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Abstract

In this study, an alpha power inverted Kumaraswamy distribution having three shape parameters is obtained by ap-
plying the alpha power transformation to the inverted Kumaraswamy distribution. Then, its survival and hazard rate
functions are expressed in closed forms. Some of its submodels and limiting cases are provided as well. Its param-
eters are estimated by using the maximum likelihood, maximum product of spacings, and least squares methods. A
Monte-Carlo simulation study is conducted to show the performances of the considered estimation methods. An appli-
cation to a real data set including values of breaking stress of carbon fibers is provided to illustrate an implementation
of the proposed distribution and its modeling capability. The results show that alpha power inverted Kumaraswamy
distribution can be an alternative to the its rivals.

Key Words: Alpha power transformation; Inverted Kumaraswamy distribution; Least squares; Maximum likelihood;
Maximum product of spacings
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1. Introduction

Probability distribution functions are usually used for modeling data from various fields. Some of the probability
distributions are identified with the relevant field of science. For example, the Kumaraswamy distribution introduced
by Kumaraswamy (1980) has been generally known for its applications in the hydrology. After with Jones’ (2009)
detailed work on the Kumaraswamy distribution, it has become more familiar to statisticians. Recently, AL-Fattah et al.
(2017) presented a transformation of the Kumaraswamy distribution, called as inverted Kumaraswamy (IKum) having
a longer right tail when compared with the other well-known distributions. They stated that it allows more accurate
predictions of rare events existing in the right tail of the distribution, i.e., long term reliability predictions. Later
on, Abu-Moussa and El-Din (2018) obtained the maximum likelihood (ML) and Bayesian estimates for parameters
of the IKum distribution under the progressive type-II censoring scheme. Aly and Abuelamayem (2020) derived the
multivariate [IKum distribution and used the ML and Bayesian methods to estimate its parameters. Hameed et al. (2020)
conducted a study to estimate the stress strength reliability of a component under the IKum distribution. Recently,
Bagci et al. (2021) used the IKum distribution to model the wind speed data and estimated its parameters by using the
maximum product of spacings (MPS) and least squares (LS) methods.

A random variable Z following the IKum distribution, i.e., Z ~IKum({, ), has the probability density function (pdf)
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fz(28,0) = BA(L +2)" ATV [1— (1 + z)—*}"‘1 : 2>0, >0, A>0 (1)
and the cumulative distribution function (cdf)
18
FZ(z;ﬂ,)\):[lf(lJrz) } . 2>0, 8>0, A>0. 2)

Here, $ and ) are the shape parameters. Statistical properties of the IKum distribution are provided by AL-Fattah et al.
(2017).

In recent years, number of studies have been carried out for extending the IKum distribution. For example, Igbal
et al. (2017) presented the generalized inverted Kumaraswamy (GIKw) distribution by using the power transforma-
tion as a more flexible model from the IKum distribution and its sub-models. Jamal et al. (2019) derived the GIKw
generated (GIKw-G) family of distributions. Reyad et al. (2019) proposed the Topp-Leone generalized inverted Ku-
maraswamy distribution. Usman and ul Haq (2020) introduced the Marshall-Olkin extended inverted Kumaraswamy
(MOEIK) distribution. Sherwani et al. (2021) used quadratic rank transmutation map to obtain the transmuted inverted
Kumaraswamy distribution.

There are several methods for extending/generating statistical distributions; see Lee et al. (2013). These methods are
generally used for making an existing distribution more flexible in terms of modeling capability. Recently, Mahdavi
and Kundu (2017) used the alpha power transformation (APT) for generating a probability distribution. The APT
method is conceptually based on adding a parameter to the distribution function to bring more flexibility to it. The
APT method has some advantages of being easy applicability. Let F'(¢) be a cdf and f(¢) be a pdf of a random variable
T. The APT of F'(t) and f(t) fort € R are

o 1 >0, a#l

- 5 « ,
Fapr(t) = a—1

Fr(t) ;o a=1

and

1n(a) T(t .
fapr(t) = a_lfT(t)O‘F() i oa>0, a#l

f T (t) 5 o = 17
respectively. See Mahdavi and Kundu (2017) for the details.

Notice that the APT family of distributions is reparemetrized version of the “exp-G” family of distributions introduced
by Barreto-Souza and Simas (2014) and the equivalent “truncated-exponential skew-symmetric” family of distribu-
tions obtained by Nadarajah et al. (2014) as stated in Jones (2018). Beside with keeping mind this fact, for the purpose
of being parallel to the recent literature, the APT terminology will be used in the rest of this study.

In the literature, the APT method has been applied to many different distributions. For example, Dey et al. (2017)
obtained the alpha power generalized Exponential distribution. Nassar et al. (2017) introduced the alpha power Weibull
distribution. Hassan et al. (2018) derived the alpha power extended Exponential distribution. Unal et al. (2018)
obtained the alpha power inverted Exponential distribution. Ramadan and Magdy (2018) and Basheer (2019) proposed
the alpha power inverse Weibull distribution. Dey et al. (2019a, 2019b) introduced the alpha power Lindley and alpha
power inverse Lindley distributions. Hassan et al. (2019) derived the alpha power power-Lindley distribution. Thtisham
et al. (2019) proposed the alpha power Pareto distribution. Erdogan et al. (2021) obtained the alpha power Maxwell
distribution.

