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Abstract

This article discusses Bayesian and non-Bayesian estimations problems of the unknown
parameters for the two-parameter bathtub-shaped lifetime distribution based on upper record
values. The ML and the Bayes estimates based on record values are derived for the two
unknown parameters as well as hazard function. When the Bayesian approach is considered,
under the assumption that both parameters are unknown, the Bayes estimators cannot be
obtained in explicit forms. An approximation form due to Soland (Soland (1969)) is used for
obtaining the Bayes estimates based on a conjugate prior for the first shape parameter and a
discrete prior for the second shape parameter of this model. This is done with respect to the
squared error loss and LINEX loss functions. The estimation procedure is then applied to real
data set and simulation data.

Keywords: Upper record values; Maximum likelihood; Bayesian estimation;
Soland's method; Two-parameter bathtub-shaped lifetime distribution.

1. Introduction

Chen (2000) proposed a new two-parameter lifetime distribution with bathtub-
shaped or increasing failure rate (IFR) function. Some probability distributions
have been proposed with models for bathtub-shaped failure rates, such as Hjorth
(1980), Mudholkar and Srivastava (1993) and Xie and Lai (1996).The new two-
parameter life time distribution with bathtub-shaped or increasing failure rate
function compared with other models has some useful properties. First, it has
only two parameters to model the bathtub-shaped failure rate function. Second, it
holds some nice properties on the classical inferential front, where the
confidence intervals for the shape parameter and the joint confidence regions for
the two parameters have closed form. For more details, see Chen (2000), Wang
(2002), Wu et. al. (2004, 2005) and Lee et al. (2007).

A new two- parameter bathtub-shaped lifetime distribution has a cumulative
distribution function of the form (Chen 2000)

B
Fe)=1—eM¢) x>, LB >0 (1.1)
and hence the probability density function (pdf) is given by

flx) = A,Bxﬁ_le[xﬁ+’1(1_exﬁ)], x>0, 4,8>0. (1.2)
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The reliability R(t) and hazard (failure rate) functions H(t) of this distribution are
given, respectively, by

xB
R =) x>0, 4,8>0 (1.3)
and
H(t) = A8xP~1e*’, x>0, L,B>0. (1.4)

The failure rate function of this distribution has a bathtub shape when f <1 and
has increasing failure rate function when g > 1(see, Chen (2000)).

Record data arise in several real-life problems including industrial stress testing,
meteorological analysis, hydrology, seismology, athletic events, and oil and
mining surveys. The formal study of record value theory probably started with the
pioneering paper by Chandler (1952). After that many authors have discussed
estimation problems for record values based on certain distribution. Among them
are Mousa et al. (2002), Jaheen (2003), Malinowska and Szynal (2004), Soliman
et al. (2006), Sultan (2008), Sultan et al. (2008), Doostparast (2009) and Habib et
al. (2011).

Let X;,X,,..X,, ... be a sequence of independent and identically distributed
random variables having cumulative distribution function F(x) and probability
density function f(x). Set Y, = max(min) {X,,X,, ..., X,} for n = 1. We say X; is
an upper (lower) record value of this sequence if Y; > (<)Y;_;,j > 1. Thus X; will
be called an upper (lower) record value if its value exceeds (is lower than) that of
all previous observations. The notations Xy and X, ,,) are used for the nt™ upper
and lower records, respectively. For more details, see for example, Ahsanullah
(1995) and Arnold et al. (1998).

This article is concerned with the Bayesian and non-Bayesian estimations based
on upper record values for the two unknown parameters of the new two-
parameter bathtub-shaped lifetime distribution and its hazard (failure rate)
function. In Section 2, the maximum likelihood estimators are derived. In Section
3, the Bayes estimators of the parameters and hazard function are derived based
on the squared error and LINEX loss functions. The estimation procedure is then
applied to real data set and simulation data in Section 4. Finally, conclusions
appear in Section 5.

