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Abstract

The present paper aims to propose an alternative solution approach in obtaining the optimal interval to an interval
transportation problem (ITP) in which the cost-coefficients of the objective function, source and destination parameters
are all in the form of interval. In this paper, the single objective interval transportation problem is transformed into an
equivalent crisp bi-objective transportation problem where the left-limit and width of the interval are to be minimized.
The solution to this bi-objective model is then obtained with the help of fuzzy programming technique. A set of twenty
random numerical examples has been solved using the proposed approach. A comparative study has also been made
between the proposed solution method and the method proposed by Das et al.(1999) which shows that the proposed
method provides better solutions for eleven out of twenty problems.
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1. Introduction

In a classical transportation problem, a homogeneous product is to be transported from ′m′ sources to ′n′ destinations
in such a way that the overall transportation cost becomes minimum. The availability of the product at source i is
denoted by ai, i = 1, 2 . . .m and the demand of the destination j is bj , j = 1, 2 . . . n. Cij is the cost of transporting
one unit of product from source i to destination j.
In the past several methods have been developed for solving transportation problems in which the cost coefficients,
source and destination parameters are precisely defined but in many practical situations it is not always possible. In
such situations, the cost of transportation, the supply and demand parameters may reflect imprecise behaviour. To deal
with imprecise parameters in transportation problems, fuzzy and interval programming techniques are often used [see
(Inuiguchi and Kume,1991), (Alefeld and Herzberger, 1983), (Bitran, 1980), (Chanas and Kuchta, 1996), (Tanaka and
Asai, 1984), (Soyster, 1973), (Moore, 1979)]. Using the method developed by Ishibuchi and Tanaka(1990) , one can
compare two interval numbers. For example, in a problem where the objective function is to be minimized, A is better
than B, i.e. A ≤MW B if and only if am ≤ bm(lower expected cost) and aw ≤ bw (less uncertainty). Das et al.(1999)
proposed a method to solve the ITP by considering the right-limit and mid-point of the interval. Sengupta and Pal
(2009) developed a new fuzzy orientation method for solving ITP. In this method, they have considered the mid-point
and width of the interval. Natarajan(2010) proposed a new separation method based on the zero point method for
finding an optimal solution for the interval integer transportation problem. Pandian and Anuradha(2011) applied split
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and bound approach for finding an optimal solution to a fully integer ITP with additional impurity constraints. Güzel
et al.(2012) proposed two solution procedures for the interval fractional transportation problem. Panda and Das(2013)
proposed a model for two vehicle cost varying ITP in which they have considered the right-limit and mid-point of the
interval. Nagarajan et al.(2014) suggested a solution procedure for the multiobjective solid transportation problem with
interval cost in source and demand parameters under stochastic environment. Henriques and Coelho(2017) provided a
short review of some interval programming techniques. Akilbasha et al.(2018) proposed an innovative exact method
for solving fully interval integer transportation problem. In this method they have considered mid-point and width of
the interval. Habiba and Quddoos(2020) considered multiobjective ITP with stochastic supply and demand.
In this paper, we have proposed a new solution approach for finding the optimal solution to an ITP in which the cost-
coefficients of the objective function, source and destination parameters have been represented in the form of interval
numbers. The single objective ITP is converted into an equivalent crisp bi-objective transportation problem where the
left-limit and width of the interval are to be minimized. To obtain the solution of the equivalent bi-objective problem,
fuzzy programming technique [see(Bit et al.1992)] is used. To demonstrate the efficiency of the proposed method we
have considered a set of twenty numerical examples. A comparative study has also been made between the proposed
method and the method suggested by Das et al.(1999)

2. Preliminaries

Let the lower case letters e.g. a, b etc. denote real numbers and upper case letters e.g. A, B etc. denote the closed
intervals on the real line R.

2.1. Definition

A = [aL, aR] = { a : aL ≤ a ≤ aR, a ∈ R},

where aL and aR are the left-limit and right-limit of the interval A on the real line R.