This study presents the following contributions to the related literature. (i) An alpha power inverted Kumaraswamy
(APIK) distribution is introduced as an alternative to the IKum and some of its extended/generalized versions such
as the MOEIK and GIKw-W distributions. (ii) Several submodels and limiting cases of the APIK distribution, to
the best of the Authors’ knowledge, some of them have not been proposed yet, are obtained as well. (iii) The ML,
MPS and LS methods are used to estimate the unknown parameters of the APIK distribution. The performances of
the considered estimation methods are compared via a Monte-Carlo simulation study. Note that the earlier version of
this study was presented at the 4th International Conference on Computational Mathematics and Engineering Sciences
(CMES-2019); see Bagci et al. (2019).
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The rest of this study is organized as follows. In Section 2, the pdf, cdf, and some statistical inferences of the APIK
distribution are obtained. In Section 3, sub-models and limiting cases of the APIK distribution, and also distributions
obtained by applying different variable transformations are derived. Afterward, in Section 4, the ML, MPS, and
LS estimation for parameters of the APIK distribution are given, and then the Monte-Carlo simulation results for
comparing the performances of these methods are provided. In Section 5, a real data set is modeled by using the APIK
distribution and some of its strong alternatives to compare their modeling performances with each other. Finally, the
last section reserved for some concluding remarks.

2. The APIK Distribution

In this section, the APIK distribution is obtained by applying the APT method to the IKum distribution.

Definition 2.1. A random variable X following the APIK distribution, i.e., X ~APIK(«, 3, \), has the cdf

a[l—(u-z)**}ﬂ 1
FX(LE,O(,,B,/\): T IL'>O7 5>07 )\>0, Of>0, Oé?él (3)
Fz(x; 8, ;o x>0, >0, A>0, a=1

and the pdf

Fx(x10,8,7) %Wlm)*”” [1-(+a) a7 as0, 850, A>0, a>0, a#l
XLy &, Py = -
fz(x; B, ) ;o x>0, >0, A>0, a=1

“4)

Definition 2.2. Let X ~APIK(«, 3, \), then it has the survival function

— 18
Sx(e, 00 B) aal[l—a[Hl”) ] *1} C x>0, >0, A>0, a>0, a#l
X\T, Q, A, = -

1—Fz(x;8,) ; x>0, >0, A>0, a=1

and the hazard rate function (hrf)

a[l—(l+m)’*]’871
—— — ; >0, >0, A>0, a>0, a#l
1 glt—0+2) AP (5)

>0, >0, A>0, a=1.
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The pdf, cdf and hrf of the APIK distribution, given in (3), (4) and (5), respectively, are plotted for different parameters
settings in Figure 1(a), Figure 1(b), and Figure 1(c), respectively.
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Figure 1: The pdf (a), cdf (b), and hrf (c) plots of the APIK distribution for different values of its parameters.

It is clear from the Figure 1(a) and Figure 1(c) that the pdf and hrf of the APIK distribution can be monotone decrease
or monotone increase-decrease for the different parameter settings, respectively.
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Proposition 2.1. lim1 fx(@;a,8,X) = fz(z; 8, A).
a—

Proof. 1t follows from due to the fact that lim1 % = 1 and lim1 afz@BA) = 1. For the cases exp-G family of
a— a—

distributions and alpha power Maxwell distribution, see Barreto-Souza and Simas (2014) and Erdogan et al. (2021),
respectively. O

Due to the fact given in Proposition 2.1, Definition 2.3 is obtained only for the APIK distribution, i.e., a # 1, for the
sake of brevity.

Definition 2.3. The quantile function of the APIK distribution, i.e., inverse of the cdf of the APIK distribution, is

mu+ma—nm)j .

In o

>

;o 0<p<l, >0, A>0, a>0, a#l.

Q@u%@k)=l1—(

Hence, the median of the APIK distribution is

Wl
>

Ina

Q(0.5;a, 8, A) = [1 _ (ln (1+(a— 1)0.5)>

] -1; >0, A>0, a>0, a#l

3. Related Distributions

The APIK distribution includes some well-known distribution as a sub-model. It also converges to the some other
distributions as a limiting case under different variable transformations. Here, referred distributions are given briefly.

It should be mentioned that following distributions are obtained by using the variable transformations and some limit-
ing cases which were already defined by AL-Fattah et al. (2017).

3.1. Sub-models of the APIK distribution
The sub-models of the APIK distribution are obtained for different parameters settings as given below.
(i) When 8 = 1, it reduces to the alpha power Lomax (v, A, 1) distribution:
Ina “x
— (1 “OH)l=0+2)™% x>0, A>0 >0 1
fx(@o,1,0) =¢a—1 (1+2) « I , @>0, a7
A1 4 2)~ A+ ; 2>0, A>0, a=1

(if) When X\ = 1, it reduces to the alpha power Beta Type II («, /3, 1) distribution:

x ﬁ
Ina 1 (B+1 <1 )
fx(z;a,B,1) = BaP=1(1 4+ z)~ B+t \l + 2 ;i x>0, >0, a>0, a#l
y & My a—1
BaP=1(1 4 )=+ . x>0, >0, a=1

(iii)) When 8 = 1 and A = 1, it reduces to the alpha power Log-logistic (1, 1, «v) distribution:

xr
In o B ( )
Fx(ra,1,1) = a_1(1+9c) 2o\ +2/) 250, a>0, a#l
(1+2)72 x>0, a=1

Note that the alpha power Log-Logistic and the alpha power Lomax distributions are introduced by Aldahlan (2020)
and Bulut et al. (2021), respectively. Also, notice that the alpha power Lomax distribution is a submodel of the
Marshall-Olkin alpha power Lomax distribution introduced by Almongy et al. (2021).
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3.2. Transformations

A random variable Y has the following pdf and also its submodels for the certain parameter settings.