2. Maximum Likelihood Estimation

Let x = {Xyq), Xu() - Xuemy} e the first m upper record values from the new
two-parameter bathtub-shaped lifetime distribution with pdf as given in (1.2), for
simplicity of notation, we will use x; instead of x;;. The likelihood function (LF) is
given by (see Ahsanullah (1995))

1(61%) =G | | 120 21)

where x = (xq, X3, ..., X;n)-
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By substituting Egs. (1.1) and (1.2) in Eq. (2.1) we obtain

L(ALB|x)=@AB)mexp {/’1(1 - exﬁ,)} Hm xiﬁ_1 x| (2.2)

=1

The natural logarithm of the likelihood function (2.2) is given by

(281%)=m ) +mIn@) +A(1- )+ B -1 Y @)+ » xf  (23)

2.1 MLE with known

Under the assumption that the parameter £ is known. The maximum likelihood
estimator (MLE) of 1, denoted by 4,,,, can be derived from (2.3) as follows

~ m
Ay, = ———— (2.4)

(1 - exﬁ)

2.2 MLE with unknown A and g

Assuming that both parameters g and A are unknown. The maximum likelihood

estimators (MLE) of 1 denoted by 1,,, can be shown to be

N m
Ay = ——— (2.5)

(1 - exﬁ)

Where f is the MLE of the parameter g which, can be obtained as a solution of
the following non-linear equation

géma (1+xf)+<1_%gl)m<xm>exﬁxﬁ -0 26

Using the invariance property, the corresponding MLE of the hazard rate function
H(t) are obtained from (1.4) after replacing A and B by their MLEs 1,,, and ;.

3. Bayes Estimation

3.1 Known shape parameter 8

Under the assumption that the parameter g is known, we consider the natural
conjugate prior distribution for A is a gamma prior density function with pdf

a
/'La—l —b/l’
r@” °

n(l) = A>0, a,b>0 3.1

Combining the likelihood function (2.2) and the prior density function (3.1) and
applying the Bayes theorem, we get the posterior density function of 4 as follows

m(Alx)= %An-le‘l’?(m, (3.2)
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where

N = (e"f’fl +b— 1) and n=(m+a). (3.3)

3.1.1 Bayes estimator based on squared error loss function

Assuming the commonly used squared error loss function, L(¢ — ¢ps)?, the
Bayes estimator of ¢ (i.e., the value ¢zg that minimizes the posterior expected
loss) is the posterior mean. Then, the Bayes estimates of A and H(t) based on
the square error loss function can be derived, respectively from (3.2) as follow

d
Ios = EQx) = | an(2]2)ar= -, (34)
c UIi:)
and
. nn+1
H(t)ps = #B th-1et” (3.5)
N

3.1.2 Bayes estimator based on LINEX loss function

Under the Linex loss function, the Bayes estimator ¢z, of a function ¢ is given by

~ -1
bpL = TIH[E(exP{_C({b}]- (3.6)

From (3.2) and (3.6), the Bayes estimator for the parameter 1 is

gL = —%ln Uooexp{—Cl} n( 2] g)d/ll
0

I [&l 3.7
c N +C| .
Similarly, the Bayes estimator of H(t), is
- 1 () r
H(t)g, = —=In 3.8
®p =~ [n(ﬁ) T (38)

3.2 Unknown two parameters A and 8

Under the assumption that both the parameters A and g are unknown, specifying
a general joint prior for A and B may leads to computational complexities. In an
attempting to solve this problem and simplify the Bayesian analysis, we can use
the Soland’s method. Soland (1969) considered a family of joint prior distributions
that places continuous distributions on the scale parameter and discrete
distributions on the shape parameter to achieve the Bayesian analysis of Weibull
distribution. This approximation was used for obtaining the Bayes estimates by
several authors such as, Soliman et al. (2006), Sultan (2008) and Preda et al.
(2010).
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Suppose that the parameter B is restricted to a finite number of values
B1, B2, -, ﬁk with respective prior probabilities t1,45, ..., such that 0 <¢; <1
and Y¥_ ¢ =1, that is P(B =p;) = =1,2,...,k. Further, suppose that a
condltlonal prior distribution for A given ﬁ p; has a natural conjugate prior with
distribution having a gamma (a;, b;) with pdf
b
(2B =B;) = a ),1“1—1 “Ab, 1>0, a;,b >0, (3.9)

Where a; and b; are chosen to reflect prior beliefs on A given that g = g;.