2.2. Definition

A =
〈
am, aw

〉
= { a : am − aw ≤ a ≤ am + aw, a ∈ R},

where am and aw are the mid-point and half-width (or simply known as ‘width’) of interval A on the real line R, i.e.

am = (
aR + aL

2
)

aw = (
aR − aL

2
)

2.3. Definition

If A = [aL, aR] and B = [bL, bR] are two closed interval then,

A+B = [aL, aR] + [bL, bR] = [aL + bL, aR + bR]

A+B =
〈
am, aw

〉
+
〈
bm, bw

〉
=
〈
am + bm, aw + bw

〉
λA = λ[aL, aR] = [λaL, λaR] if λ≥0
λA = λ[aL, aR] = [λaR, λaL] if λ<0

λA = λ
〈
am, aw

〉
=
〈
λam, |λ|aw

〉
where λ is a real number.
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3. Definition of order relations between intervals

The present section is devoted to the study of decision maker’s preferences in the minimization problem. The prefer-
ence can be decided with the help of an order relation ≤D which is defined as follows:

3.1. Definition

Let A and B be two intervals which represent uncertain costs from two alternatives. Consider the cost of each alterna-
tive lie in the corresponding interval.
The order relation ≤ D between A =

〈
am, aw

〉
and B = 〈bm, bw

〉
is defined as:

A ≤D B if dIA ≤ dIB
A <D B if A ≤D B and A 6= B

where I = 〈im, iw
〉

represent the ideal expected value and ideal uncertainty.

dIA =
√

(am − im)2 + (aw − iw)2

dIB =
√
(bm − im)2 + (bw − iw)2

If A ≤D B, then A is preferred over B.

4. Mathematical Model of Interval Transportation Problem

The generalized mathematical model of the ITP is written as Problem-I:

Problem-I:

Minimize : Z = [zL, zR] =

m∑
i=1

n∑
j=1

[cLij , cRij ]xij (1)

Subject to;
n∑

j=1

xij = [aLi
, aRi

], i = 1, 2, . . . ,m (2)

m∑
i=1

xij = [bLj
, bRj

], j = 1, 2, . . . , n (3)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (4)
with
m∑
i=1

aLi
=

n∑
j=1

bLj
and

m∑
i=1

aRi
=

n∑
j=1

bRj
(5)

The notations and assumptions used in the above Problem-I are listed below.
Notations and Assumptions

zL : the left-limit of interval valued objective function
zR : the right-limit of interval valued objective function

[cLij
, cRij

] : an interval representing the uncertain cost components for the transportation problem;
it can represent transportation cost

cLij
: lowest possible cost of transporting one unit of product from source i to destination j

cRij
: highest possible cost of transporting one unit of product from source i to destination j

[aLi
, aRi

] : interval availability of source i
[bLj , bRj ] : interval demand of destination j
xij : quantity transported from source i to destination j
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5. Formulation of the crisp constraints and crisp objective function

The objective function and constraints (1)-(3) contains the interval quantities which are not easy to deal, so it is better
to obtain an equivalent crisp problem for the ease of complex mathematical calculations. For this purpose we describe
the procedures for obtaining equivalent crisp constraints and objective function in the following subsections (5.1) and
(5.2), respectively.

5.1. Formulation of crisp constraints

Let us consider the interval constraint (2) of Problem-I which can be represented in the form of two crisp constraints
as follows:

n∑
j=1

xij ≤ aRi , i = 1, 2, . . . ,m (6)

and
n∑

j=1

xij ≥ aLi
, i = 1, 2, . . . ,m (7)

Similarly, the equivalent crisp constraints of (3) may also be written as:

m∑
i=1

xij ≤ bRj
, j = 1, 2, . . . , n (8)

and
m∑
i=1

xij ≥ bLj
, j = 1, 2, . . . , n (9)