(i) Y = [In(1 4+ X)]# follows the alpha power exponentiated Weibull (c, 8, \, 3) distribution, see Mead et al.
(2019), having the pdf

o\ B—1 (1,ef>\y9)ﬁ
«

Ino -1 ,—\y° Y
BNy e y(l—e v ;o a#l
fr(yi o, B,7,0) =< °7 ) A
BAy?—Le— My (1 —e M ) ;o oa=1
wherey >0, a>0, >0, A>0, and 6>0.
Sub-models

0=2 Alpha Power generalized Rayleigh («, 8, \); see Biger (2019)
=1 Alpha Power generalized Exponential («, 3, A); see Dey et al. (2017)
s=1 Alpha Power Weibull (o, A, 6); see Nassar et al. (2017)
0=2 Alpha Power Burr Type X (a, A, 5)

f=1and =2 Alpha Power Rayleigh (a;, \)
f=1and 5 =1 Alpha Power Exponential (o, A); see Mahdavi and Kundu (2017)

(ii) Y = Ao ln(1 + X)) + u follows the alpha power generalized shifted Exponential(«, /3, 11, o) distribution having

the pdf
y—pn)18
_ _ B—1 1—e7( [ )
na B ,—(%2) [1 _ —(ya“)} [ ] . 1
fY(y;O‘767N50.) = ot 0,67 e, B—1 ! 7 a#
ge_(yau) |:1—e_(yo“):| ; a=1
where y <y <oo, a>0, >0, and o >0.
Sub-models
g=1 Alpha power shifted Exponential (o, p, 0)

B=1and p=0 Alpha power Exponential (c, o)

(iii) Y = 0 X o follows the alpha power exponentiated Burr Type XII («, 8, A, 8, o) distribution having the pdf

%# (3)971 [1 + (%)9}_@“) {1 - (1 + (g)f))_)‘} et a[lf(ﬁ(%)e)ﬂr Catl

e e ) - e )] Cam

wherey >0, a>0, >0, A>0, 08>0, and o >0.

fY(y;aaﬂv)‘7970-) =

Sub-models
Bs=1 Alpha power Burr Type XII («, A, 8, o)
f=1lando =1 Alpha power generalized Lomax (v, 5, \)
s=1 Alpha power generalized Beta Type II (o, 1, A, 6, 0)
B=1,0=1,and A\ =0 Alpha power F-distribution (c, 2, 2)\)
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3.3. Limiting Distributions

The random variable Y has the following pdf for the certain parameter settings.

Y = B’i (14 X) and 8 — o0, then Y follows the alpha power inverse Weibull (o, A, 1) distribution , see
Ramadan and Magdy (2018) and Basheer (2019), having the pdf

_ A
o hy=A+be-v Yo o oy>0, A>0, a>0, a#l
Ay~ D=y ;o oy>0, A>0, a=1

f(y;a,A)Z{

) Y =X [1 -(1+X )_1] and A — oo then Y follows the alpha power generalized Exponential («a, 3, 1) distri-
bution, see Dey et al. (2017), having the pdf

i g) = { RSOVl s 0, B0, a0, a
&, P0) =
Y Be ¥(1 —ev)B~1 ;i y>0, >0, a=1
(i) Y = A {1 - B x (1+X )*1} and 8, A — oo, then Y follows the alpha power standard Gumbel distribution
having the pdf
Ina ,—y,—e”Y e Y .
e Ye « ; eR, a>0, a#l
flysa) =qe-t™ =) Y 7
e Ye~ ¢ i yeER, a=1
Note that
: yyr1 —y y P! —y\B— 1,-A —y>
AILH;O(I—X) =e Al;rr;@[l—(l—X)} =(l-e7Y) ﬁhm [1-p8"1y ] R , and
. . _ p-1 oy A18-1 e
Blglolo {,\lggo [1 p(=3) } }76 '

4. Parameter estimation

In this section, the ML, MPS and LS estimation methods are used for estimating the parameters «, 3 and A of the
APIK distribution.

4.1. ML estimation

Let 1,29, ..., z, be a random sample from the APIK distribution. Then, the log-likelihood (In L) function of it is

InL (a,ﬁ, A; 55) =nln(lna) —nln(a — 1) + nln(8) + nln(A) — (A + 1) iln(l + x;)

§ i=1 ©)
g—1) Zln 1— (1+ ;) 1n0421— 14+z)” ]B.
=1
The likelihood equations
dlnL n 1 —
= — 17 (1 = 7
Oa alna +a; i) } 0, @
InL _ -
8n n Zlnl—l-i-xz + (Ino Z{ (1+2)” ]Bln[l—(l—i—xi))\]}:o (®)
i=1

and
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alnLigizlonz Z[ ln1+:): }+ﬂ(1 )Z%[lf(qu]ﬁ—l:o 9)
i=1 i=1 ¢

are obtained by taking partial derivatives of the In L function given in (6) with respect to the parameters «, 5 and
A, and equating them zero. The ML estimates of the parameters o, 8 and A are obtained by solving the likelihood
equations (7) - (9), simultaneously.

4.2. MPS estimation

The MPS method is based on maximizing a geometric mean of spacing. Therefore, the MPS estimates of «, 5 and A
of the APIK distribution are the points in which the objective function

1 = a[lf(lﬂg“’*”)ﬂ]ﬁ -1 a[lf(pﬁz(“)dr -1
D( ) 7)\7 ): 1 1 —
ah < <n+1)§n a—1 a—1
attains its maximum. Here, z(.y denotes ordered observation, i.e., z1) S xeo) < < Tpo1) S Ty Note that

xo = 0 and x(,,41) = oo since the support for Fx(z) is the positive real line. Therefore, Fix (xo;c,3,A) = 0 and
Fx(zn41;,8,\) = 1. See Arslan and Oncel (2017), Volovskiy and Kamps (2020), and references given them for
further information.

