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Abstract

Rank-based analysis of linear models is based on selecting an appropriate score function. The information about
the shape of the underlying distribution is necessary for the optimal selection; leading towards asymptotically
efficient analysis. In this study, we analyzed the multilevel model with cluster-correlated error terms following a
family of skew-t distribution with the rank-based approach based on score function derived for the class of skew-
normal distribution. The rank fit is compared with the Restricted Maximum Likelihood (REML) estimation in terms
of validity and efficiency for different sample sizes. A Monte Carlo simulation study is carried out over skewed-t
and contaminated-t distribution with a range of skewness parameter from moderately to highly skewed. The
standard error of regression coefficients is significantly reduced in the rank-based approach and further reduces for
a large sample size. Rank-based fit appeared asymptotically efficient than REML for each shape parameter of
skewness in skew-t and contaminated-t distribution computed through a calculation of precision. The empirical
validity of fixed effects is obtained up to the nominal level 0.95 in REML but not rank-based with skew-normal
score function.
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1. Introduction

Several experimental and observational studies often occur resulting in cluster-correlated data, for example in clinical
designs with multiple centers known as clusters, repeated measurement designs where individuals are supposed as
clusters. In the randomized complete block, design blocking is a random effect, and blocks serve the same as clusters,
both terms can be used interchangeably (Auda et al., 2017). One example of these mixed effect models is a multilevel
model for incorporating cluster-correlated errors. The observations between clusters are independent and within each
cluster dependent. Hence the assumption of the independent error term in linear models is violated. The most common
conventional technique to estimate the mixed effect model is Restricted Maximum Likelihood (REML) and methods
based on the ordinary least square fitting (OLS). Inferential procedures like testing of hypothesis, confidence intervals,
standard error of fixed effects are affected if the underlying likelihood is non-normal due to the presence of outliers
(Auda et al., 2017). Neglecting the dependent structure in the model causes underestimating the standard error of the
regression coefficient and inflating type-I error (Goldstein, 1995). The only small number of contaminated values can
spoil the REML fit leading to biased estimates. The robust estimation methods are least sensitive to outliers and
therefore provides an attractive alternative to REML and OLS for linear models. One of the commonly used robust
analysis is rank-based fitting of linear models. Auda et al., performed a detailed comparison of the rank-based method
with traditional estimation techniques REML of the mixed model. They discussed the power and efficiency of rank-
based methods over normal and some non-normal situations (Auda et al., 2017). Kloke, McKean, & Rashid (2009),
has extended this rank theory for linear models with cluster-correlated errors. This rank theory provides a
comprehensive methodology including general linear testing of hypothesis, confidence intervals, and robust diagnostic
measures for model fit (Hettmansperger & McKean, 2010). It replaces the Euclidean norm in the least square fitting
with the pseudo norm that produces robust fixed effect estimates (Kloke & Mckean, 2014). The rank-based theory is
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generally efficient however, this efficiency can be optimized depending on the distribution of random errors (McKean
& Kiloke, 2014). If the form of the underlying distribution is known, the corresponding selection of the rank-based
procedure would provide optimal analysis. This study is focused on rank-based analysis with score function that is
suitable for skew-normal (SN) class of distributions of the error term in linear models. This study is focused only on
the case of skew-t errors and showed that enhanced efficiency in rank-based method is attained by using suitable score
function and the method is far more powerful and efficient as compared to REML. While its application is presented
in detail for the skew-t (ST) class of distribution by discussing its validity and efficiency over several different values
of the skewness parameter. Skew-normal is a rich class of distribution presented by (Azzalini, 1985). This family of
distribution has a shape parameter &r, —o0 < <00 to control the skewness of each distribution in this class.

Because the distribution is symmetric in this class, it can be left or right-skewed depending upon the —ve and +ve
value of « respectively. The skew-normal distribution reduces to simple normal-distribution when the shape
parameter o = Q. This family of distribution has been used in numerical studies by (Adelchi Azzalini & Capitanio,
2003), (Azzalini & Genton, 2008) and (Azzalini & Capitanio, 2014). This study is intended to facilitate valid and
precise inferences for skewed data occurred in various practical situations. Some common examples of positive
skewness might include income and expenditure of families, prices, number of accidents claimed by insurance
companies, number of children etc. are the reasonable events to achieve low boundary usually at zero and extremely
large values are also possible to occur. Negative skewness usually less often occurs in real problems, but some
situations like students’ scores on easy tests for which students are especially motivated and another example includes
results of Olympic long jump by athletes. Also retirement ages may have negative skewness: mostly people retire after
the age of 60 or 65 but some professions give retirement in early ages, similarly in developed countries age at death
is negatively skewed. One of the popular distributions to handle these kind of data sets is skewed-t distribution.