5.2. Formulation of crisp objective function

In (1) of Problem-I, we can denote Z =
〈
zM , zW

〉
, where zM = ( zR+zL

2 ) is the mid-point and zW = ( zR−zL2 ) is the
width of interval Z.
According to Ishibuchi and Tanaka(1990), the mid-point and width of an interval can be regarded as the expected value
and uncertainty of interval respectively. Since the objective function (1) of Problem-I is the cost function which is to
be minimized, so our interest is to obtain minimum cost with minimum uncertainty.
Using (2.3), the left limit zL in Problem-I can be expressed in terms of expected cost and uncertainty as follows:

zL =

m∑
i=1

n∑
j=1

cmijxij −
m∑
i=1

n∑
j=1

cwijxij , when xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (10)

where cmij
is the mid-point and cwij

is the width of the cost co-efficient of Z.
Minimizing (10) is equivalent to minimize the expected cost and maximize the uncertainty simultaneously.
Also our objective is to minimize the uncertainty of interval along with minimizing expected value of interval, which
can be achieved by simultaneously minimizing the left-limit function zL and uncertainty function zW .
where,

zW =

m∑
i=1

n∑
j=1

cwijxij (11)

cwij =
(

cRij
−cLij

2

)
is the width of the cost coefficient of Z in Problem-I.
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6. Equivalent crisp Problem of ITP (Problem-I)

The equivalent crisp problem of ITP (Problem-I) can be obtained using (10)-(11) and (6)-(9) as follows:

Problem-II:

Minimize zL =

m∑
i=1

n∑
j=1

cmij
xij −

m∑
i=1

n∑
j=1

cwij
xij (12)

Minimize zW =

m∑
i=1

n∑
j=1

cwij
xij (13)

Subject to;
n∑

j=1

xij ≤ aRi ,

n∑
j=1

xij ≥ aLi , i = 1, 2, . . . ,m (14)

m∑
i=1

xij ≤ bRj ,
m∑
i=1

xij ≥ bLj , j = 1, 2, . . . , n (15)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (16)
with
m∑
i=1

aLi
=

n∑
j=1

bLj
and

m∑
i=1

aRi
=

n∑
j=1

bRj
(17)

7. Procedure for obtaining ideal solution of ITP (Problem-I)

This section discusses the stepwise procedure to obtain the ideal expected value of overall transportation cost and
ideal uncertainty of the interval in which the overall transportation cost lies. The stepwise procedure for obtained ideal
solution of a generalised ITP is given below:

Step 1: Represent the objective function (1) in the form of center and width using definition (2.2),

Z =
〈
zM , zW

〉
=

m∑
i=1

n∑
j=1

〈
cmij

, cwij

〉
xij (18)

Step 2: Split the function (18) obtained in Step 1 into two separate functions with the help of definition (2.3),

m∑
i=1

n∑
j=1

cmij
xij (19)

and
m∑
i=1

n∑
j=1

cwijxij (20)

Step 3: Using (19) and (20), construct two linear programming problems (say Problem-III and Problem-IV) as follows:

Problem-III:

Minimize zM =

m∑
i=1

n∑
j=1

cmij
xij

Subject to; (14− 17)
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Problem-IV:

Minimize zW =

m∑
i=1

n∑
j=1

cwij
xij

Subject to; (14− 17)

where cmij
= (

cRij
+cLij

2 ) is the mid-point and cwij
= (

cRij
−cLij

2 ) is the width of the cost coefficient of Z in
Problem-I.

Step 4: Solve Problem-III and Problem-IV independently and obtain their global minimums. Let z∗M and z∗W be the
global minimums of Problem-III and Problem-IV respectively. So, Z∗=

〈
z∗M , z

∗
W

〉
is the ideal solution of the

Problem-I.

Remark. Let us suppose Z ′ and Zo be the two solutions for Problem-I then according to Definition (3.1), if dZ∗Zo ≤
dZ∗Z′ then Zo is the preferred solution otherwise Z ′.

