by 
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s t x f x dx =  .  

From equation (20), we have 
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and using the lower incomplete gamma function, we obtain   
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where ( ),.,.B t is the incomplete beta function. 

The first incomplete moment of  𝑋 ,  denoted by  𝜙1(𝑡),  is simply determined from the above equation by setting  

𝑠 = 1 . The first incomplete moment has important applications related to the Bonferroni and Lorenz curves and the 

mean residual life and the mean waiting time. Furthermore, the amount of scatter in a population is evidently 

measured, to some extent, by the totality of deviations from the mean and median. The mean deviations, about the 

mean and about the median of  𝑋 , depend on  𝐼1(𝑡) . 
 

3.3 Residual and reversed residual life functions 

The 𝑛th moment of the residual life (RL), denoted by  
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The 𝑛th moment reversed residual life, say 
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The  𝑛th moment of the reversed residual life of  𝑋   
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The mean ( )1 , median ( ) , standard deviation ( ) , skewness ( 1 ) and kurtosis ( 2 ) for the NMBXII 

distribution for selected values of , , ,     and   are listed in Table 2. We also depict that the NMBXII model can 

be effective to model data sets in terms of the descriptive measures. 
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Table 2: 1 ,  ,  , 1  and 2 of the NMBXII Distribution 

Parameters 

, , , ,      
1      

1  2  

1.5,1.5,1.5,1.5,1.5 0.7527 0.5952 0.6708 8.0759 364.836 

2.5,1.5,1.5,1.5,1.5 0.5197 0.4528 0.3338 2.2472 16.6231 

5,1.5,1.5,1.5,1.5 0.3501 0.3227 0.187 1.0751 5.439 

5,3.5,0.45,0.30,2.7 1.335 1.335 0.2511 0.0325 3.0441 

5,3,0.3,0.3,3 1.4485 1.45 0.2864 0.0018 2.9692 

5,5,0.5,0.5,3 1.0493 1.0573 0.1048 -0.4448 3.415 

5,5,0.3,0.3,3 1.2428 1.2496 0.1501 -0.253 3.1207 

5,3.5,0.3,0.3,3 1.3704 1.375 0.2336 -0.0859 2.9912 

5,1.5,0.5,0.5,1.5 1.4794 1.4888 0.2973 -0.1383 2.9893 

5,0.5,0.5,0.5,5 3.6247 3.298 2.0469 1.007 4.5925 

5,1.5,0.5,1.5,1.5 0.547 0.5539 0.0834 -0.461 3.3298 

5,5,0.5,0.5,5 1.1196 1.1268 0.0708 -0.6306 3.7676 

5,5,5,5,5 0.6491 0.649 0.038 0.0285 4.0665 

3.4 Stress-Strength Reliability of NMBXII Distribution 

 
Let 

1X be strength, 
2X  be stress, 

1X ~NMBXII ( )1, , , ,      and 
2X ~NMBXII

 
( )2 , , , , ,      then the 

reliability parameter (Kotz et al.; 2003) of a component is  
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2

1 2

.


 
=

+
     (22) 

Therefore R is independent of , , .and     

3.5 Reliability Estimation of Multicomponent Stress-Strength model  

Consider a system that has m identical components out of which s components are functioning. The strengths of m 

components are X , 1,2...i i m= with common cdf F while, the stress Y imposed on the components has cdf G. The 

strengths X 'i s  and stress Y are independently and identically distributed (i.i.d.). The probability that system 

operates properly is reliability of the system i.e. 

, Prs mR = [Strengths (Xi, i=1,2,…,m)> stress (Y)],  
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      Pr= [at least “s”of (Xi, i=1,2,…,m) exceed stress (Y)],  

( ),

0
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l s
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= −  (Bhattacharyya and Johnson; 1974).    (23) 

Let X ~NMBXII ( )1, , , ,      and Y ~NMBXII
 
( )2 , , , , ,       with common parameters , and  

 
and 

unknown shape parameters
1 and

2 . The multicomponent stress- strength reliability for the NMBXII distribution 

is  
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The probability in (24) is known as reliability of multicomponent stress-strength model.  

 

4. Characterizations 

In this section, we characterize the NMBXII distribution via: (i) conditional expectation and (ii) truncated moment. 

We present our characterizations in two subsections. 

4.1   Conditional Expectation 

We characterize the NMBXII distribution via conditional expectation. 