The student’s t-distribution is unable to capture the asymmetry however, it efficiently captures values away from mean
and heavy tails (Basalamah, 2017). Several methodologies in literature are proposed to incorporate asymmetry. We
considered a widely held approach proposed (Arellano-Valle & Azzalini, 2013). Skew-t distribution from this skew-
symmetric rich class of distributions is considered for the generation of random errors. Likewise, the skew-normal
distribution, skewness of the skew-t distribution is also controlled by a shape parameter ¢, —oo < <o0. The
appropriate score function for skew-normal error terms is developed in package sn ( Azzalini, 2014). This package
contains suitable functions to generate and manipulate skew-normal and skew-t random variants. This package can be
downloaded at https://CRAN.R-project.org/package=sn. The detail about data examples and functions
used in this package are available at http://azzalini.stat.unipd.it/SN. We applied the score function
suitable for skew-normal error distribution from this package and skew-t error terms are generated from multilevel
models. The rank-based fit is obtained by using R package jrfit and REML estimates are achieved through package
1me4. We performed a Monte Carlo simulation study to discuss the robustness and efficiency of rank-based
procedures developed for skew-normal and applied over a class of skew-t distributions at different sample sizes.

In this study, we conducted a rank-based analysis for a skew-t family of distribution based on skew-normal score
function. A simulation study is performed with the rank-based procedure based on a shape parameter & of the skew-
normal score function. The analysis for correct & is fully efficient. The rank fit also shows quite similar results with
neighborhood values of the correct & . The effect of sample size in the multilevel model is also considered because a
larger sample size reduces standard error (SE) leading towards efficient analysis. Thus the analysis is repeated over
three different sample sizes small to moderate and the rank-based fit is compared with the REML approach. The
findings of this study confirm the outclass performance of skew-normal procedure over the traditional approach REML
in the neighborhood of the correct & applied on skew-t level-1 and level-2 random errors in the multilevel model.

2. Representation of rank-based analysis

2.1 General Linear Model
Al-Shomrani presented the linear regression model as shown (Al-shomrani, 2003):

Y =al+ X[ +e. 1)
Where Y is the dependent variable, X isNx P the design matrix, £ is the p x1vector of slope parameters, « is
the intercept, and € is a N xJ1vector of residuals that are i.i.d . The density function of the error term is denoted as
f and distribution function is denoted as F . The design matrix is assumed to have a full column rank and centered
as the model includes the intercept. Rank-based estimates are invariant to the intercept.
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2.2 Random Intercept Model
The general form of the random intercept multilevel model in combined form is presented (Goldstein, 1995):

700+,le +8€; Uy, (2)

Where Yii is a dependent variable measured at level-1 (i subscript refers to individual-level variation and j refers to
group-level variation), Xi is an independent variable measured at level-1, A, is the fixed slope for each group. & isa
random error obtained from the level-1 regression equation. y,, is the overall intercept, it is a fixed effect i.e., invariant

over the clusters. It shows a unique effect of cluster j on the intercept. Also Uo; is a random error that shows the

deviation of group-level slopes from the overall slope. It is assumed to be normally and independently distributed
across individuals with distribution function F and density function f.
2.3 Brief Overview of Rank Theory

In rank-based theory, a pseudo norm is used instead of the Euclidean norm in OLS. Thus the robust estimate of ﬁ:ﬂ
can be defined as (John D Kloke et al., 2009):
B, =argmin|Y =X . @3)
This joint rank-based estimator of /3 is called Jaeckel’s dispersion function (Jaeckel, 1972). This is a convex function
of [ asitis defined in terms of the norm. It is efficient and robust in Y -space (J. D. Kloke & McKean, 2012). Al-
Shomrani (2003) defined this pseudo norm by
N
Iv - Xﬂ| =;a[ (yu X )](Yij_xliiﬁ)' (4)

Where R denotes the rank of V,among V,,...,V, and these are invariant to constant shifts.
Y = Dependent variable for the individual i in a cluster j

X,; = Corresponding p x1vector of covariates

A suitable selection of score function according to the shape of error distribution is required for optimal analysis. The
score function ¢(u) is a non-decreasing square-integrable function bounded in the interval (0,1). The score function

can be standardized such that'[go(u)du =Oandj(p2 (u)du =1. Scores are calculated asa[t]:q{ t } and these
N+1

scores sum equal to zero. Some score functions make assumptions about the distribution of the raw scores and few of
them do not make any assumptions such as the Wilcoxon score function. If the underlying distribution of the error
term is known, Hajek & Sidak, (1967) showed that optimal scores can be found as:

—f'(F*(u
(F () )
f(F(u))
Where f (u) and F (u) are probability density function (pdf) and cumulative density function (cdf) respectively of
the respective error distribution. In the vast set of skew-symmetric distributions, a remarkable case is a skew-normal

distribution. It is a superset of a normal family with an additional parameter to control skewness (Arellano-Valle &
Azzalini, 2013). Its density function in the univariate case is defined as:

2 @) (az), 2=22% ©
w (0]

@ (U) =gp(u) =

McKean & Kloke (2014) considered the location and scale parameter 0 and 1 respectively, leading to expression of
the pdf

f(x) = 24(x)@(x). Q)
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Where the domain of parameter ¢ is—00 < ¢@ <00. The pdf and cdf of the standard normal distribution are denoted
as @(X) and D(X) respectively. Within the context of skew-symmetric distributions, Arellano-Valle & Azzalini

(2013) presented a skew-t (ST) family of distribution with pdf at X (x €[] ):

g'[(z;v)T (az /le;v+1], z=ﬂ (8)
10} V+2 10}

Where t(, ; ‘[) is the density function and T (, ; T) denotes the distribution function of the student’s t distribution with

7 degree of freedom (df). For a standard t version of this pdf includes location & = 0and scale parameter @ =1.
Then the pdf of standard skew-t becomes:

2t(x;v)T (ax /le;v+l} 9)
V+X

Azzalini (2013) presented some interesting properties of skew-t distribution and discussed its moments as well.
Basalamah (2017) summarized some basic properties as:

Let X [ ST(u,0,4,7),

If #=0and o =0then X [ st (1)
e Ifdf y — toothen X [J SN(u,0,4) and
o If A=0then XUt (11,0).

o If A—>oothen X[t |

e The measure of skewness of X is the whole real line when df 7 > 3.

McKean & Kloke (2014) discussed skew-normal distribution and declared that only positive values of & are
sufficient because X [J SN (&) then—X [J SN(—a). A similar result for skew-t is defined above in point 4.
Parallel to the fact in a normal distribution, positive values of & making the distribution right-skewed and negative
values of « forms the distribution left-skewed. When A — oo Skew-t density approaches to half t density
(Basalamah, 2017). In simulation settings values of ¢ in the interval of -12 and +12 are considered, by using the fact
of little difference between skew-normal and half normal distribution when ¢ is near =8 (McKean & Kloke, 2014).
Figure 2 shows the graphs of the skew-t pdf’s and their corresponding skew-normal scores for the shape parameter
a=-b, 0, 6. In the left panel of figure 2, the pdf of o =-5is left-skewed and o =6 is right-skewed. It is obvious
the pdf for o = 0is symmetric. The score function corresponding to right tail pdf accentuates left tails relatively high.
Similarly, score function for left-skewed pdf, put more weight on right tails than left tails.
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Figure 1: Plot of PDF’s of skew-t distribution with shape parameter=-5,0 and 6
respectively and corresponding skew-normal score functions
3. Simulation Settings

The simulation study is aimed at evaluating rank-based procedures developed for skew-normal distribution applied to
the skew-t distribution of level-1 and level-2 error distributions. The score functions are evaluated for multilevel
models at different sample sizes. The simulated multilevel model is as follows (McKean & Kloke, 2014):

Vi = By + BX; +6C, +Uy; +€; j=L...k;i=1..,n

, (10)

Where Y;; is the response variable and X; is a random variable normally distributed X; [ N (0,1) measured at level-
1. Uoj and g; are random errors at the group level and individual level respectively. Both the random error terms are

generated by selected distributions. C; is an indicator variable of treatment effect where 1 indicates presence and 0

indicates absence. There are three variations of level-1 sample size as: 5, 10, 20 within each level-2 unit, and 5 level-
2 units are considered. Two kinds of error distributions are reflected in this simulation study: skew-t distribution and
contaminated skew-t distribution. In skew-t distribution both level-1 and level-2 error terms, the degree of freedom
(df) is fixed atv =4, and shape parameter & =7 in each run. Location and scale parameters are set at 0 and 1

respectively. The fixed effect parameters 3, £, and G are set at 0 without loss of generality. The contaminated
skew-t model is given below:

e =(1- Ig,i)Wi +1,Vi (11)

Where Ig'i is a random variable with a binomial distribution (1, & =0.15). W is the skew-t random error with shape
parameter =7 and df is vV =4. V, is a random variable from t-distribution V, [J t(4). A similar setting is used

for group-level error too. For robust analysis through rank theory, the score ¢, (u) is selected suitable for o = 7 in

standard skew-normal distribution. Three values of « in the neighborhood of « =7 are considered to show a
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comparative analysis of optimal score function i.e. & =4,5,6,7,8,9,10. To investigate the effect of high skewness
we also consider ¢ =12.