4.3. LS estimation

In the LS method, it is aimed to minimize a sum of squares of the differences between theoretical and expected
quantiles with respect to the parameters of interest, i.e., a, 5 and A. Therefore, the LS estimates of the unknown
parameters «, 5 and \ of the APIK distribution are the points in which the objective function

N A PR
S(O"ﬁ”\;f>zﬁz a—1 _<n+1>

=1

2

attains its minimum; see Swain et al. (1988) for further information.

EEINT3

Note that optimization tools “fminsearch”, “fminunc” or “ga” which are available in software MATLAB2015b
can be used to find the ML, MPS, and LS estimates of the parameters «, 3, and A. See also Arslan et al. (2017),
Nassar et al. (2020) and Almongy et al. (2021) in the context of the MPS and LS estimation for parameters of the gen-
eralized Lindley and power Lindley, alpha power Exponential, and Marshall-Olkin alpha power Lomax distributions,
respectively.

4.4. Monte-Carlo simulation

In this subsection, the Monte-Carlo simulation is conducted to compare performances of the ML, MPS, and LS meth-
ods in estimating the parameters «, 5 and A of the APIK distribution. The bias, variance and mean squared eror (MSE)
criteria are used in the comparisons. The simulated values of the MSE criterion are calculated by using the equalities

MSE(a) = E(a—a)?, MSEQ)=EB—-p8)? and MSE(\) =EM\— )2

The joint efficiency criterion, i.e., Def, is also used for the parameters «, 5 and \. The simulated values of the Def are
calculated by using equality

Def(d, 3,\) = MSE(&) + MSE(B) + MSE());
see Akgtil et al. (2016) and references therein.

The simulated values of the bias, variance, and MSE criteria are calculated for 1000 runs in different sample sizes
n = 50,100, and n = 300 with the certain parameters settings. The simulation outcomes are given in Table 1 and
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summarized as follows.

i. Whena =0.5,8=0.9,A =2.5:
The MPS method gives the smallest bias values for « in all sample sizes. The LS method results larger bias
values than the ML. In terms of the MSE criterion, the LS method produces the smallest values.

For the 3, the ML, MPS, and LS methods have small biases for all sample sizes, however the ML method has
the smallest and the MPS has the largest bias values for n = 100. In terms of the MSE criterion, the MPS
method gives the smallest values for n = 50 and n = 100.

Concerning the A, the ML method results the smallest bias values for n = 100 and n = 300, however the LS
produces the largest bias values. In terms of the MSE criterion, the MPS method gives the smallest values for
n = 50 and n = 100.

Opverall, the MPS method is the best for n = 50 and 100 when the Def criterion taken into account.

ii. Whena=0.9,5=1.5,A=0.5:
The ML method gives the smallest bias values for « in all sample sizes. The LS method results the smallest
variance values for all sample sizes. In terms of the MSE criterion, the LS method produces the smallest values.

For the (3, the ML, MPS, and LS methods have the small biases for all sample sizes. The MPS method has the
smallest variance values for all sample sizes. In terms of the MSE criterion, the MPS method gives the smallest
values for n = 50 and 100.

Concerning the A, the ML, MPS, and LS methods give small bias values, and the MPS method produces the
smallest variance values for all sample sizes. In terms of the MSE criterion, the MPS method gives the smallest
values for all sample sizes.

Overall, the LS method is the best for all sample sizes when the Def criterion taken into account.

iii. Whena =1.1,5=0.5,\ = 2.5:
The ML, MPS, and LS methods give large bias values for « in all sample sizes. However, the LS method
produces the smallest MSE values for all sample sizes.

Concerning the 3, the ML, MPS, and LS methods result small bias values for n = 50 and 100 while the MPS
method gives the smallest variance values for the corresponding sample sizes. When the MSE criterion is taken
into account, the MPS method is preferable to the ML and LS since it produces the smallest MSE values for all
sample sizes.

For the A, the MPS method gives the largest bias values for n = 100 and n = 300, however it has the smallest
variance values for all sample sizes. In terms of the MSE criterion, the MPS method is one step ahead of the
ML and LS since it produces the smallest MSE values for all sample sizes.

Overall, the MPS, LS and ML methods are preferable for n = 50, n = 100, and n = 300, respectively, when
the Def criterion taken into account.

iv. Whena = 2.0, =15 =1.1:
The ML method produces the smallest bias values for all sample sizes. The MPS method gives larger bias values
than the LS, except n = 300. In terms of the MSE criterion, the LS method is preferable over the ML and MPS.

Concerning the /3, the LS method results the smallest bias values while the ML and MPS methods have also
small bias for n = 100 and n = 300. When the MSE criterion is taken into account, the MPS shows better
performance than the ML and LS since it produces the smallest MSE values for all sample sizes.

For the )\, the ML, MPS, and LS methods produce small bias values for all sample sizes. However, the MPS
method gives the smallest variance and the MSE values for all sample sizes.