Proposition 4.1.1: Let ( ): 0,X →   be a continuous r.v. with cdf ( )F x , then for   , X has cdf (5) if 

and only if 

( )
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Proof. If X has cdf (5), then  
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Upon integration by parts and simplification, we arrive at 
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Conversely, if (25) holds, then 
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Differentiating (26) with respect to t, we obtain 
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4.2 Truncated Moment of a Function of the Random Variable 

Here, we characterize the NMBXII distribution via relationship between truncated moments of a function of X with 

another function. This characterization is stable in the sense of weak convergence (Glänzel; 1990). 

Proposition 4.2.1:  Let ( ): 0,X →   be a continuous random variable and let  
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 The pdf of X is (6) if and only if the function ( )h x , in Theorem G   

(Glänzel; 1990), has the form ( ) ( )
1

1 1 1 , 0h x t x



 

−

  = + + −    +  
. 

Proof   If X has pdf (6), then  
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( )( ) ( )( ) ( )
( 1)

1 1 1 1 , 0,F x E g X X x t x


 


 

− +

  −  = + + −    +  
 

or  

( )( ) ( )
1

1 1 1 , 0,E g X X x t x



 

−

   = + + −    +  
 

and  

( ) ( ) ( )
1

1 1 1 , 0.h x g x t x



 

−

  − = − + + −    +  
 

Conversely, if ( )h x  is given as above, then   

( ) ( ) ( ) ( )
2

1
1

1 1 1 1 1 1 1 0, 0,h x x x x x for x
      

 
 

−
−

−
−      = − + + − + + −         +  

 

and 

( )
( )

( ) ( )

( ) ( )

( )

1
1

1 1 1 1

, 0,

1 1 1

x x x
h x

s x x
h x g x

x

   










−
−

−  + + −
   

 = = 
−   + + −    

 
and hence  

( ) ( )ln 1 1 1 , 0,s x x x


 


  = + + −     

 

and  

( ) ( )1 1 1 , 0.
s x

e x x


 



−

−   = + + −     
 

In view of Theorem G, X has density (6). 

Corollary 4.2.1: Let ( ): 0,X →   be a continuous random variable. The pdf of X is (6) if and only if there 

exist functions ( )h x  and ( )g x (defined in Theorem G of Glänzel; (1990)) satisfying the differential equation    

( )
( ) ( )

( )

1
1

1 1 1 1

, 0.

1 1 1

x x x

s x x

x

 
  










−
−

−  + + −
  

 = 
  + + −    

   

Remark 4.2.1: The general solution of the differential equation in Corollary 4.2.1 is  

( ) ( )
( ) ( )

( )

( )

1
1

1

1

1 1 1

1 1 1

1 1 1

x x x

h x x g x dx D

x

   
 


 









−
−

−

+

 
  + + −

     = + + − − +         + + −      


, 

where D is a constant.  
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5. Maximum Likelihood Estimation 

Here, we adopt MLE technique for estimating the NMBXII parameters. Let ( ), , , ,
T

     =  be the unknown 

parameter vector. The log likelihood function ( ) for the NMBXII distribution is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
1 1

1 1

ln ln ln ln 1 ln 1 ln 1

1 ln 1 1 1 ln 1 1 1 .

n n

i i

i i

n n

i i

i i

n n n n x x

x x



  

      


 



= =

= =

= = + + + + − + − + +

    − + − − + + + −        

 

 

    (27) 

We can compute the MLEs of , , ,    and  by solving equations (28)-(32) either directly or using quasi-

Newton procedure, computer packages/ softwares such as R, SAS, Ox, MATHEMATICA, MATLAB and MAPLE. 

( ) ( )
1

1
ln 1 1 1 0,

n

i
i

n
x






=

   
 = − +  + − =  

      
                (28) 

( ) ( )
( )

( )
( )

( )
( )

( ) ( )

( )

1
1

1

1 1 1 1

1 1 1 ln1 lnln
ln 1 1 ,

1 1 1 1 1 1

i i i in n n ni i ii
i

i i i ii i
i

x x x xx x xxn
x

x x x

−
 −

−   
 

 −  = = = = 

 
+ − + +   = + +  − + −  −  +  

   +  + − +  + −  
   

   

(29) 

( ) ( ) ( ) ( )

1

2
1 1

ln 1 1 1 1 1 1 , 30
n n

i i
i i

x x

−
 −

 
 

= =

         
 = +  + − − + + − +        

            
 

 

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )

( )
( )

1

1 1 1

1 1 1 ln 1ln 1
ln 1 1 , 31

1 1 1 1 1

i i in n ni

i
i i i

i
i

x x xxn
x

x x

−
 

  




− 
= = = 

 
+ − + + +   = + + + − −  +  

      − + +  + −         

  

( ) ( ) ( )
( )

( )
1 1

ln 1 1

ln 1 1 .