Algorithm of the simulation study

1. Simulate random variable X [] N(0,1), C as a treatment indicator and a block effect.
Random error at group level and individual level are generated with standard skew-t distribution with df y = 4
and « =4,5,6,7,8,9,10 and 12..

3. The group size 5 is considered, within each group level-1 sample size is taken 5, 10, and 20. Thus total
n = 25,50,100 is taken for 1000 simulation runs.

4. The rank-based procedure with score function ¢, (U) and REML method is applied for all values of « for skew-

t (Eg. 10) and contaminated skew-t distribution (Eq. 11) of the error term in the multilevel model.
5. SE of fixed effect § & € and validity in terms of 95% confidence interval is computed by REML and all rank-

based procedures for skew-t and contaminated skew-t distribution.
6. Precision (6/7,)” is calculated for the overall comparison of the efficiency of every rank-based method with

corresponding REML analysis.
4. Results and Discussion

Table-1 summarizes the results of simulations, comprising rank-based and REML analysis of skewed-t distribution.
SE and validity based on a 95% confidence interval ,[}ita/ZYVSE(pA’) are calculated for two regression coefficients

S and @ in the model (Eqg. 10) forn =25,50,100. All the values of SE of S and @ reducing significantly in the

rank-based method as compared to REML, which justifies the robustness of rank theory. With the increase in sample
size, the SE decreases a little bit that confirms the effect of a large sample size. The value of precision is calculated
greater than 1 indicates the rank-based fit is more precise than REML. And the value of precision less than 1 means
REML is better. For each value of the shape parameter, precision is always greater than 1. The most efficient analysis
of fixed effects comes out in rank-based analysis within the skew-t distribution depicted from high values of precision
3.61 comparing fora = 4,5,6,7,8,9,10. However, quite similar results are obtained for & = 8. Regarding validity,

an increase in sample size does not endorse to increase in validity. Too small sample sizes may not produce a valid
confidence interval. For all procedures, empirical efficiencies should close to the nominal confidence level 0.95. The
highest value of precision is obtained when errors are highly right-skewed.
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Table 1: Results of rank-based procedures compared with REML for skew-t distribution with shape
parameter o=7
Skew-t errors REML

Proc n B 0 B 0 Precision

SE Conf SE Conf SE Conf SE Conf

o= 25 039 0.65 0.71 0.12 0.90 0.85 161 083 2.03

50 032 0.94 0.58 0.94 0.82 0.85 148 0.82 253

100 0.30 0.65 0.55 0.82 0.74 0.83 135 083 235

a=5 25 038 0.69 0.71 0.90 0.88 0.86 162 086 2.55

50 033 0.36 059 0.79 0.82 0.83 146 083 286

100 0.29 0.34 0.53 0.66 0.81 0.82 148 081 2.82

a=6 25 038 051 0.67 0.86 0.89 0.88 157 085 2.48

50 032 0.66 0.56 0.83 0.79 0.84 139 084 2098

100 0.28 0.59 052 0.81 0.77 0.84 141 083 293

a=7 25 038 0.75 0.67 0.86 0.88 0.86 155 083 233

50 030 046 0.54 0.66 0.78 0.83 143 083 3.58

100 0.28 0.61 0.51 0.90 0.77 0.83 138 084 3.61

a=8 25 038 043 0.66 0.82 0.89 0.87 153 085 235

50 032 0381 0.57 0.96 0.83 0.84 147 083 3.33

100 0.22 0.27 0.50 0.67 0.82 0.84 146 083 3.35

a=9 25 037 0.67 0.66 0.92 0.85 0.86 153 087 2.62

50 0.33 0.63 0.56 0.90 0.87 0.84 147 082 3.17

100 0.25 0.22 0.46 0.33 0.73 0.83 134 082 3.57

a=10 25 039 0.89 0.68 0.93 091 0.84 162 084 1.53

50 031 0.62 0.55 0.85 0.84 0.85 147 083 126

100 0.26 0.70 0.47 0.86 0.70 0.84 127 083 114

a=12 25 0.37 0.66 065 0.72 131 0.87 231 082 855

50 0.27 0.75 0.48 0.84 116 0.85 209 083 1195

100 0.22 0.61 040 0.91 1.03 0.84 196 0.83 2854

Because REML performs worse in such a high skewness and rank-based method still performs best. Surprisingly, the
rank-based procedure with score function ¢, (u) does not produce nominal confidence close to 0.95. Table-2 comprises

a parallel analysis for contaminated skewed-t error distribution of error term. Empirical efficiencies are greatly
efficient than REML.
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Table 2: Results of rank-based procedures compared with REML for
contaminated-t distribution with shape parameter a=7
Contaminated-t distributed errors