Combining the likelihood function in (2.2) and the conditional prior in (3.9), we get
the conditional posterior of 1| = B; as follows

Am—t
—An;
(2B = Bj.x) = oy i e (3.10)
where
Bj
njg) = (exm +b; — 1) and n; = (m+q). (3.11)

The marginal posterior probability distribution of g; obtained by applying the
discrete version of Bayes’ theorem, is given by

( 9= @b £ BT v A .
P(B =p;x =A f e M da
J (ﬁ) B o F(a]—)

b?j ‘gj ﬁ]rn vl-l"(nj)

= _ 3.12)
- : (
Micey T(@)
where Ay is a normalized constant given by
k aj
b’ ¢ ﬁ.m vi['(n))
- ] l ]
(Ap) ™ = Z " (3.13)
=N
and
m '_ B
v, = 1_[ xl.B’ texi (3.14)
i=1

3.2.1 Estimators based on squared error loss function

The Bayes estimates of 1 and £, R(t) and H(t) based on the square error loss
function are derived, respectively from (3.10) and (3.12), as follow

. k
Ass :f ZPJ'(ﬁ)“*(W = B;,x)dA
o “
j=1
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k

P. n;
= e
k
Bss = Z Pj) Bj (3.16)
=1
and
k Bj
A n; P g fitPitet”’
At = Z s Pie) B . t>0. (3.17)
= )

3.2.2 Estimators based on LINEX loss function

Under the LINEX loss function, the Bayes estimate of a function ¢(4, ) is given
by

" 1 _
$(4,B) = —ZIn (E(e coGp)). (3.18)
From (3.10) and (3.18) the Bayes estimator for the parameter 1 is

1] e

Ao ==gin| [ Pge (218 = £, x)dA

70 =1
1 [ c \™M
= - | > Py )<1 + ) . (3.19)

c|la g i)

Similarly, the Bayes estimators f, and H(t)g, of 8 and H(t) based on the Linex
loss function can be obtained, respectively, as follow

k

) 1 s

Bor = —=In ZPJ-(ﬁ)e ) (3.20)
=

and
—nj

¢ ptbitet”

(3.21)
i

k

_ 1

Ap = —7ln [Z Pigy| 1+
=1

4. lllustrations

To execute the calculation in this section, we need to determine the values of
(Bj,¢;) and the hyper-parameters (aj, bj), j=12,..,k in the conjugate prior
(3.9). But for each choice of (aj, bj) it is necessary to find the prior of A
conditioned on each value of §; and this can be difficult in practice. Alternatively,
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the values (a;, b;) can be obtained based on the expected values of the reliability
function (E[R(0)|B = B;]), as follows

bjaj foo exp {/1 (1 — etﬁj)}/laf‘le‘bj Ada
F(aj) 0

(1 — etﬁj) Y

b

E[R®IB =B;] =

=(1- (4.1)

The values of a; and b; for each given p;, j=12,..,k can be obtained

numerically from (4.1), when there are prior beliefs about the lifetime distribution
enable one to specify two values (R(ty),t;) and (R(ty),t;). Or else, a
nonparametric approach can be used to estimate the two values of the reliability
function (R(¢t;),t;) and (R(t,),t,) (see Martz and Waller (1982)) by using

m— i+ 0.625)
m+ 0.25 ’

R(t; =xyw) = ( i=12,..,m (4.2)

In order to illustrate the usefulness of the inferences discussed in the previous
section, we consider the following two examples:

Example 1

We consider the real data of the amount of annual rainfall (in inches) recorded at
the Los Angeles Civic Center for the last 100 years, from 1910 to 2009. During
this period, we observe the following six upper record values

12.63, 16.18, 23.65, 32.76, 33.44, 37.96

Based on these six upper record values, the hyper-parameters a; and b; and the
values of g; are obtained by the following steps:

1. By using the nonparametric approach of the reliability function, we set
t; = 16.18 and t, = 32.76 in (4.2), we obtain R(t;) = 0.74 and R(t,) = 0.42.

2. Based on these six upper record values, the MLE of the parameter g from
(2.6), is By, = 0.4691. Therefore, we suppose that g; takes ten values

around S, 0.43 (0.01) 0.52, each has probability 0.1.
3. The values of the hyper-parameters a; and b; for each given g; are obtained
numerically from (4.1), using the Newton-Raphson method.