1 1 1

in n

i
i i

i

x
n

x

x







−
= = 

 
 + −      = + + − −  + 

       
+  + −  

   

 

          (32) 

6.  Simulation Study 

In this section, we perform the simulation study by using selected the NMBXII distributions. To see the performance 

of MLE's of these distributions, we generate 1,000 samples of sizes 20, 60 and 100 with quantile function of the 

NMBXII distribution. The results of the simulations are reported in Table 3. From this Table, we observe that the 

estimates approach true values as the sample size increases whereas the standard deviations of the estimates 

decrease, as expected. 
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Table 3. Empirical means and standard deviations (in parenthesis) for selected parameters values of the NMBXII 

distribution 

Sample Parameters  ̂  ̂  ̂  ̂  ̂  

n=20 

3,10,2,5,0.5  3.1486 

(0.5411) 

10.0326 

(0.4321) 

1.5890 

(0.8544) 

5.0119 

(0.9063) 

0.4933 

(0.0393) 

1,5,3,10,1  1.1902 

(0.6081) 

5.2655 

(1.0842) 

2.8633 

(0.3033) 

10.1680 

(0.5602) 

1.0252 

(0.1042) 

5,1,1,3,10  4.9530 

(0.2825) 

0.9960 

(0.0402) 

0.9246 

(1.0767) 

3.2318 

(0.6055) 

10.0276 

(0.0579) 

   

0.5,5,5,5,0.5  0.5521 

(0.4390) 

5.5003 

(1.1710) 

4.9131 

(0.2906) 

5.6872 

(1.1822) 

0.5306 

(0.2771) 

5,5,5,5,5  5.0543 

(1.7875) 

5.2190 

(0.2925) 

3.9855 

(2.8571) 

5.5277 

(1.9942) 

5.3805 

(1.0088) 

 

Sample Parameters  ̂  ̂  ̂  ̂  ̂  

  n=60 

3,10,2,5,0.5  3.0278 

(0.2786) 

10.0209 

(0.1852) 

1.8999 

(0.4733) 

5.0467 

(0.4127) 

0.4956 

(0.0227) 

1,5,3,10,1  1.0761 

(0.2630) 

5.1544 

(0.8034) 

2.9663 

(0.0949) 

10.0932 

(0.4166) 

1.0088 

(0.0506) 

5,1,1,3,10  4.9964 

(0.1145) 

1.0031 

(0.0259) 

0.9556 

(0.6601) 

3.0439 

(0.3782) 

10.0088 

(0.0379) 

 
0.5,5,5,5,0.5  0.5328 

(0.2204) 

5.1339 

(0.6979) 

4.9853 

(0.1488) 

5.1479 

(0.7074) 

0.4874 

(0.0663) 

 
5,5,5,5,5  4.9574 

(1.1620) 

5.0750 

(0.2037) 

4.8282 

(1.4416) 

5.2292 

(1.0902) 

5.1906 

(0.5288) 

 

Sample Parameters  ̂  ̂  ̂  ̂  ̂  

 
3,10,2,5,0.5  3.0175 

(0.2615) 

9.9867 

(0.1843) 

1.9054 

(0.4758) 

4.9695 

(0.4066) 

0.4980 

(0.0221) 

n=100 
1,5,3,10,1  1.0026 

(0.2519) 

4.9905 

(0.5320) 

2.9841 

(0.0780) 

10.0032 

(0.2652) 

0.9935 

(0.0390) 

 
5,1,1,3,10  5.0035 

(0.0793) 

1.0001 

(0.0196) 

0.9664 

(0.4639) 

2.9998 

(0.3221) 

10.0027 

(0.0320) 

 
0.5,5,5,5,0.5  0.5219 

(0.1555) 

5.0609 

(0.6701) 

4.9934 

(0.1407) 

5.0938 

(0.6718) 

0.4974 

(0.0498) 

 
5,5,5,5,5  5.0480 

(0.8472) 

5.0553 

(0.1677) 

4.9347 

(0.9685) 

5.0605 

(0.6785) 