8. Numerical illustration

Let us consider the following ITP

Minimize Z =

3∑
i=1

4∑
j=1

[cLij
, cRij

]xij

Subject to;
4∑

j=1

x1j = [7, 9],

4∑
j=1

x2j = [17, 21],

4∑
j=1

x3j = [16, 18],

3∑
i=1

xi1 = [10, 12],

3∑
i=1

xi2 = [2, 4],

3∑
i=1

xi3 = [13, 15],

3∑
i=1

xi4 = [15, 17], xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

where,

C =

 [7, 9] [8, 14] [3, 4] [6, 7]
[3, 10] [5, 8] [7, 12] [9, 10]
[6, 12] [4, 15] [7, 8] [12, 13]


Using Eqs.(12)-(13), we write the left-limit zL and width zW of the interval objective function as:

Minimize zL =

3∑
i=1

4∑
j=1

cLij
xij , Minimize zW =

3∑
i=1

4∑
j=1

cwij
xij

where,

cLij
=

7 8 3 6
3 5 7 9
6 4 7 12

 , cwij
=

 1 3 0.5 0.5
3.5 1.5 2.5 0.5
3 5.5 0.5 0.5
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Using eqs.(14) and (15) we write the crisp constraints as follows:

4∑
j=1

x1j ≤ 9,

4∑
j=1

x1j ≥ 7,

4∑
j=1

x2j ≤ 21,

4∑
j=1

x2j ≥ 17, (21)

4∑
j=1

x3j ≤ 18,

4∑
j=1

x3j ≥ 16,

3∑
i=1

xi1 ≤ 12,

3∑
i=1

xi1 ≥ 10, (22)

3∑
i=1

xi2 ≤ 4,

3∑
i=1

xi2 ≥ 2,

3∑
i=1

xi3 ≤ 15,

3∑
i=1

xi3 ≥ 13, (23)

3∑
i=1

xi4 ≤ 17,

3∑
i=1

xi4 ≥ 15, xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4 (24)

Using fuzzy programming techniques (Bit et al., 1992) , the Pareto optimal solution of the problem is obtained as
follows, x11 = 2.71, x14 = 4.28, x21 = 4.28, x22 = 2.0, x24 = 10.71, x31 = 3.0, x33 = 13,
Z = [272.88, 360.25]=

〈
zM , zW

〉
=
〈
316.5, 43.6

〉
.

To obtain the ideal solution of given problem we form the following two single objective problems as follows:

Problem-V:

Minimize zM =

3∑
i=1

4∑
j=1

cmij
xij

Subject to constraints; (21− 24)

Problem-VI:

Minimize zW =

3∑
i=1

4∑
j=1

cwij
xij

Subject to constraints; (21− 24)

where,

cmij =

 8 11 3.5 6.5
6.5 6.5 9.5 9.5
9 9.5 7.5 12.5

 , cwij =

 1 3 0.5 0.5
3.5 1.5 2.5 0.5
3 5.5 0.5 0.5


The ideal solutions of the (Problem-V and Problem-VI) are x14 = 7, x21 = 7, x22 = 2, x24 = 8, x31 = 3, x33 = 13
and x11 = 9,x22 = 2,x24 = 15,x31 = 1,x33 = 15 respectively with the ideal value of the objective function
Z∗=

〈
z∗M , z

∗
W

〉
=
〈
304.5, 30

〉
.

Using Definition (3.1), the distance from Z∗=
〈
z∗M , z

∗
W

〉
=
〈
304.5, 30

〉
to Z=

〈
zM , zW

〉
=
〈
316.5, 43.6

〉
is 18.13.
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The following table shows the comparison of the proposed method with the existing method given by Das et al.(1999)
for a set of twenty simulated problems.