Proc n B 0 Precision
SE Conf SE Conf
o= 25 0.00 0.69 0.00 087 1.24
50 0.00 0.65 0.00 083 125
100 0.00 0.64 0.00 085 1.01
=5 25 0.00 0.67 0.00 084 1.70
50 0.00 0.66 0.00 083 1.36
100 0.00 0.66 0.00 0.84 1.03
=6 25 0.00 0.69 0.00 085 1.68
50 0.00 0.63 0.00 0.83 1.27
100 0.00 0.64 0.00 084 164
o=7 25 0.00 0.66 0.00 0.85 1.68
50 0.00 0.63 0.00 082 142
100 0.00 0.62 0.00 084 120
=8 25 0.00 0.66 0.00 0.84 154
50 0.00 0.65 0.00 084 128
100 0.00 0.63 0.00 082 1.17
=9 25 0.00 0.66 0.00 0.84 156
50 0.00 0.64 0.00 081 1.22
100 0.00 0.66 0.00 0.83 115
=10 25 0.00 0.64 0.00 0.83 9.96
50 0.00 0.58 0.00 0.79  10.98
100 0.00 0.60 0.00 0.82 6.72
=12 25 0.00 0.61 0.00 0.82 540
50 0.00 055 0.00 0.75 4.36
100 0.00 0.54 0.00 077 4.38

The value of precision is computed similarly for o =7 and its neighborhood points. For the shape parameters
a =10 and 12, the precision is significantly high. For highly skewed and contaminated data rank-based method
produces a far better fit than REML. Overall precision is high in skewed-t error cases as compared to contaminated
error cases. It means empirical efficiencies outperforms REML in a significant magnitude. Forg =12, in skew-t
distribution precision 28.54 is extremely high than for contaminated error case. It has empirical efficiency 2854%
more than REML even with score function ¢, (u)that is not appropriate fora =12, the analysis can be further

optimized by using ¢, (u) . In the contaminated-t error case, for o =10the rank method is 1098% more efficient than

REML. All the rank-based procedures based on skew-normal score function appeared robust and efficient than REML
for skew-t and contaminated-t distribution of error term in multilevel models. But the validity in terms of confidence
intervals is not improved in the rank-based method.
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5. Summary and Conclusion

The rank-based analysis is a robust and efficient alternative of traditional methods in case of non-normality of error
terms in linear models. A suitable selection of score function is necessary to reach optimal analysis. For this purpose,
the knowledge about the underlying distribution of the error term is required. Practically, most often Wilcoxon
(default) score is used that is suitable for symmetric moderate tailed distribution. For example, rank-based analysis
with normal score function applied for normally distributed error terms would produce a completely efficient analysis.
In this study, the performance of rank-based analysis based on score function developed for the skew-normal
distribution of error in the linear model is evaluated for errors randomly generated from a class of skew-t distributions
in multilevel models. And the rank-based approach is compared with the traditional REML in three different sample
sizes in terms of validity and efficiency. Two models skew-t and contaminated-t distribution are used with different
values of shape parameter & in the family of skew-t distribution. The score function is developed for a particular value
of the shape parameter. Thus analysis would be optimized for the correct value of & . We selected the score function
appropriate forar =7 and performed rank analysis fora =4,5,6,7,8,9,10 and 12. The optimized analysis is
obtained for £ and @ inside 3 elements of correctr in skew-t and contaminated-t distribution. SE and 95%

confidence interval for fixed effect parameters are computed. SE is reduced through each rank-based analysis as
compared to REML for both fixed effects £ and &, its magnitude also decreases with increasing sample size. Validity

in terms of confidence interval should reach a nominal level 0.95, but in a rank-based approach, it is a little bit smaller
than REML. Precision is calculated to compare REML and rank-based fit for each case in simulation settings. It is
always greater than 1 means rank-based is overall better. For contaminated-t error, precision shows quite similar
patterns for & = 7 and neighborhood points. But for & =10,12 with such a high skewness precision is 1098% more

efficient than REML. In skewed-t case, the highest value of precision 2854% is attained when. Because REML
produces worse fit in such a highly skewed error. Based on the empirical efficiencies, the score function performed
well but not for empirical confidence levels.
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