Overall, the MPS method is one step ahead of the ML and LS since it produces the smallest Def values for all
sample sizes.
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Table 1: The simulated bias, variance, and MSE values of the &, B and )\ for the ML, MPS, and LS methods.
a=05,8=09\=25

& 5 A
Bias Variance =~ MSE Bias Variance  MSE Bias Variance ~ MSE Def
ML 0.1156 0.1037  0.1171 0.0431 0.0318  0.0337 0.2141 0.4621  0.5080 0.6587
n=50 MPS 0.0836 0.1096 0.1166 -0.0405  0.0252  0.0269 -0.1371  0.3918  0.4106 0.5541
LS 0.1537 0.0735 0.0971 -0.0051 0.0369  0.0369 0.1432 0.4848 0.5053 0.6394

ML 0.1056  0.0989 0.1101 0.0110  0.0149  0.0150 0.0795  0.2491  0.2554 0.3805
n=100 MPS 0.0807 0.1015 0.1080 -0.0348  0.0130 0.0142 -0.1264  0.2288  0.2447 0.3670

LS 0.1573  0.0611  0.0858 -0.0148  0.0192  0.0194 0.1276  0.2698  0.2861 0.3913
ML  0.0841 0.0723  0.0794 -0.0024  0.0061  0.0061 0.0361  0.1118  0.1131 0.1986
n=300 MPS 0.0654 0.0724  0.0767 -0.0189  0.0058  0.0062 -0.0543  0.1102  0.1131 0.1959

LS  0.1504 00420 00646  -0.0192 0.0064  0.0068 0.1340  0.1108  0.1288 0.2001
a=09,8=15\=05

& 5 A

Bias Variance =~ MSE Bias Variance =~ MSE Bias Variance =~ MSE Def

ML  0.2533 0.3252 0.3894 0.0936 0.1330 0.1418 0.0318 0.0071  0.0081 0.5393

n=50 MPS 0.3659 0.3165 0.4504 -0.0793  0.1067  0.1130 0.0018 0.0043  0.0043 0.5677
LS 0.3872 0.1992  0.3491 0.0086 0.1476  0.1477 0.0306 0.0082  0.0092 0.5060

ML  0.1908 0.2853  0.3218 0.0458 0.0652  0.0673 0.0179 0.0043  0.0046 0.3937

n=100 MPS 0.2891 0.2868  0.3704 -0.0601  0.0582 0.0618 0.0030 0.0032  0.0032 0.4355
LS 0.3039 0.1733  0.2656 -0.0183  0.0800  0.0803 0.0214 0.0045  0.0050 0.3509

ML 0.1532 0.2186  0.2421 -0.0043  0.0242  0.0242 0.0053  0.0019  0.0020 0.2682
n=300 MPS 0.2222  0.2259 0.2753 -0.0514  0.0238  0.0265 0.0017  0.0017  0.0017 0.3035
LS 0.3037  0.1306  0.2228 -0.0427  0.0281  0.0299 0.0199  0.0020 0.0024 0.2552

a=11,8=05X=25

& I3 A
Bias Variance =~ MSE Bias Variance = MSE Bias Variance  MSE Def
ML -0.1549 0.2923 0.3163 0.0828 0.0043  0.0112 0.1755 0.4458 0.4766 0.8042
n=50 MPS -0.2819 0.2140 0.2935 0.0671 0.0022  0.0067 -0.1362  0.3541  0.3726 0.6728

LS -0.2331 0.2168 0.2711 0.0774  0.0035  0.0095 0.1143 05159  0.5290 0.8096
ML -0.2584 0.1661  0.2329 0.0666  0.0014  0.0058 0.0131  0.2111  0.2113 0.4500
n=100 MPS -0.3494 0.1139  0.2360 0.0605  0.0007  0.0044 -0.1750  0.1760  0.2067 0.4471

LS -0.2992 0.1136  0.2031 0.0647  0.0012  0.0053 -0.0063  0.2282  0.2283 0.4367
ML -0.3074  0.0620 0.1564 0.0569  0.0003  0.0035 -0.0583  0.0812  0.0846 0.2446
n=300 MPS -0.3607 0.0488  0.1790 0.0559  0.0002  0.0033 -0.1497  0.0731  0.0955 0.2778
LS -03172 0.0545 0.1552 0.0580  0.0003  0.0037 -0.0618  0.1033  0.1071  0.2659

a=20,8=15x=11

& 5 A
Bias Variance =~ MSE Bias Variance =~ MSE Bias Variance =~ MSE Def
ML 04628 1.5761 1.7903 0.1130 0.1594  0.1721 0.0567 0.0288  0.0321 1.9945
n=50 MPS 0.7884 1.5226  2.1442 -0.1004  0.1152  0.1252 -0.0092 0.0175 0.0176 2.2871
LS 0.7094 0.8855 1.3888 0.0232 0.1745  0.1751 0.0530 0.0350 0.0378 1.6017
ML  0.3814 1.4336  1.5791 0.0579 0.0888  0.0922 0.0315 0.0144  0.0154 1.6867

n=100 MPS 0.6379 1.4702  1.8771 -0.0800  0.0762  0.0826 -0.0093  0.0107  0.0107 1.9704
LS 0.6293  0.7479  1.1439 -0.0258  0.0866  0.0873 0.0343  0.0170  0.0182 1.2494
ML  0.2453 1.0600  1.1202 0.0179  0.0367  0.0371 0.0041 0.0064  0.0064 1.1636
n=300 MPS 0.4048 1.1321  1.2960 -0.0473  0.0362  0.0385 -0.0118  0.0056  0.0057 1.3402
LS 0.5237  0.6444 09187 -0.0347  0.0387  0.0400 0.0230  0.0069  0.0075 0.9661
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5. Application

In this section, an application to a real data set in which contains values of breaking stress of carbon fibers (in GPa)
is provided. The data set, given in Table 2, is obtained from Nichols and Padgett (2006) who conducted a study on
developing control chart when process measurements follow the Weibull distribution.

Table 2: The values of breaking stress of carbon fibers.