5.0814 

(0.3714) 
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7. Applications  

We consider five data sets (taxes revenue, time periods between successive earthquakes, rains and flood discharges) 

to endorse the potentiality of the NMBXII distribution. The first data set is about the about actual taxes (in 1000 

million pounds) for Egyptian (Nassar and Nada; 2011). The second data set represents the time periods between 

successive earthquakes at North Anatolia Zone (Kus; 2007) during the last century. In third data set, Van Montfort 

(1970) studied the maximum annual flood discharges (1000 ft3/sec) data for 48 years of the North Saskachevan 

River (Edmonton).  
We compare the NMBXII distribution with models such as NBXII, New Lomax, MBXII, BXII, Lomax, Log 

Logistic distributions. For selection of the optimum distribution, we compute the estimate of likelihood ratio 

statistics ( 2− ), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian 

information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von Mises (W*), Anderson 

Darling (A*), and Kolmogorov- Smirnov [K-S] statistics with p-values for all competing and sub distributions. We 

compute the MLEs and their standard errors (in parentheses). We also compute goodness of fit statistics (GOFs) 

values for the NMBXII, NBXII, new Lomax, MBXII, BXII, Lomax and Log Logistic models. Table 4 reports some 

descriptive measures for three data sets. 

 

Table 4: Descriptive Statistics 

Data Sets N Min Max Mean Median Standard 

deviation 

Skewness Kurtosis 

Taxes Revenue 59 4.1 39.2 13.4881 10.6 8.0515 1.6083 5.2560 

Time Periods between 

Successive Earthquakes 

24 9 8592 1429.625 624.5 1980.727 2.3223 8.3507 

Max. Annual Flood Discharges 48 19.885 185.56 51.4952 40.4 32.3768 2.0686 7.9507 

Table 4 shows that the taxes revenue data set is right-skewed, with significant positive kurtosis. About the time 

periods between successive earthquakes data set, it is right-skewed, with moderate positive kurtosis. Maximum 

annual flood discharges data set is significantly right-skewed, with significantly positive kurtosis.  

        

        (a)                   (b)                      (c)  

Figure 3: Boxplots of the (a) Taxes Revenue (b) Time Periods between Successive Earthquakes (c) maximum 

annual flood discharges 

The nature of the three data sets differs in numerous features. Some extreme points are also present in these data 

sets. Here, we study the statistical analysis by total time on test (TTT) for the five data sets in Figure 4.  
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           (a)                    (b)                                  (c) 

Figure 4: TTT plots of the (a) Taxes Revenue (b) Time Periods between Successive Earthquakes (c) maximum 

annual flood discharges  

Figure 4(a) presents that the TTT plot for taxes revenue data is concave, which infers increasing failure rate.. In 

figure 4(b), the TTT curve is convex, which infers decreasing failure rate for time periods between successive 

earthquakes data.  For maximum annual flood discharges data, the TTT curve (Figure 4(c)) is concave, which also 

suggests increasing failure intensity. It should also be noted that the NMBXII distribution covers increasing and 

decreasing failure intensities. So, the NMBXII distribution is suitable to model these data sets 

7.1 Taxes Revenue: Table 5 reports the MLEs (standard errors in parentheses) and measures W*, A*, K-S (p-

values). Table 6 displays the values of measures 2− , AIC, CAIC, BIC and HQIC. 

Table 5: MLEs (standard errors) and W*, A*, KS (p-values) for taxes revenue data 

Model     
  

   W* A* 
K-S 

(p-value) 

NMBXII 0.0991 

(0.8444) 

0.1644 

(0.424) 

0.8112 

(0.4450) 

35.0547 

(84.8271)
 

0.2479      

(2.1128)
 

0.0456 0.2984 
0.0847  

(0.7913) 

NBXII 0.0438 

(0.1062) 

5.0188 

(9.0647)
 

3.0400 

(8.9280) 

0.6079 

(1.7838)
 

1 
0.0560 0.3254 

0.467 

(1.333e-11) 

New 

Lomax 

0.0206 

(0.0448) 

4.1988 

(5.4628) 

4.6917 

(12.3485) 

1 1 
0.0561 0.3257 

0.4676  

(1.24e-11) 

MBXII 0.0035 

(0.001) 

2.29436 

(0.1636)  

--- --- 0.00215 

(0.0005) 
0.1444 0.8347 

0.1263  

(0.3031) 

BXII 0.0669 

(0.2651) 

6.0806 

(24.1034) 

--- --- --- 
0.0560 0.3254 

0.4674  

(1.269e-11) 