Table 1: Comparison of proposed method with the method given by Das et al.(1999)

Solution Distance of the solution
from ideal solution

Problem
Ideal
Solution〈
z∗M , z

∗
W

〉 Proposed
Method

Method pro-
posed by Das
et al.(1999)

Proposed
Method

Method pro-
posed by Das
et al.(1999)

1
〈
304.5,30

〉 [272.88,360.25]〈
316.5,43.6

〉 [254,355]〈
304.5,50.5

〉 18.13 20.5

2
〈
452,88

〉 [364.72,542]〈
453.36,88.64

〉 [362,542]〈
452,90

〉 1.50 2

3
〈
552.5,40.5

〉 [553.8,648.87]〈
601.33,47.53

〉 [495,610]〈
552.5,57.5

〉 49 17

4
〈
913,117

〉 [890.53,1202.82]〈
1046.67,156.14

〉 [692,1134]〈
913,221

〉 139.28 104

5
〈
851.5,138.5

〉 [700.95,1090.25]〈
895.6,194.65

〉 [621,1082]〈
851.5,230.5

〉 71.39 92

6
〈
301.5,51

〉 [296.45,417.9]〈
357.17,60.7

〉 [228,375]〈
301.5,73.5

〉 56.5 22.5

7
〈
469.5,95

〉 [415.5,642.41]〈
528.95,113.45

〉 [335,606]〈
470.5,135.5

〉 62.24 40.51

8
〈
944.5,183.5

〉 [769.18,1157.28]〈
963.23,194.05

〉 [739,1150]〈
944.5,205.5

〉 21.49 22

9
〈
751,127

〉 [625.48,879.87]〈
752.67,127.19

〉 [626,878]〈
752,126

〉 1.680 1.414

10
〈
580,111

〉 [477.36,771.68]〈
624.52,147.16

〉 [425.2,776.34]〈
600.75,175.57

〉 57.35 67.82

11
〈
772,190

〉 [594.84,1053.99]〈
824.4,229.57

〉 [528,1016]〈
772,244

〉 65.66 54

12
〈
600.5,121

〉 [470.7,761.64]〈
616.17,145

〉 [425.5,747]〈
586.25,160.75

〉 28.66 42.22

13
〈
697.5,118.5

〉 [563.56,852.54]〈
708.05,144.49

〉 [535,868]〈
701.5,166.5

〉 28.04 48.16

14
〈
589,182

〉 [353.59,832.54]〈
593.06,239.47

〉 [391.5,822.5]〈
607,215.5

〉 57.61 38.02

15
〈
897,194

〉 [718.55,1213.22]〈
965.88,247.33

〉 [673,1217]〈
945,272

〉 87.11 91.58

16
〈
892,116.5

〉 [955.3,1382.33]〈
1168.8,213.51

〉 [564.96,1223.23]〈
894.0,329.13

〉 293.3 212.6

17
〈
1326.5,257

〉 [1049.66,1824.55]〈
1437.10,387.44

〉 [874.72,1840.4]〈
1357.56,482.84

〉 171 227.9

18
〈
1495.5,136.5

〉 [1376.65,1666.6]〈
1521.63,144.98

〉 [1331,1660]〈
1495.5,164.5

〉 27.4 28

19
〈
772,190

〉 [594.84,1053.99]〈
824.4,229.57

〉 [528,1016]〈
772,244

〉 65.66 54

20
〈
452,130

〉 [315,632.05]〈
473.5,158.25

〉 [279,627]〈
453,174

〉 35.5 44.01
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9. Comparison and Conclusion

The present paper proposes an alternative solution approach for solving ITP where the cost coefficient of the objective
function and source and destination parameters have been considered as an interval. Firstly, the single objective
interval transportation problem is converted into a bi-objective crisp transportation problem where the objectives are to
minimize the left-limit zL of the interval (i.e. best case) simultaneously by minimizing the width zW (i.e. uncertainty)
of the interval. After that, the fuzzy programming technique is used to obtain the Pareto optimal solution of the
transformed bi-objective transportation problem. Using definition (3.1) the results of the proposed method have been
compared with that of the method developed by Das et al.(1999) . The comparison Table 1 shows that in eleven out of
twenty problems the proposed method provides a better solution than the existing method. So, the proposed approach
can be considered as an alternative approach for solving ITP if decision maker is interested in finding the minimum
cost with minimum uncertainty.
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