Sub-group-11

Sub-group-12

Sub-group-13

141 3.68 297 136 0.98 2776 491 3.68 1.84 1.59 319 157 081 556 1.73
Sub-group-14 Sub-group-15 Sub-group-16

1.59 200 122 1.12 1.71 2.17 1.17 508 248 1.18 351 217 1.69 125 438
Sub-group-17 Sub-group-18 Sub-group-19

1.84 039 368 248 0.85 161 279 470 203 1.80 1.57 108 203 161 2.12

Sub-group-20

1.89 2.88 2.82 2.05 3.65

Recently, Jamal et al. (2019) modeled the breaking stress of carbon fibers data by using the Weibull, IKum, GIKw and
GIKw-Weibull (GIKw-W) distributions. They showed that the GIKw-W distribution is preferable over the Weibull,
IKum, and GIKw distributions in modeling the breaking stress of carbon fibers data when some goodness-of-fit mea-
sures are taken into account.

In this study, the APIK distribution is used for modeling the breaking stress of carbon fibres data; see Table 2. Beside,
the GIKw-W and MOEIK distributions, which can be a strong alternative to the APIK distribution, are considered in
the application. The IKum distribution is also included into the application to make comparisons complete. Modeling
performances of the IKum, APIK, MOEIK, and GIKw-W distributions are compared by using well-known information
criteria such as value of the In L, Akaike Information Criterion (AIC), corrected AIC (AICc), and goodness-of-fit
measures the Kolmogorov-Smirnov (KS), root-mean-squared error (RMSE) and coefficent of determination (R?). As
it is known, higher values of the R? and In L, and lower values of the AIC, AICc, KS, and RMSE indicate better fit.

The parameters «, 3, and A of the APIK distribution are estimated by using the ML, MPS, and LS methods as given in
Section 4. For estimating the unknown parameters of the IKum, MOEIK, and GIKw-W distributions, the ML method
is considered. The optimization tool “fminunc” available in software MATLAB2015b is utilized in estimating the
unknown parameters of the IKum, APIK, MOEIK, and GIKw-W distributions. The corresponding results are given
in Table 3. Also, values of the information criteria and goodness-of-fit measures for the IKum, APIK, MOEIK, and
GIKw-W distributions are provided in Table 4. Furthermore, the pdf and cdf fitting plots of the IKum, APIK, MOEIK,
and GIKw-W distributions are shown in Figure 2(a) and 2(b) for an illustration, respectively.

Table 3: The parameter estimates for the APIK, MOEIK, GIKw-W and IKUM distributions.

i b 5 G B A
APIKy — — — 1228373 9.0596  3.7420
APIKyps ~— — — — 122.8365 89634  3.7100
APIK;s  — — — 1228091  7.5129  3.5666
IKum — — — _ 17.9586  3.0450
MOEIK ~ — — — 46951 114699 15.4894

GIKw-W 0.0818 0.2161 6.6121  0.3117 2.7658 —

Table 4: The values of information criteria and goodness-of-fit measures for the related distributions.

Information criteria Goodness-of-fit measures

InL AIC AlCc KS RMSE R?
APIKy,  -73.9126 153.8252  154.3469 0.0761 0.0261 0.9919
APIKyps — — — 0.0751 0.0264 0.9917
APIK| g — — — 0.0822 0.0250 0.9922
IKum -75.9941 155.9882 156.2435 0.1121 0.0304 0.9874
MOEIK  -74.0793  154.1586 154.6803 0.0879 0.0338 0.9865
GIKw-W  -72.1572 1543144 155.6780 0.0852 0.0264 0.9916
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(b) cdfs fitting plot

Figure 2: Fitting plots for pdfs (a) and cdfs (b) of the APIK distributions for the ML estimates of the parameters.
Concerning the goodness-of-fit measures for the APIK distribution calculated by using the ML, MPS, and LS estimates
of the corresponding parameters, it is seen that the ML, MPS, and LS methods give more or less the same R? values.
The KS and RMSE values resulted in the ML and MPS methods are close to each others.

In comparisons for the modeling performances of the APIK, MOEIK, GIKw-W, and IKum distributions, it is seen that
the APIK distribution has the smallest AIC and AICc values. Note that the APIK and MOEIK distributions have three
parameters in the meanwhile the GIKw-W distribution has five parameters.

When the goodness-of-fit measures are taken into account to compare the modeling performances of the APIK,
MOEIK, GIKw-W, and IKum distributions, the APIK distribution has the smallest KS and RMSE values. Also,
the GIKw-W distribution comes after the APIK distribution, since they have more or less the same RMSE and R2
values.

Overall, in terms of the information criteria AIC and AICc, the APIK distribution is preferable over the IKum, MOEIK,
and GIKw-W distributions. Also, the APIK distribution shows better modeling performance than the IKum, MOEIK,
and GIKw-W distributions when the KS criterion is considered. Although the APIK distribution has fewer number
of parameters than the GIKw-W distribution, it stands ahead of the GIKw-W distribution in modeling the breaking
stress of carbon fibres data. To sum up, it is shown that the APIK distribution can be an alternative to the GIKw-W
and MOEIK distributions, since it stands out in much more criteria.

6. Conclusion

In this study, the APIK distribution is obtained by using the APT method. Then, the sub-models and related distribu-
tions of the APIK distribution are obtained as well. To the best of the Authors’ knowledge, some of its sub-models
obtained in this study have not been introduced yet. The parameters of the APIK distribution are estimated by using
the ML, MPS, and LS methods. The Monte-Carlo simulation study is conducted to show efficiencies of the considered
estimation methods in estimating the parameters «, 3, and A of the APIK distribution. The real data set including
values of breaking stress of carbon fibers is used to show the modeling capability of the APIK distribution. Also,
the MOEIK and GIKw-W distributions, which can be considered strong alternatives to the APIK, are included in the
application to make the study complete. As it can be seen from Table 4 that the APIK distribution has better modeling
performance when compared with its rivals in many criteria. Overall, based on the results obtained in this study, the
Authors hope that the APIK distribution can be useful for engineering studies as well as many other fields.