Lomax 0.392 

(0.0510) 
1 

--- --- --- 
0.0739 0.4245 

0.4908 

 (9.009e-13) 

LL 1 0.6221 

(0.0628) 

--- --- --- 
0.0890 0.5157 

0.7168        

(< 2.2e-16) 

Table 6:  2− , AIC, CAIC, BIC and HQIC for tax revenue 

Model 2−  AIC CAIC BIC HQIC 

NMBXII 378.3576 388.3575  389.4896  398.7452 392.4124      

NBXII 514.4646 522.4647 523.2054 530.7748 525.7086  

New Lomax 514.4816 520.4816  520.9180 526.7142 522.9146  

MBXII 387.7828 393.7829  394.2192 400.0155  396.2158  

BXII 514.4602 518.4602 518.6745 522.6153 520.0822  

Lomax 529.5340 531.5340  531.6042  533.6116  532.3450  

LL 574.8004 576.8005 576.8707 578.8780 577.6115  
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Fig. 5: Fitted pdf, cdf, survival and pp plots of the NMBXII distribution for tax revenue data 

Tables 5--6, infer that the NMBXII distribution is the best distribution because it has smallest values for W*, A*, K-

S, 2− , AIC, CAIC, BIC and HQIC statistics and maximum p-value. Figure 5 also approves that the proposed 

distribution is closely fitted to taxes revenue.  

7.2 Time Periods between Successive Earthquakes: Table 7 reports the MLEs (standard errors in parentheses) and 

measures W*, A*, K-S (p-values). Table 8 displays the values of measures 2− , AIC, CAIC, BIC and HQIC. 

Table 7: MLEs (standard errors) and W*, A*, KS (p-values) for time periods between successive earthquakes 

Model     
  

   W A 
K-S              

(p-value) 

NMBXII 
5.7815  

(112.3016) 

0.3247    

(7.9350) 

0.2267 

(6.2599) 

5.1023  

(60.2430)
 

0.5120   

(36.3887) 

 

0.0276  0.1769 

0.0767       

(0.9969) 

NBXII 0.0503 

(0.2050) 

2.7600 

(8.9116) 
 

3.3700 

(58.7240 ) 

0.3333 

(5.7746)
 

1 
0.0818 0.6340 

0.4553 

(4.582e-05) 

New Lomax 0.0225 

(0.0930) 

2.3857  

(6.71141)  

2.9098 

(15.8539) 

1 1 
0.0817 0.6334 

0.4554 

(4.546e-05) 

MBXII 0.0218 

(0.0288) 

17.0000 

(14.9528)   

--- --- 2.4000 
0.0809  0.6279  

0.456         

(4.415e-05) 

BXII 0.0565 

(0.1753) 

2.7601 

(8.5549) 

--- --- --- 
0.0818 0.6342 

0.4552 

(4.576e-05) 

Lomax 0.1556 

(0.0318) 
1 

--- --- --- 
0.0743 0.5812 

0.4553 

(7.045e-12) 

LL 1 0.2374 

(0.0376) 

--- --- --- 
0.0339 0.2889 

0.689  

(4.595e-05) 

 

Table 8:  2− , AIC, CAIC, BIC and HQIC for time periods between successive earthquakes 

Model 2−  AIC CAIC BIC HQIC 

NMBXII 393.3944 403.3944 406.7277 409.2846 404.9571 

NBXII 445.3058 453.3058  455.411  458.018  454.5559  

New Lomax 445.31 451.3099 452.5099 454.8441 452.2475 

MBXII 445.6822 451.6821 452.8821  455.2163  452.6197 

BXII 445.3034 449.3035  449.8749  451.6596  449.9285  

Lomax 445.6814 447.6814  447.8632  448.8594   447.9939  

LL 470.058 472.058  472.2398  473.236   472.3705  
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Fig. 6: Fitted pdf, cdf, survival and pp plots of the NMBXII distribution for time periods between successive 

earthquakes  

Tables 7--8, infer that the NMBXII model is the distribution because it has smallest values for W*, A*, K-S, 2− , 

AIC, CAIC, BIC and HQIC statistics and maximum p-value. Figure 6 also approves that the proposed distribution is 

closely fitted to time periods between successive earthquakes data.  

7.3 Maximum Annual Flood Discharges: Table 9 reports the MLEs (standard errors in parentheses) and measures 

W*, A*, K-S (p-values). Table 10 displays the values of measures 2− , AIC, CAIC, BIC and HQIC. 