Table 1 shows the values of the hyper-parameters and the posterior probabilities
derived for each g;. Table 2 contains the MLEs (.)y, and the Bayes estimates

(()ps, ()pL) of A, B and H(t) which are computed from data in Table 1.
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Table 1. Prior information, Hyper-parameters of the gamma and the
posterior probabilities

B a; b 10

[S—

1 0.1 043 210541 171.65912 0.88263967
2 0.1 0.44 147403 128.29103 0.02490062
3 0.1 0.45 1.13088 105.24769 0.00565856
4 0.1 0.46 091508 91.22700 0.00321935
5 0.1 0.47 0.76672 82.02387 0.00299023
6 0.1 0.48 0.65837 75.71850 0.00373855
7 0.1 0.49 0.57570 71.31145 0.00569596
8 0.1 0.50 0.51050 68.23388 0.00999762
9 0.1 0.51 045772 66.14102 0.01954016
10 0.1 0.52 041409 64.81373 0.04161927

Table 2: Estimates of 4, 8 and H(t) with (t = 7)

(Jae
C=-1 C=-2 c=1

(Ime (-Dps

A 0.02447 0.02649 0.02654 0.0266 0.02643
B 0.46909 0.43712 0.4374 04376 0.4369
H(t) 0.04934 0.03915 0.03925 0.03935 0.03904

Example 2

Let us consider the first seven upper record values simulated from a new two-
parameter lifetime distribution (1.2) with §# = 0.8 and A = 3, they are as follows:

0.025, 0.054, 0.258, 0.868, 0.888, 1.091, 1.192

Based on these seven upper record values, the maximum likelihood and Bayes
estimates of A, f and H(t) are obtained by the following steps:

1. We approximate the prior for g over the interval (0.675, 0.9) by the discrete
prior with # taking the 10 values 0.675 (0.025) 0.9, each with probability 0.1.
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2.

By using the nonparametric procedure in (4.2), we assume that the
reliability function for times t; = 0.054and t, = 0.888 are, respectively,
R(ty) = 0.776 and R(t,) = 0.362.

Substituting the two values of R(t;), R(t,) obtained in step 2 into equation
(4.1). The values of the hyper-parameters a; and b; for each given g,
j=12,..,10 are obtained numerically by using the Newton-Raphson

method. The values of the hyper-parameters and the posterior probabilities
for each g; are displayed in Table 3.

Based on the entries of Table 3 the MLEs (.),,; and the Bayes estimates
(()gs, ()pL) of 4, B and H(t)are computed and the results are presented in
Table 4.

Table 3:  Prior information, Hyper-parameters of the gamma and the

posterior probabilities

j t b a bj Pig)
1 0.1 0675 0.495 0.224 0.1546
2 0.1 0700 0.464 0.19 0.1372
3 0.1 0725 0.437 0.163 0.1228
4 01 0750 0.413 0.14 0.1104
5 0.1 0775 0.392 0.121 0.0997
6 0.1 0.800 0.374 0.105 0.0904
7 0.1 0.825 0.357 0.091 0.0819
8 01 0.850 0.342 0.079 0.0742
9 0.1 0.875 0.328 0.069 0.0674
10 0.1 0.900 0.316 0.061 0.0615

Table 4: Estimates of A, 8 and H(t) with (t = 1.2)

True (se

vaue O O T T T o2
A 3 3422 325 2938 2694  2.333
B 08 0613 0767 0765 0764  0.762

HE)  7.36 5.984 7.56 6.019 5114  4.038
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5. Conclusion

In this article, we present the maximum likelihood and Bayes estimates of the two
unknown parameters and hazard function for the new two-parameter lifetime
model based on record values. Bayes estimators, under squared error loss and
LINEX loss functions, are derived in approximate forms by using Soland's
method. The comparisons between different estimators are made based on
simulation study and a real record values set. It has been noticed from Tables 4
that, the Bayes estimates based on squared error loss and LINEX loss functions
are perform better than the maximum likelihood estimates. The Bayes estimates
of the parameters that are obtained based on the LINEX loss function tend to the
corresponding estimates which are obtained based on squared error loss when C
tends to zero.
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