Acknowledgements

The Authors would like to thank the Reviewers for their valuable comments and suggestions.

Alpha power inverted Kumaraswamy distribution 23



Pak j.stat.oper.res. Vol.18 No.1 2022 pp 13-25 DOI: https://doi.org/10.18187/pjsor.v18i1.3327

References

1.

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abu-Moussa, M. and El-Din, M. (2018). On estimation and prediction for the inverted Kumaraswamy distri-
bution based on general progressive censored samples. Pakistan Journal of Statistics and Operation Research,
14:717-736, https://doi.org/10.18187/pjsor.v14i3.2103.

Akgiil, F., Senoglu, B., and Arslan, T. (2016). An alternative distribution to Weibull for modeling
the wind speed data: Inverse Weibull distribution. Energy Conversion and Management, 114:234-240,
https://doi.org/10.1016/j.enconman.2016.02.026.

AL-Fattah, A., El-Helbawy, A., and Al-Dayian, G. (2017). Inverted Kumaraswamy distribution: Properties
and estimation. Pakistan Journal of Statistics, 33:37-61.

Aldahlan, M. (2020). Alpha power transformed Log-Logistic distribution with application to breaking stress
data. Advances in Mathematical Physics, Article ID 2193787:1-9, https://doi.org/10.1155/2020/2193787.

Almongy, H., Almetwally, E., and Mubarak, A. (2021). Marshall-Olkin alpha power Lomax distribution:
Estimation methods, applications on Physics and Economics. Pakistan Journal of Statistics and Operational
Research, 17:137-153, http://dx.doi.org/10.18187/pjsor.v17i1.3402.

Aly, H. and Abuelamayem, O. (2020). Multivariate inverted Kumaraswamy distribution:
Derivation and estimation. Mathematical Problems in Engineering, Article ID 6349523:1-27,
https://doi.org/10.1155/2020/6349523.

Arslan, G. and Oncel, S. (2017). Parameter estimation of some Kumaraswamy-G type distributions. Mathe-
matical Sciences, 11:131-138, https://doi.org/10.1007/s40096-017-0218-0.

Arslan, T., Acitas, S., and Senoglu, B. (2017). Generalized lindley and power Lindley distri-
butions for modeling the wind speed data.  Energy Conversion and Management, 152:300-311,
https://doi.org/10.1016/j.enconman.2017.08.017.

Bagci, K., Arslan, T., and Celik, H. (2021). Inverted Kumaraswamy distribution for modeling
the wind speed data: Lake van, turkey. Renewable and Sustainable Energy Reviews, 135:110110,
https://doi.org/10.1016/j.rser.2020.110110.

Bagci, K., Erdogan, N., Arslan, T., and Celik, H. (2019). Alpha power inverted Kumaraswamy distribution:
Properties and application. In International Conference on Computational Mathematics and Engineering
Sciences (CMES-2019), page 54, Antalya, Turkey.

Barreto-Souza, W. and Simas, A. (2014). The exp-G family of probability distributions. Brazilian Journal of
Probability and Statistics, 27:84—109, https://www.jstor.org/stable/43601236.

Basheer, A. (2019). Alpha power inverse Weibull distribution with reliability application. Journal of Taibah
University for Science, 13:423-432, https://doi.org/10.1080/16583655.2019.1588488.

Bicer, H. (2019). Properties and inference for a new class of generalized Rayleigh distributions with an
application. Open Mathematics, 17:700-715, https://doi.org/10.1515/math-2019-0057.

Bulut, Y., Dogru, F., and Arslan, O. (2021). Alpha power Lomax distribution: Properties and application.

Journal of Reliability and Statistical Studies, 14:17-32, https://doi.org/10.13052/jrss0974-8024.1412.

Dey, S., Alzaatreh, A., Zhang, C., and Kumar, D. (2017). A new extension of generalized Ex-
ponential distribution with application to ozone data. Ozone: Science & Engineering, 39:273-285,
https://doi.org/10.1080/01919512.2017.1308817.

Dey, S., Gosh, I, and Kumar, D. (2019a). Alpha power transformed Lindley distribution: Proper-
ties and associated inference with application to earthquake data. Annals of Data Science, 6:623—650,
https://doi.org/10.1007/s40745-018-0163-2.

Dey, S., Nassar, M., and Kumar, D. (2019b). Alpha power transformed inverse Lindley distribution: A
distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied

Mathematics, 385:130-145, https://doi.org/10.1016/j.cam.2018.03.037.

Erdogan, N., Bagci, K., Arslan, T., and Celik, H. (2021). Alpha power Maxwell distribution: Properties and
application. Journal of Mathematical Modeling, 9:585-598, https://doi.org/10.22124/JMM.2021.17987.1553.
Hameed, B., Salman, A., and Kalaf, B. (2020). On the estimation of P(Y; < X < Y5) in case inverted
Kumaraswamy distribution. Iraqi Journal of Science, 61:845-853, https://doi.org/10.24996/1js.2020.61.4.18.
Hassan, A., Elgarhy, M., Mohamd, R., and Alrajhi, S. (2019). On the alpha power transformed power Lindley
distribution. Journal of Probability and Statistics, 8024769:1-19, https://doi.org/10.1155/2019/8024769.