Table 9: MLEs (standard errors) and W*, A*, KS (p-values) for maximum annual flood discharges 

Model     
  

   W A 
K-S            

(p-Value) 

NMBXII 1.4118 

(4.1455) 

  1.0084 

(0.4477) 

 0.1858 

(0.0800) 

14.1535 

(5.2020)
 

3.1603 

(9.9300)
 

0.0330 0.232 
0.079 

(0.9255) 

NBXII 0.0836 

(0.2730) 

2.7610       

(5.3052) 

3.3708 

(35.2326) 

0.3384  

(3.51694)
 

1 0.0534 0.3687 
0.5449 

(8.35e-13) 

New Lomax 0.0349 

(0.0597) 

2.4811 

(2.7794) 

3.0288 

(5.4099) 

1 1 
0.0534 0.3687 

0.5438 

(9.365e-13) 

MBXII 0.0122 

(0.0103) 
63.9754 

-- --- 2.9752 
0.0535 0.3693 

 0.5453 

(8.01e-13) 

BXII 0.0954  

(0.1831)  

2.7607 

(5.2864) 

--- --- --- 
0.0534 0.3686 

0.5449 

(8.372e-13) 

Lomax 0.2616 

(0.0378) 
1 

--- --- --- 
0.0576 0.3957 

0.5484 

(5.803e-13) 

LL 1 0.4049 

(0.0451) 

--- --- --- 
0.0743 0.5047  

0.7704         

(< 2.2e-16) 

 

Table 10:  2− , AIC, CAIC, BIC and HQIC for maximum annual flood discharges 

Model 2−  AIC CAIC BIC HQIC 

NMBXII 432.814 442.8141 444.2426 452.1701 446.3497 

NBXII 588.779 596.779 597.7093 604.2638 599.6076 

New Lomax 588.7874 594.7874 595.3328  600.401 596.9088 

MBXII 589.2012 595.2012 595.7467 600.8148 597.3226 

BXII 588.7774 592.7774 593.0441 596.5198 594.1917 

Lomax 591.7706 593.7705  593.8575  595.6417  594.4776 

LL 637.0264 639.0265  639.1134  640.8977  639.7336 
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Fig. 7: Fitted pdf, cdf, survival and pp plots of the NMBXII distribution for maximum annual flood 

discharges  

From tables 9--10, the NMBXII distribution can be considered as the best distribution for maximum annual flood 

discharges (1000 ft3/sec) data because the values of all criteria (W*, A*, K-S, 2− , AIC, CAIC, BIC and HQIC) 

are smaller for the proposed model. Figure 7 endorses this claim via the graphical display of fitted pdf, estimated 

cdf, survival and PP plots of the NMBXII distribution. From this figure, we can infer that the proposed distribution 

is closely fitted to maximum annual flood discharges.  

8. Concluding Remarks   

The NMBXII distribution is derived from the basis of the T-X family technique and compounding the generalized 

Nadarajah–Haghighi (GNH) and gamma distributions. The NMBXII density function is symmetrical, left-skewed, 

right-skewed, J and reverse-J which is indicative of its applicability. The NMBXII model can produce all types of 

failure rates such as bimodal, inverted bathtub, modified bathtub, increasing, decreasing, increasing-decreasing, 

decreasing-increasing and increasing-decreasing-increasing. To show the importance of the NMBXII distribution, 

we established various mathematical properties such as random number generator, sub-models, ordinary moments, 

incomplete moments, inequality measures, residual life functions and reliability measures. We characterized the 

NMBXII distribution via two techniques. We addressed the maximum likelihood estimation technique for the model 

parameters. We performed the simulation study to demonstrate of the performance of maximum likelihood 

estimators of the NMBXII parameters. We demonstrated the potentiality and utility of the NMBXII distribution by 

considering three real data sets for applications such as tax revenue, time periods between successive earthquakes 
and flood discharges. We applied various model selection criteria, GOFs and graphical tools to examine the 

adequacy of the proposed distribution. We inferred that the NMBXII model is empirically suitable for the lifetime 

applications. Therefore, the NMBXII model is quite flexible and can be applied excellently in evaluating numerous 

data sets. It has the potential to be superior to other competing distributions. Future projects include (i) unit 

NMBXII; (ii) bivariate extension of NMBXII; (iii) modeling the wind speed data with NMBXII and (iv) the study of 

the complexity of the NMBXII via Bayesian methods.  
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