Hassan, A., Mohamd, R., Elgarhy, M., and Fayomi, A. (2018). Alpha power transformed extended exponen-
tial distribution: properties and applications. Journal of Nonlinear Sciences and Applications, 12:239-251,

Alpha power inverted Kumaraswamy distribution 24



Pak j.stat.oper.res. Vol.18 No.1 2022 pp 13-25 DOI: https://doi.org/10.18187/pjsor.v18i1.3327

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

http://dx.doi.org/10.22436/jnsa.012.04.05.

Ihtisham, S., Khalil, A., Manzoor, S., Khan, S., and Ali, A. (2019). Alpha-power Pareto distribution:Its
properties and applications. PLoS ONE, 14:1-15, https://doi.org/10.1371/journal.pone.0218027.

Igbal, Z., Tahir, M., Riaz, N., Ali, S., and Ahmad, M. (2017). Generalized inverted Ku-
maraswamy distribution: ~ Properties and application. Open Journal of Statistics, 7:645-662,
https://doi.org/10.4236/0js.2017.74045.

Jamal, F., Nasir, M., Ozel, G., Elgarhy, M., and Khan, N. (2019). Generalized inverted Kumaraswamy
generated family of distributions: Theory and applications. Journal of Applied Statistics, 46:356-365,
https://doi.org/10.1080/02664763.2019.1623867.

Jones, M. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages.
Statistical Methodology, 6:70-81, https://doi.org/10.1016/j.stamet.2008.04.001.

Jones, M. (2018). Letter to the editor concerning “a new method for generating distributions with an appli-
cation to exponential distribution” and “alpha power weibull distribution: Properties and applications”. Com-
munications in Statistics-Theory and Methods, 47:5096, https://doi.org/10.1080/03610926.2017.1386314.
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes.
Journal of Hydrology, 46:79-88, https://doi.org/10.1016/0022-1694(80)90036-0.

Lee, C., Famoye, F., and Alzaatreh, A. (2013). Methods for generating families of univariate continuous
distributions in the recent decades. Wiley Interdisciplinary Reviews: Computational Statistics, 5:219-238,
https://doi.org/10.1002/wics.1255.

Mahdavi, A. and Kundu, D. (2017). A new method for generating distributions with an applica-
tion to Exponential distribution.  Communications in Statistics-Theory and Methods, 46:6543-6557,
https://doi.org/10.1080/03610926.2015.1130839.

Mead, M., Cordeiro, G., Afify, A., and Al-Mofleh, H. (2019). The alpha power transformation fam-
ily: Properties and applications. Pakistan Journal of Statistics and Operational Research, 15:525-545,
https://doi.org/10.18187/pjsor.v15i3.2969.

Nadarajah, S., Nassiri, V., and Mohammadpour, A. (2014). Truncated-exponential skew-symmetric distribu-
tions. Statistics, 48:872-895, https://doi.org/10.1080/02331888.2013.821474.

Nassar, M., Afify, A., and Shakhatreh, M. (2020). Estimation methods of alpha power exponential distribution
with applications to engineering and medical data. Pakistan Journal of Statistics and Operational Research,
16:149-166, https://doi.org/10.18187/pjsor.v16i1.3129.

Nassar, M., Alzaatreh, A., Mead, M., and Abo-Kasem, O. (2017). Alpha power Weibull distribu-
tion: Properties and applications. Communications in Statistics-Theory and Methods, 46:10236-10252,
https://doi.org/10.1080/03610926.2016.1231816.

Nichols, M. and Padgett, W. (2006). A bootstrap control chart for Weibull percentiles. Quality and Reliability
Engineering International, 22:141-151, https://doi.org/10.1002/qre.691.

Ramadan, D. and Magdy, A. (2018). On the alpha-power inverse Weibull distribution. International Journal
of Computer Applications, 11:6—12, https://doi.org/10.5120/ijca2018917657.

Reyad, H., Jamal, F., Othman, S., and Yahia, N. (2019). The Topp-Leone generalized inverted Ku-
maraswamy distribution: Properties and applications. Asian Research Journal of Mathematics, 13:1-15,
https://doi.org/10.9734/arjom/2019/v131330107.

Sherwani, R., Waqas, M., Saeed, N., Farooq, M., Raza, M., and Jamal, F. (2021). Transmuted inverted
Kumaraswamy distribution: Theory and applications. Punjab University Journal of Mathematics, 53:29-45.
Swain, J., Venkatraman, S., and Wilson, J. (1988). Least-squares estimation of distribution func-
tions in Jhonson’s translation system. Journal of Statistical Computation and Simulation, 24:271-297,
https://doi.org/10.1080/00949658808811068.

Unal, C., Cakmakyapan, S., and Ozel, G. (2018). Alpha power inverted exponential distribution: Properties
and application. Gazi Journal of Science, 31:957-965.

Usman, R. and ul Haq, M. (2020). The Marshall-Olkin extended inverted Kumaraswamy distribution: Theory
and applications. Journal of King Saud University, 32:356-365, https://doi.org/10.1016/j.jksus.2018.05.021.
Volovskiy, G. and Kamps, U. (2020). Maximum product of spacings prediction of future record values.
Metrika, 83:853-868, https://doi.org/10.1007/s00184-020-00767-1.

Alpha power inverted Kumaraswamy distribution 25



	1 Introduction
	2 The APIK Distribution
	3 Related Distributions
	3.1 Sub-models of the APIK distribution
	3.2 Transformations
	3.3 Limiting Distributions

	4 Parameter estimation
	4.1 ML estimation
	4.2 MPS estimation
	4.3 LS estimation
	4.4 Monte-Carlo simulation

	5 Application
	6 Conclusion



